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Abstract In this paper, the concept of Fermatean fuzzy subspace of a vector space is intro-
duced as an extension of Pythagorean fuzzy subapace and intuitionistic fuzzy subspace and some
elementary properties related to Fermatean fuzzy subspace are investigated. An interconnected
relationship between intuitionistic fuzzy subspace and Fermatean fuzzy subspace is established
here. It is shown that an intuitionistic fuzzy subspace is a Fermatean fuzzy subspace but the
converse is not true. The notion of Fermatean fuzzy linear tranformation is explored here. It
is proved that sum of two Fermatean fuzzy linear transformations is a Fermatean fuzzy linear
transformation, scalar multiplication with Fermatean fuzzy linear transformation is a Fermatean
fuzzy linear transformation and composition of two Fermatean fuzzy linear transformations is
also a Fermatean fuzzy linear tranformation. Also, the effect of linear transformation on Fer-
matean fuzzy subspace is discussed here. It is shown that image of a Fermatean fuzzy subspace
under bijective linear transformation is a Fermatean fuzzy subspace and the inverse image of a
Fermatean fuzzy subspace under linear transformation is a Fermatean fuzzy subspace. Finally,
Fermatean fuzzy subspace is used in carrer placement scenario to evaluate overlapping skills and
how they transfer between different career options.

1 Introduction

Algebraic structures have a wide range of applications in computer science, including areas like
error correction and coding theory. Uncertainty is an inherent part of life, appearing in almost
every problem we encounter. To manage this uncertainty, fuzzy set theory was introduced by
Zadeh [1]. One important algebraic structure in linear algebra is the subspace of a vector space.
The concept of fuzzy subspace was first introduced by Katsaras and Liu [2]. Later, Das [3]
extended this idea by studying fuzzy vector spaces under triangular norms, and Kumar [4] fur-
ther modified Das’s work. Fuzzy set deals only with the measure of membership. When the
information is clear, the measure of non membership can not be obtained as the complemen-
tary measurement of measure of membership. But, in case of doubtful information, this concept
does not work. For this case, individual measurement of both types of membership values be-
comes necessary. Based on this idea, Atanassov [5] introduced intuitionistic fuzzy sets, but
to address more complex uncertainties, Yager [6] introduced the concept of Pythagorean fuzzy
sets. In Pythagorean fuzzy sets, the square sum of the membership and non-membership val-
ues lies between 0 and 1, making them more effective than intuitionistic fuzzy sets in certain
decision-making problems due to their larger domain. Ejegwa [7] applied Pythagorean fuzzy
sets to career placements based on students’ academic performances, while Bhunia and Ghorai
[8] introduced Pythagorean fuzzy subgroups. Additional results on Pythagorean fuzzy sets were
developed by Peng [9, 10]. To further enhance decision-making accuracy, Senapati and Yager
[11] introduced the Fermatean fuzzy set. In Fermatean fuzzy sets, the cubic sum of member-
ship and non-membership values lies between 0 and 1, making the domain even larger than that
of Pythagorean fuzzy sets. Fermatean fuzzy sets can handle higher levels of uncertainty and
provide better accuracy in decision-making compared to intuitionistic and Pythagorean fuzzy
sets. For instance, when evaluating uncertainty with the values (0.85, 0.65), the cubic sum
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(0.853 + 0.653 = 0.88875) remains less than 1, demonstrating that Fermatean fuzzy sets can
manage uncertainties that other fuzzy sets cannot. Some operators and matrices in Fermatean
fuzzy setting were studied by Silambarasan [12, 13]. Picture fuzzy set is another important type
of uncertainty handling tool (generalization over fuzzy and intuitionistic fuzzy set) which com-
prises measure of positive, neutral and negative membership. Picture fuzzy set based on different
algebraic structures was studied by Dogra and Pal [14, 15, 16, 17, 18, 19, 20, 21, 22]. But, no
study has yet been conducted on linear algebra under a Fermatean fuzzy environment. In this pa-
per, we introduce the concept of Fermatean fuzzy subspaces of a vector space and explore related
elementary results. We define Fermatean fuzzy linear transformations and demonstrate how the
image and inverse image of a Fermatean fuzzy subspace under a bijective linear transformation
are also Fermatean fuzzy subspaces. Finally, we apply these concepts to a career placement sce-
nario to evaluate overlapping skills and their transferability across different career paths.

List of Abbreviations:

Abbreviation Full Form
FS Fuzzy set
FSs Fuzzy sets
FSS Fuzzy subspace
VS Vector space
VSs Vector spaces
IFS Intuitionistic fuzzy set
IFSs Intuitionistic fuzzy sets
IFSS Intuitionistic fuzzy subspace
IFSSs Intuitionistic fuzzy subspaces
PyFS Pythagorean fuzzy set
PyFSs Pythagorean fuzzy sets
PyFSS Pythagorean fuzzy subspace
PyFSSs Pythagorean fuzzy subspaces

FFS Fermatean fuzzy set
FFSs Fermatean fuzzy sets
FFSS Fermatean fuzzy subspace
FFSSs Fermatean fuzzy subspaces

LT Linear transformation
LTs Linear transformations

FFLT Fermatean fuzzy linear transformation
FFLTs Fermatean fuzzy linear transformations

2 Preliminaries

In this section, we recapitulate the concepts of fuzzy set (FS), fuzzy subspace (FSS) of a vector
space (VS), intuitionistic fuzzy set (IFS), Pythagorean fuzzy set (PyFS), Fermatean fuzzy set
(FFS) and some elementary operations on Fermatean fuzzy sets (FFSs).

To handle uncertainty in real life situation, Zadeh [1] invented Fuzzy set (FS).

Definition 2.1. (FS) [1] Let ξ be a set of universe. Then a FS over ξ is defined as τ = {(a, τMS(a)) :
a ∈ ξ}, where τMS(a) ∈ [0, 1] is the measure of membership (MMS) of a in ξ.

Kumar [4] defined fuzzy subspace (FSS) of a vector space (VS) by combining the concepts
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of FS and subspace of a VS,in the following way.

Definition 2.2. (FSS[4] Let ξ be a VS over a field F and τ = {(a, τMS(a)) : a ∈ ξ} be a FS in
ξ. Then τ is said to be FSS of ξ if the below stated conditions are meet.
(i) τMS(a− b) ⩾ τMS(a) ∧ τMS(b)
(ii) τMS(pa) ⩾ τMS(a) for all a, b ∈ ξ and for all p ∈ F .

Eliminating the limitation of FS, Atanassov [5] defined Intuitionistic fuzzy set (IFS) as an
extension of FS.

Definition 2.3. (IFS)[5] An IFS τ over a set of universe ξ is defined as τ = {(a, τMS(a), τNMS(a)) :
a ∈ ξ}, where τMS(a) ∈ [0, 1] is the measure of membership (MMS) and τNMS(a) ∈ [0, 1] is
the measure of non-membership (MNMS) of a in ξ satisfying the condition 0 ⩽ τMS(a) +
τNMS(a) ⩽ 1 for all a ∈ ξ.

To handle information with high imprecision and to bring better accuracy in decision mak-
ing results, Yager [6] introduced Pythagorean fuzzy set (PyFS) as an extension of IFS in the
following way.

Definition 2.4. (PyFS)[6] A PyFS τ over a set of universe ξ is defined as τ = {(a, τMS(a), τNMS(a)) :
a ∈ ξ}, where τMS(a) ∈ [0, 1] is the MMS and τNMS(a) ∈ [0, 1] is the MNMS of a in ξ satisfy-
ing the condition 0 ⩽ τ 2

MS(a) + τ 2
NMS(a) ⩽ 1 for all a ∈ ξ.

In the purpose of bringing more fruitfulness in decision making results, Senapati and Yager
[11] initiated Fermatean fuzzy set (FFS) which is an immediate generalization of PyFS.

Definition 2.5. (FFS)[11] A FFS τ over a set of universe ξ is defined as τ = {(a, τMS(a), τNMS(a)) :
a ∈ A}, where τMS(a) ∈ [0, 1] is the MMS and τNMS(a) ∈ [0, 1] is the MNMS of a in ξ satis-
fying the condition 0 ⩽ τ 3

MS(a) + τ 3
NMS(a) ⩽ 1 for all a ∈ ξ.

Now, we define some elementary operations on Fermatean fuzzy sets (FFSs).

Definition 2.6. (Some elementary operations on FFSs) Let τ= {(a, τMS(a), τNMS(a)): a ∈
ξ} and τ ′= {(a, τ ′MS(a)τ

′
NMS(a)): a ∈ ξ} be two FFSs over the same set of universe ξ. Then

basic operations on FFSs are stated below.
(i) τ ∩ τ ′ = {(a,min{τMS(a), τ ′MS(a)},max{τNMS(a), τ ′NMS(a)}) : a ∈ ξ}
(ii) τ ∪ τ ′ = {(a,max{τMS(a), τ ′MS(a)},min{τNMS(a), τ ′NMS(a)}) : a ∈ ξ}
(iii) τ ⊆ τ ′ if τ 3

MS(a) ⩽ τ ′
3
MS(a) and τ 3

NMS(a) ⩾ τ ′
3
NMS(a) for all a ∈ ξ.

The Cartesian product of two FFSs is defined below.

Definition 2.7. (Cartesian product of FFSs) Let τ = {(a, τMS(a), τNMS(a)) : a ∈ ξ} and
τ ′ = {(b, τ ′MS(b), τ

′
MS(b)) : b ∈ Λ} be two FFSs over the sets of universe ξ and Λ respectively.

Then the Cartesian product between them is the FFS ψ = {((a, b), ψMS((a, b)), ψNMS((a, b))) :
(a, b) ∈ ξ × Λ}, where ψ3

MS((a, b)) = τ 3
MS(a) ∧ τ ′

3
MS(b) and ψ3

NMS((a, b)) = τ 3
NMS(a) ∨

τ ′
3
NMS(b) for all (a, b) ∈ ξ × Λ.

The image of a FFS is defined as follows.

Definition 2.8. (Image of a FFS) Let ξ and Λ be two sets of universe and τ = {(a, τMS(a), τNMS(a)) :
a ∈ ξ} be a FFS in ξ. Also, let T : ξ → Λ be a surjective mapping. Then image of τ un-
der the map T is the FFS T (τ) = ψ = {(b, ψMS(b), ψNMS(b)) : b ∈ Λ}, where ψ3

MS(b) =
∨

a∈h−1(b)
τ 3
MS(a) and ψ3

NMS(b) = ∧
a∈h−1(b)

τ 3
NMS(a) for all b ∈ Λ.

The inverse image of a FFS is defined as follows.

Definition 2.9. (Image of a FFS) Let ξ and Λ be two sets of universe and τ ′ = {(b, τ ′MS(b), τ
′
NMS(b)) :

b ∈ Λ} be a FFS in Λ. Also, let T : ξ → Λ be a mapping. Then inverse image of τ ′ under the map
T is the FFS T−1(τ ′) = ψ = {(a, ψMS(a), ψNMS(a)) : a ∈ ξ}, where ψ3

MS(a) = τ ′
3
MS(T (a))

and ψ3
NMS(a) = τ ′

3
NMS(T (a)) for all a ∈ ξ.

Throughout the paper, we write FFS τ = {(a, τMS(a), τNMS(a)) : a ∈ ξ} as τ = (τMS , τNMS).
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3 Fermatean fuzzy subspace (FFSS)

We start this section with the definition of FFSS.

Definition 3.1. Let ξ be a VS over a field F . Then a FFS τ = (τMS , τNMS) over ξ is said to be
a FFSS of ξ if the following conditions are satisfied.
(i) τ 3

MS(a− b) ⩾ τ 3
MS(a) ∧ τ 3

MS(b) and τ 3
NMS(a− b) ⩽ τ 3

NMS(a) ∨ τ 3
NMS(b)

(ii) τ 3
MS(pa) ⩾ τ 3

MS(a) and τ 3
NMS(pa) ⩽ τ 3

NMS(a) for all a, b ∈ ξ and for all p ∈ F .

Now, it is the time to establish some elementary results on FFSS. The following theorem
gives a relationship between the null vector and any other vector in a VS over which FFSS is
defined. This relationship is given here in terms of Fermatean fuzzy membership values.

Theorem 3.2. Let ξ be a VS over a field F and τ = (τMS , τNMS) is a FFSS of ξ. Then
(i) τ 3

MS(ρ) ⩾ τ 3
MS(a) and τ 3

NMS(ρ) ⩽ τ 3
NMS(a)

(ii) τ 3
MS(pa) = τ 3

MS(a) and τ 3
NMS(pa) = τ 3

NMS(a) for all a ∈ ξ and for all p(̸= 0) ∈ F , where
ρ is the null vector in ξ.

Proof. (i) We have,

τ 3
MS(ρ) = τ 3

MS(a− a)

⩾ τ 3
MS(a) ∧ τ 3

MS(a) [as τ is a FFSS]

= τ 3
MS(a)

and τ 3
NMS(ρ) = τ 3

NMS(a− a)

⩽ τ 3
NMS(a) ∨ τ 3

NMS(a) [as τ is a FFSS]

= τ 3
NMS(a)

Thus, τ 3
MS(ρ) ⩾ τ 3

MS(a) and τ 3
NMS(ρ) ⩽ τ 3

NMS(a) for all a ∈ ξ.

(ii) We have, τ 3
MS(pa) ⩾ τ 3

MS(a) and τ 3
NMS(pa) ⩽ τ 3

NMS(a) for all a ∈ ξ and for all p ∈ F .
Also,

τ 3
MS(a) = τ 3

MS(p
−1(pa))

⩾ τ 3
MS(pa) [Because τ is a FFSS]

and τ 3
NMS(a) = τ 3

NMS(p
−1(pa))

⩽ τ 3
NMS(pa) [Because τ is a FFSS]

for all a ∈ ξ and for all p(̸= 0) ∈ F .

Thus, τ 3
MS(a) ⩾ τ 3

MS(pa) and τ 3
NMS(a) ⩽ τ 3

NMS(pa) for all a ∈ ξ and for all p(̸= 0) ∈ F .
Consequently, τ 3

MS(pa) = τ 3
MS(a) and τ 3

NMS(pa) = τ 3
NMS(a) for all a ∈ ξ and for all p(̸= 0) ∈

F .

Now, we are going to propose a necessary and sufficient condition under which a FFS is a
FFSS.

Theorem 3.3. Let ξ be a VS over a field F and τ = (τMS , τNMS) be a FFS in ξ. Then τ is a
FFSS of ξ iff τ 3

MS(pa+ qb) ⩾ τ 3
MS(a)∧ τ 3

MS(b) and τ 3
NMS(pa+ qb) ⩽ τ 3

NMS(a)∨ τ 3
NMS(b) for

all a, b ∈ ξ and for all p, q ∈ F .

Proof. Let τ be a FFSS of ξ. Therefore,

τ 3
MS(pa+ qb) = τ 3

MS(pa− (−qb))

⩾ τ 3
MS(pa) ∧ τ 3

NMS((−q)b)

⩾ τ 3
MS(a) ∧ τ 3

MS(b)
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and τ 3
NMS(pa+ qb) = τ 3

NMS(pa− (−qb))

⩽ τ 3
NMS(pa) ∨ τ 3

NMS((−q)b)

⩽ τ 3
NMS(a) ∨ τ 3

NMS(b) for all a, b ∈ ξ and p, q ∈ F .

Thus, we get τ 3
MS(pa+ qb) ⩾ τ 3

MS(a) ∧ τ 3
NMS(b) and τ 3

NMS(pa+ qb) ⩽ τ 3
NMS(a) ∨ τ 3

NMS(b)
for all a, b ∈ ξ and for all p, q ∈ F .

Conversely, let τ 3
MS(pa+ qb) ⩾ τ 3

MS(a)∧ τ 3
NMS(b) and τ 3

NMS(pa+ qb) ⩽ τ 3
NMS(a)∨ τ 3

NMS(b)
for all a, b ∈ ξ and for all p, q ∈ F . Let us suppose that ρ be the null vector in ξ.
Now, setting p = 1 and q = −1, we get τ 3

MS(a − b) ⩾ τ 3
MS(a) ∧ τ 3

MS(b) and τ 3
NMS(a − b) ⩽

τ 3
NMS(a) ∨ τ 3

NMS(b) for all a, b ∈ ξ. Now, setting b = a, we obtain

τ 3
MS(a− a) ⩾ τ 3

MS(a) ∧ τ 3
NMS(a)

i.e. τ 3
MS(ρ) ⩾ τ 3

MS(a)

and τ 3
NMS(a− a) ⩽ τ 3

NMS(a) ∨ τ 3
NMS(a)

i.e. τ 3
NMS(ρ) ⩽ τ 3

NMS(a).

Therefore, τ 3
MS(pa) = τ 3

MS(pa+ qρ)

⩾ τ 3
MS(a) ∧ τ 3

MS(ρ)

= τ 3
MS(a)

and τ 3
NMS(pa) = τ 3

NMS(pa+ qρ)

⩽ τ 3
NMS(a) ∨ τ 3

NMS(ρ)

= τ 3
NMS(a).

Consequently, τ is a FFSS of ξ.

Example 3.4. Let us consider a VS ξ = R3 over the field F = R and a FFS τ = (τMS , τNMS)
over ξ defined below.

τMS(a) =

{
0.7, when a ∈ {(a1, a2, 0) : a1, a2 ∈ R}
0.6, otherwise

τNMS(a) =

{
0.5, when a ∈ {(a1, a2, 0) : a1, a2 ∈ R}
0.8, otherwise

It is easy to show that τ is a FFSS of ξ.

Theorem 3.5. Let ξ be a VS over a field F and τ = (τMS , τNMS) be an IFSS of ξ. Then τ is a
FSSS of ξ.

Proof. Case 1: Let a, b ∈ ξ such that τMS(a) > τMS(b) and τNMS(a) > τNMS(b). Then
τ 3
MS(a) > τ 3

MS(b) and τ 3
NMS(a) > τ 3

NMS(b).
Now, since τ is a FFSS, therefore

τMS(a− b) ⩾ τMS(a) ∧ τMS(b) = τMS(b)

τNMS(a− b) ⩽ τNMS(a) ∨ τNMS(b) = τNMS(a)

and τMS(pa) ⩾ τMS(a)

τNMS(pa) ⩽ τNMS(a).

implies, τ 3
MS(a− b) ⩾ τ 3

MS(b)

τ 3
NMS(a− b) ⩽ τ 3

NMS(a)

and τ 3
MS(pa) ⩾ τ 3

MS(a)

τ 3
NMS(a) ⩽ τ 3

NMS(a).
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Thus, τ 3
MS(a− b) ⩾ τ 3

MS(b) = τ 3
MS(a) ∧ τ 3

MS(b)

τ 3
NMS(a− b) ⩽ τ 3

NMS(a) = τ 3
NMS(a) ∨ τ 3

NMS(b)

Case 2: Let a, b ∈ ξ such that τMS(a) < τMS(b) and τNMS(a) < τNMS(b). Then τ 3
MS(a) <

τ 3
MS(b) and τ 3

NMS(a) < τ 3
NMS(b).

Now, since τ is a FFSS, therefore,

τMS(a− b) ⩾ τMS(a) ∧ τMS(b) = τMS(a)

τNMS(a− b) ⩽ τNMS(a) ∨ τNMS(b) = τNMS(b)

and τMS(pa) ⩾ τMS(a)

τNMS(pa) ⩽ τNMS(a).

This implies, τ 3
MS(a− b) ⩾ τ 3

MS(a)

τ 3
NMS(a− b) ⩽ τ 3

NMS(b)

and τ 3
MS(pa) ⩾ τ 3

MS(a)

τ 3
NMS(pa) ⩽ τ 3

NMS(a).

Thus, τ 3
MS(a− b) ⩾ τ 3

MS(a) = τ 3
MS(a) ∧ τ 3

MS(b)

and τ 3
NMS(a− b) ⩽ τ 3

NMS(b) = τ 3
NMS(a) ∨ τ 3

NMS(b).

Here, a, b are arbitrary elements of ξ, therefore, considering all the cases, we get τ 3
MS(a − b) ⩾

τ 3
MS(a) ∧ τ 3

MS(b), τ
3
NMS(a− b) ⩽ τ 3

NMS(a) ∨ τ 3
NMS(b) and τ 3

MS(pa) ⩾ τ 3
MS(a), τ

3
NMS(pa) ⩽

τ 3
NMS(a) for all a, b ∈ ξ and p ∈ F .

Thus, it is noticed that every IFSS is a FFSS but every FFSS is not necessarily an IFSS which
can be clarified by the following example.

Example 3.6. Let us consider the Example 3.4. Then it is observed that
for a ∈ {(a1, a2, a3) : a1, a2 ∈ R with a3 = 0}, τMS(a) + τNMS(a) = 0.7 + 0.5 = 1.2 > 1
for a ∈ {(a1, a2, a3) : a1, a2, a3 ∈ R with a3 ̸= 0}, τMS(a) + τNMS(a) = 0.6 + 0.8 = 1.4 > 1.
Thus, τ is not an IFS. So, τ is not an IFSS although τ is a FFSS.

If a and b be two vectors in a VS with a − b = null vector, then a = b. This result is given
below in terms of Fermatean fuzzy membership values by the following theorem.

Theorem 3.7. Let ξ be a VS over a field F and τ = (τMS , τNMS) be a FFSS of ξ. If for
a, b ∈ ξ, τ 3

MS(a− b) = τ 3
MS(ρ) and τ 3

NMS(a− b) = τ 3
NMS(ρ) hold, then τ 3

MS(a) = τ 3
MS(b) and

τ 3
NMS(a) = τ 3

NMS(b), where ρ is the null vector in ξ.

Proof. Here, we have

τ 3
MS(a) = τ 3

MS((a− b) + b) ⩾ τ 3
MS(a− b) ∧ τ 3

MS(b) [because τ is a FFSS of ξ]

= τ 3
MS(ρ) ∧ τ 3

MS(b)

= τ 3
MS(b) [by Theorem 3.2]

and τ 3
NMS(a) = τ 3

NMS((a− b) + b) ⩽ τ 3
NMS(a− b) ∨ τ 3

NMS(b) [because τ is a FFSS of ξ]

= τ 3
NMS(ρ) ∨ τ 3

NMS(b)

= τ 3
NMS(b) [by Theorem 3.2].
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Thus, τ 3
MS(a) ⩾ τ 3

MS(b) and τ 3
NMS(a) ⩽ τ 3

NMS(b).

Also, τ 3
MS(b) = τ 3

MS(a− (a− b))) = τ 3
MS(a+ (−1)(a− b))

⩾ τ 3
MS(a) ∧ τ 3

MS(a− b) [because τ is a FFSS of ξ]

= τ 3
MS(a) ∧ τ 3

MS(ρ)

= τ 3
MS(a) [by Theorem 3.2]

and τ 3
NMS(b) = τ 3

NMS(a− (a− b)) = τ 3
NMS(a+ (−1)(a− b))

⩽ τ 3
NMS(a) ∨ τ 3

NMS(a− b) [because τ is a FFSS of ξ]

= τ 3
NMS(a) ∨ τ 3

NMS(ρ)

= τ 3
NMS(a) [by Theorem 3.2].

Thus, τ 3
MS(b) ⩾ τ 3

MS(a) and τ 3
NMS(b) ⩽ τ 3

NMS(a). Consequently, τ 3
MS(a) = τ 3

MS(b) and
τ 3
NMS(a) = τ 3

NMS(b).

Theorem 3.8. Let ξ be a VS over a field F and τ = (τMS , τNMS) be a FFSS of ξ. If for a, b ∈ ξ,
τMS(a) < τNMS(b) and τNMS(a) > τNMS(b) hold, then τ 3

MS(a− b) = τ 3
MS(a) = τ 3

MS(b− a)
and τ 3

NMS(a− b) = τ 3
NMS(a) = τ 3

NMS(b− a).

Proof. Here, τMS(a) < τNMS(b) and τNMS(a) > τNMS(b) implies τ 3
MS(a) < τ 3

NMS(b) and
τ 3
NMS(a) > τ 3

NMS(b). It is observed that

τ 3
MS(a− b) ⩾ τ 3

MS(a) ∧ τ 3
MS(b) [because τ is a FFSS of ξ]

= τ 3
MS(a) [as τ 3

MS(a) < τ 3
MS(b)]

and τ 3
NMS(a− b) ⩽ τ 3

NMS(a) ∨ τ 3
NMS(b) [because τ is a FFSS of ξ]

= τ 3
NMS(a) [as τ 3

NMS(a) > τ 3
NMS(b)]

Thus, τ 3
MS(a− b) ⩾ τ 3

MS(a) and τ 3
NMS(a− b) ⩽ τ 3

NMS(a).

Also, τ 3
MS(a) = τ 3

MS((a− b) + b) ⩾ τ 3
NMS(a− b) ∧ τ 3

NMS(b) [because τ is a FFSS of ξ]

= τ 3
MS(a− b) or τ 3

MS(b)

and τ 3
NMS(a) = τ 3

NMS((a− b) + b) ⩽ τ 3
NMS(a− b) ∨ τ 3

NMS(b) [because τ is a FFSS of ξ]

= τ 3
NMS(a− b) or τ 3

NMS(b).

If τ 3
MS(a) ⩾ τ 3

MS(b) and τ 3
NMS(a) ⩽ τ 3

NMS(b), then they contradict the conditions τ 3
MS(a) <

τ 3
MS(b) and τ 3

NMS(a) > τ 3
NMS(b). So, it follows that τ 3

MS(a) ⩾ τ 3
MS(a − b) and τ 3

NMS(a) ⩽
τ 3
NMS(a− b).

Consequently, τ 3
MS(a) = τ 3

NMS(a− b) and τ 3
NMS(a) = τ 3

NMS(a− b).

Moreover, it is clear that τ 3
MS(a − b) = τ 3

MS(−(b − a)) = τ 3
MS(b − a) and τ 3

NMS(a − b) =
τ 3
NMS(−(b− a)) = τ 3

NMS(b− a) [by Theorem 3.2].

Consequently, τ 3
MS(a − b) = τ 3

MS(b − a) = τ 3
MS(a) and τ 3

NMS(a − b) = τ 3
NMS(b − a) =

τ 3
NMS(a).

Cartesian product of two FFSSs is a FFSS which is given by the following theorem.
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Theorem 3.9. Let ξ be a VS over a field F and τ = (τMS , τNMS), τ ′ = (τ ′MS , τ
′
NMS) be two

FFSSs of ξ and Λ respectively. Then τ × τ ′ is a FFSS of ξ × Λ.

Proof. Say τ × τ ′ = ψ = (ψMS , ψNMS), where ψ3
MS((a, b)) = τ 3

MS(a) ∧ τ ′
3
MS(b) and

ψ3
NMS((a, b)) = τ 3

NMS(a) ∨ τ ′
3
NMS(b) for all (a, b) ∈ ξ × Λ.

Now, ψ3
MS(p(a, b) + q(c, d)) = τ 3

MS(pa+ qc) ∧ τ ′3MS(pb+ qd)

⩾ (τ 3
MS(a) ∧ τ 3

MS(c)) ∧ (τ ′
3
MS(b) ∧ τ ′

3
MS(d))

[because τ, τ ′ are FFSSs of ξ and Λ respectively]

= (τ 3
MS(a) ∧ τ ′

3
MS(b)) ∧ (τ 3

MS(c) ∧ τ ′
3
MS(d))

= ψ3
MS((a, b)) ∧ ψ3

MS((c, d))

and ψ3
NMS(p(a, b) + q(c, d)) = τ 3

NMS(pa+ qc) ∨ τ ′3NMS(pb+ qd)

⩽ (τ 3
NMS(a) ∨ τ 3

NMS(c)) ∨ (τ ′
3
NMS(b) ∨ τ ′

3
NMS(d))

[because τ, τ ′ are FFSSs of ξ and Λ respectively]

= (τ 3
NMS(a) ∨ τ ′

3
NMS(b)) ∨ (τ 3

NMS(c) ∨ τ ′
3
NMS(d))

= ψ3
NMS((a, b)) ∨ ψ3

NMS((c, d))

for all (a, b), (c, d) ∈ ξ × Λ and for all p, q ∈ F .

Consequently, τ × τ ′ is a FFSS of ξ × Λ.

The relationship between null vector and any other vector in a VS is given below in terms of
Fermatean fuzzy membership values in case of Cartesian product of two FFSSs.

Theorem 3.10. Let ξ and Λ be two VSs over the same field F and τ = (τMS , τNMS), τ ′ =
(τ ′MS , τ

′
NMS) be two FFSSs of ξ and Λ respectively. Also, let ρ1 and ρ2 be two null vectors in

ξ and Λ respectively. Then ψ3
MS((ρ1, ρ2)) ⩾ ψ3

MS((a, b)) and ψ3
NMS((ρ1, ρ2)) ⩽ ψ3

NMS((a, b))
for all (a, b) ∈ ξ × Λ, where ψ = τ × τ ′.

Proof. Here, it is observed that

ψ3
MS((ρ1, ρ2)) = τ 3

MS(ρ1) ∧ τ ′
3
MS(ρ2)

⩾ τ 3
MS(a) ∧ τ ′

3
MS(b) for all a ∈ ξ and for all b ∈ Λ (using Theorem 3.2)

= ψ3
MS((a, b)) for all (a, b) ∈ ξ × Λ

and ψ3
NMS((ρ1, ρ2)) = τ 3

NMS(ρ1) ∨ τ ′
3
NMS(ρ2)

⩽ τ 3
NMS(a) ∨ τ ′

3
NMS(b) for all a ∈ ξ1 and for all b ∈ Λ (using Theorem 3.2)

= ψ3
NMS((a, b)) for all (a, b) ∈ ξ × Λ.

Consequently, ψ3
MS((ρ1, ρ2)) ⩾ ψ3

MS((a, b)) and ψ3
NMS((ρ1, ρ2)) ⩽ ψ3

NMS((a, b)) for all (a, b) ∈
ξ × Λ.

Theorem 3.11. Let ξ be a VS over a field F and τ = (τMS , τNMS) and τ ′ = (τ ′MS , τ
′
NMS) be

two FFSSs of ξ. Then τ ∩ τ ′ is a FFSS of ξ.

Thus, it is observed that the intersection of two FFSSs is a FFSS. But, the union of two FFSSs
is not necessarily a FFSS which can be shown by the following example.
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Example 3.12. Let us consider a VS ξ = R2 over the field F = R and two FFSSs τ =
(τMS , τNMS), τ ′ = (τ ′MS , τ

′
NMS) over ξ as follows.

τMS(a) =

{
0.76, when a = (k, 0) for some k ̸= 0 or a = (0, 0)
0.46, otherwise

τNMS(a) =

{
0.46, when a = (k, 0) for some k ̸= 0 or a = (0, 0)
0.73, otherwise

and

τ ′MS(a) =

{
0.73, when a = (0, k) for some k ̸= 0 or a = (0, 0)
0.58, otherwise

τ ′NMS(a) =

{
0.58, when a = (0, k) for some k ̸= 0 or a = (0, 0)
0.7, otherwise

Thus, ψ = τ ∪ τ ′ is given by

ψMS(a) =


0.76, when a = (0, 0)
0.76, when a = (k, 0) for some k ̸= 0
0.73, when a = (0, k) for some k ̸= 0
0.58, otherwise

ψNMS(a) =


0.46, when a = (0, 0)
0.46, when a = (k, 0) for some k ̸= 0
0.58, when a = (0, k) for some k ̸= 0
0.7, otherwise

It is observed that (0.58)3 = ψ3
MS((2,−2)) ≱ ψ3

MS((2, 0)) ∧ ψ3
MS(0, 2) = (0.76)3 ∧

(0.73)3 = (0.73)3 and (0.7)3 = ψ3
NMS((2,−2)) ≰ ψ3

NMS((2, 0)) ∨ ψ3
NMS((0, 2)) = (0.46)3 ∨

(0.58)3 = (0.58)3. Hence, ψ is not a FFSS of ξ.

Now, the question arises : is there any condition under which union of two FFSSs is a FFSS ?
The answer of this question is yes. Here, we are going to propose a condition under which union
of two FFSSs is a FFSS.

Theorem 3.13. Let ξ be a VS over a field F and τ = (τMS , τNMS), τ ′ = (τ ′MS , τ
′
NMS) be two

FFSSs of ξ. Then τ ∪ τ ′ is a FFSS of ξ if either τ ⊆ τ ′ or τ ′ ⊆ τ .

Proof. Case 1: Let τ ⊆ τ ′. Then τ 3
MS(a) ⩽ τ ′

3
MS(a) and τ 3

NMS(a) ⩾ τ ′
3
NMS(a) for all a ∈ ξ.

Then ψ3
MS(a) = τ 3

MS(a) ∨ τ ′
3
MS(a) = τ ′

3
MS(a) and ψ3

NMS(a) = τ 3
NMS(a) ∧ τ ′

3
NMS(a) =

τ ′
3
NMS(a) for all a ∈ ξ.

Now, ψ3
MS(pa+ qb) = τ ′

3
MS(pa+ qb)

⩾ τ ′
3
MS(a) ∧ τ ′

3
MS(b) [because τ ′ is a FFSS of ξ]

= ψ3
MS(a) ∧ ψ3

MS(b)

and ψ3
NMS(pa+ qb) = τ ′

3
NMS(pa+ qb)

⩽ τ ′
3
NMS(a) ∨ τ ′

3
NMS(b) [because τ ′ is a FFSS of ξ]

= ψ3
NMS(a) ∨ ψ3

NMS(b) for all a, b ∈ ξ.

Thus, τ ∪ τ ′ is a FFSS of ξ whenever τ ⊆ τ ′.
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Case 2: Let τ ′ ⊆ τ . Then τ ′3MS(a) ⩽ τ 3
MS(a) and τ ′3NMS(a) ⩾ τ 3

NMS(a) for all a ∈ ξ. Then
ψ3
MS(a) = τ 3

MS(a) ∨ τ ′
3
MS(a) = τ 3

MS(a) and ψ3
NMS(a) = τ 3

NMS(a) ∧ τ ′
3
NMS(a) = τ 3

NMS(a)
for all a ∈ ξ. Proceeding in the similar way like Case 1, it is obtained that τ ∪ τ ′ is a FFSS of ξ
whenever τ ′ ⊆ τ .

From the above theorem, it is observed that the union of two FFSSs is a FFSS if one is subset
of another. The condition established above is a sufficient condition for union of two FFSSs to
be a FFSS. But the condition is not necessary which can be shown by the following example.

Example 3.14. Let us consider a VS ξ = R2 over the field F = R and two FFSSs τ =
(τMS , τNMS), τ ′ = (τ ′MS , τ

′
NMS) over ξ as follows.

τMS(a) =

{
0.7, when a = (0, 0)
0.5, otherwise

τNMS(a) =

{
0.55, when a = (0, 0)
0.7, otherwise

and

τ ′MS(a) =

{
0.75, when a = (0, 0)
0.65, otherwise

τ ′NMS(a) =

{
0.6, when a = (0, 0)
0.8, otherwise

Thus, τ ∪ τ ′ = ψ = (ψMS , ψNMS) is given by

ψMS(a) =

{
0.75, when a = (0, 0)
0.65, otherwise

ψNMS(a) =

{
0.55, when a = (0, 0)
0.7, otherwise

Here, it is observed that neither τ ⊆ τ ′ nor τ ′ ⊆ τ . But, ψ = τ ∪ τ ′ is a FFSS of ξ.

4 Fermatean fuzzy linear transformation (FFLT)

In this section, the notion of FFLT is initiated in a very interesting way that is different from
existing literature. Also, we investigate some properties of FFLT.

Definition 4.1. Let ξ and Λ be two VSs over the same field F and τ = (τMS , τNMS), τ ′ =
(τ ′MS , τ

′
NMS) be two FFSSs of ξ and Λ respectively. Also, let T : ξ → Λ be a mapping. Then T

is called a FFLT if the below stated conditions are fulfilled.
(i) T is a linear transformation (in classical sense).
(ii) τ ′3MS(T (a)) ⩾ τ 3

MS(a) and τ ′3NMS(T (a)) ⩽ τ 3
NMS(a) for all a ∈ ξ.

Example 4.2. Let us consider the Example 3.4. Let us consider a mapping T on ξ defined by
T ((a1, a2, a3)) = (a1 + a2, a2 + a3, 0) for all (a1, a2, a3) ∈ ξ. Clearly, T is a linear mapping in
classical sense. For any (a1, a2, a3) ∈ ξ, it is observed that

τ 3
MS(T (a1, a2, a3)) = τ 3

MS((a1 + a2, a2 + a3, 0) = (0.7)3 ⩾ τ 3
MS((a1, a2, a3)),

and τ 3
NMS(T (a1, a2, a3)) = τ 3

NMS((a1 + a2, a2 + a3, 0) = (0.5)3 ⩽ τ 3
NMS((a1, a2, a3)).

Thus, T is a FFLT on ξ.

The following theorem states that sum of two FFLTs is a FFLT.
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Theorem 4.3. Let ξ,Λ be two VSs over the same field F and τ = (τMS , τNMS), τ ′ = (τ ′MS , τ
′
NMS)

be two FFSSs of ξ and Λ respectively. If T1 : ξ → Λ and T2 : ξ → Λ are two FFLTs then so is
T1 + T2.

Proof. Let a ∈ ξ.

Now, τ ′3MS((T1 + T2)(a)) = τ ′
3
MS(T1(a) + T2(a))

⩾ τ ′
3
MS(T1(a)) ∧ τ ′

3
MS(T2(a)) [because τ ′ is a FFSS]

⩾ τ 3
MS(a) ∧ τ 3

MS(a) [because T1 is a FFLT]

= τ 3
MS(a)

and τ ′3NMS((T1 + T2)(a)) = τ ′
3
NMS(T1(a) + T2(a))

⩽ τ ′
3
NMS(T1(a)) ∧ τ ′

3
NMS(T2(a)) [Because τ ′ is a FFSS]

⩽ τ 3
NMS(a) ∧ τ 3

NMS(a) [Because T1 is a FFLT]

= τ 3
NMS(a).

Since a is an arbitrary element of ξ, therefore τ ′3MS((T1 + T2)(a)) ⩾ τ 3
MS(a) and τ ′3NMS((T1 +

T2)(a)) ⩽ τ 3
NMS(a) for all a ∈ ξ. Consequently, T1 + T2 is a FFLT on ξ.

The following theorem states that scalar multiplication with FFLT is a FFLT.

Theorem 4.4. Let ξ and Λ be two VSs over the same field F and τ = (τMS , τNMS) and τ ′ =
(τ ′MS , τ

′
NMS) be two FFSSs of ξ and Λ respectively. If T : ξ → Λ is a FFLT then so is kT for

some scalar k.

Proof. Let a ∈ ξ.

Now, τ ′3MS((kT )(a)) = τ ′
3
MS((kT )(a))

= τ ′
3
MS(kT (a))

⩾ τ ′
3
MS(T (a)) [because τ ′ is a FFSS]

⩾ τ 3
MS(a) [because T is a FFLT]

and τ ′3NMS((kT )(a)) = τ ′
3
NMS((kT )(a))

= τ ′
3
NMS(kT (a))

⩽ τ ′
3
NMS(T (a)) [because τ ′ is a FFSS]

⩽ τ 3
NMS(a) [because T is a FFLT].

Since a is an arbitrary element of ξ, therefore τ ′3MS((kT )(a)) ⩾ τ 3
MS(a) and τ ′3NMS((kT )(a)) ⩽

τ 3
NMS(a) for all a ∈ ξ and for some scalar k ∈ F . Consequently, kT is a FFLT on ξ.

The following theorem states that composition of two FFLTs is a FFLT.

Theorem 4.5. Let ξ,Λ and η be three VSs over the same field F and τ = (τMS , τNMS), τ ′ =
(τ ′MS , τ ′NMS), τ

′′ = (τ ′′MS , τ ′′NMS) be three FFSSs of ξ, Λ and η respectively. If T1 : ξ → Λ and
T2 : Λ → η are two FFLTs then so is T2 ◦ T1.
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Proof. Let a ∈ ξ.

Now, τ ′′3MS((T2 ◦ T1)(a)) = τ ′′
3
MS(T2(T1(a))

⩾ τ ′
3
MS(T1(a)) [because T2 is a FFLT]

⩾ τ 3
MS(a) [because T1 is a FFLT]

and τ ′′3NMS((T2 ◦ T1)(a)) = τ ′′
3
NMS(T2(T1(a))

⩽ τ ′
3
NMS(T1(a)) [because T2 is a FFLT]

⩽ τ 3
NMS(a) [because T1 is a FFLT]

Since a is an arbitrary element of ξ, therefore τ ′′3MS((T2 ◦ T1)(a)) ⩾ τ 3
MS(a) and τ ′′3NMS((T2 ◦

T1)(a)) ⩽ τ 3
NMS(a) for all a ∈ ξ. Consequently, T2 ◦ T1 is a FFLT on ξ.

5 Effect of linear transformation on FFSS

In this section, we establish two theorems to discuss the effect of LT on FFSS. The first theorem
states that image of a FFSS under bijective LT is a FFSS and the second theorem states that the
inverse image of a FFSS is a FFSS.

Theorem 5.1. Let ξ and Λ be two VSs over the same field F and τ = (τMS , τNMS) be a FFSS
of ξ. Then for a bijective LT h : ξ → Λ, h(τ) is a FFSS of Λ.

Proof. Say h(τ) = ψ = (ψMS , ψNMS). For b ∈ Λ, we have,

ψ3
MS(b) = ∨

a∈h−1(b)
τ 3
MS(a)

and ψ3
NMS(b) = ∧

a∈h−1(b)
τ 3
NMS(a).

Since h is bijective therefore h−1(b) must be a singleton set. So, for b ∈ Λ, there exists an unique
a ∈ ξ such that a = h−1(b) i.e. h(a) = b. Thus, in this case, ψ3

MS(b) = ψ3
MS(h(a)) = τ 3

MS(a)
and ψ3

NMS(b) = ψ3
NMS(h(a)) = τ 3

NMS(a).

Now, ψ3
MS(pc+ qd)

= ψ3
MS(ph(a) + qh(b)) [where c = h(a) and d = h(b) for unique a, b ∈ ξ]

= ψ3
MS(h(pa+ qb)) [because h is a LT]

= τ 3
MS(pa+ qb)

⩾ τ 3
MS(a) ∧ τ 3

MS(b) [because τ is a FFSS of ξ]

= ψ3
MS(h(a)) ∧ ψ3

MS(h(b))

= ψ3
MS(c) ∧ ψ3

MS(d)

and ψ3
NMS(pc+ qd)

= ψ3
NMS(ph(a) + qh(b)) [where c = h(a) and d = h(b) for unique a, b ∈ ξ]

= ψ3
NMS(h(pa+ qb)) [because h is a LT]

= τ 3
NMS(pa+ qb)

⩽ τ 3
NMS(a) ∨ τ 3

NMS(b) [because τ is a FFSS of ξ]

= ψ3
NMS(h(a)) ∨ ψ3

NMS(h(b))

= ψ3
MS(c) ∨ ψ3

MS(d)
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Since, c, d are arbitrary elements of Λ, therefore ψ3
MS(pc + qd) ⩾ ψ3

MS(c) ∧ ψ3
MS(d) and

ψ3
NMS(pc + qd) ⩽ ψ3

NMS(c) ∨ ψ3
NMS(d) for all c, d ∈ Λ and for all p, q ∈ F . Consequently,

h(τ) is a FFSS of Λ.

Theorem 5.2. Let ξ and Λ be two VSs over the same field F and τ ′ = (τ ′MS , τ
′
NMS) be a FFSS

of Λ. Also, let T : ξ → Λ be a LT. Then T−1(τ ′) is a FFSS of ξ.

Proof. Say T−1(τ ′) = ψ = (ψMS , ψNMS), where ψ3
MS(a) = τ ′

3
MS(T (a)) and ψ3

NMS(a) =

τ ′
3
NMS(T (a)) for all a ∈ ξ. Now, we have,

ψ3
MS(pa+ qb) = τ ′

3
MS(T (pa+ qb))

= τ ′
3
MS(pT (a) + qT (b)) [because T is a LT on ξ]

= τ ′
3
MS(py + qz) [where y = T (a) and z = T (b)]

⩾ τ ′
3
MS(y) ∧ τ ′

3
MS(z) [as τ ′ is a FFSS]

= τ ′
3
MS(T (a)) ∧ τ ′

3
MS(T (b))

= ψ3
MS(a) ∧ ψ3

MS(b)

and ψ3
NMS(pa+ qb) = τ ′

3
NMS(T (pa+ qb))

= τ ′
3
NMS(pT (a) + qT (b)) [because T is a LT on ξ]

= τ ′
3
NMS(py + qz) [where y = T (a) and z = T (b)]

⩽ τ ′
3
NMS(y) ∨ τ ′

3
NMS(z) [as τ ′ is a FFSS]

= τ ′
3
NMS(T (a)) ∨ τ ′

3
NMS(T (b))

= ψ3
NMS(a) ∨ ψ3

NMS(b) for all a, b ∈ ξ and for all p, q ∈ F .

Thus, T−1(τ ′) is a FFSS of ξ.

6 Application of FFSS in career placement scenario

In the career placement scenario, we can apply the concept of FFSS to evaluate overlapping
skills and how they transfer between different career options. The use of FFSS allows us to
model higher degrees of uncertainty, providing a more accurate reflection of real-world situa-
tions where both membership and non-membership values can be high.

Let ξ be a VS over a field F and τ = (τMS , τNMS) be a FSSS over ξ. The conditions that must
hold for the membership and non-membership functions are : τ 3

MS(a − b) ⩾ τ 3
MS(a) ∧ τ 3

MS(b)
and τ 3

NMS(a− b) ⩽ τ 3
NMS(a) ∨ τ 3

NMS(b) for all a, b ∈ ξ.

These conditions ensure that the difference between two vectors a and b has a membership
value greater than or equal to the minimum of the membership values of the vectors, while the
non-membership value is less than or equal to the maximum of the non-membership values of
the vectors. Let us consider three career options for a student as a : Software Developer, b
: Data Analyst and c : Research. For each career, we assign the following membership and
non-membership values based on the student’s suitability:

Career τMS τNMS

Software Developer (a) 0.7 0.4
Data Analyst (b) 0.6 0.5

Research (c) 0.475 0.6

We want to evaluate how much the student’s skills for Software Development (a) overlap with
the skills for Data Analysis (b). The membership value of the difference τ 3

MS(a−b) must satisfy
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: τ 3
MS(a − b) ⩾ τ 3

MS(a) ∧ τ 3
MS(b). First, calculate the cubic membership values : τ 3

MS(a) =
0.73 = 0.343, τ 3

MS(b) = 0.63 = 0.216. The minimum membership value is: τ 3
MS(a)∧τ 3

MS(b) =
0.63 = 0.343 ∧ 0.216 = 0.216. Thus, the membership value of the difference τ 3

MS(a − b) must
be at least 0.216 to ensure that the overlap between these two careers (in terms of skills) is
significant.

Next, we evaluate the non-membership value of the difference τ 3
NMS(a − b), which must

satisfy : τ 3
NMS(a− b) ⩽ τ 3

NMS(a)∨ τ 3
NMS(b). First, calculate the cubic non-membership values

: τ 3
NMS(a) = 0.43 = 0.064, τ 3

NMS(b) = 0.53 = 0.125. The maximum non-membership value
is : τ 3

NMS(a) ∨ τ 3
NMS(b) = 0.064 ∨ 0.125 = 0.125. Thus, the non-membership value of the

difference τ 3
NMS(a−b) must be less than or equal to 0.125. This means the student’s unsuitability

for one of these careers shouldn’t exceed 0.125 i.e. we may say that the overlap between them is
significant.

Using the FFSS conditions, we conclude that the student’s skills for Software Development
and Data Analysis overlap significantly if τ 3

MS(a − b) ⩾ 0.216 and τ 3
NMS(a − b) ⩽ 0.125. If

these conditions hold, the student is suitable for both careers. This decision-making process can
recommend either Software Developer or Data Analyst, depending on external factors such as
market demand or personal preference.

Similarly, we can evaluate how well the student’s skills transfer to Research by comparing
the vectors b (Data Analyst) and c (Research). Using the FFSS conditions, if the overlap between
Data Analyst and Research is weak (i.e., the membership condition fails or the non-membership
exceeds the threshold), then the system will suggest that Research is less suitable for the student
compared to Data Analyst or Software Developer.

By applying FFSS, we gain a deeper mathematical understanding of how well a student’s
skills transfer between career options. The conditions on membership and non-membership
functions ensure that we account for uncertainty in both the student’s suitability and the overlap
between different career paths. This approach provides decision-makers with a more nuanced
and accurate method for recommending career options, particularly when multiple careers share
overlapping skill sets. The use of FFSS allows us to handle uncertainty at a higher level and
make more robust, informed decisions.

7 Conclusion remarks

In this paper, we have introduced the concept of FFSS and investigated some elementary results
related to it. We have established a relationship between IFSS and FFSS. We have proved that
every FFSS is an IFSS, but the converse is not true. We have also introduced the notion of LT
in Fermatean fuzzy setting and investigated some related results. Finally, we have discussed the
effect of LT on FFSS. This paper actually studies an important type of linear algebraic structure
in uncertain environment. Uncertainty occurs in different ways in human life. Study of algebraic
structures becomes complicated when types of uncertainty change. To bring more fruitfulness
and to get better accuracy in decision making results, different types of uncertainty handling
tools come into play. As a result of our study, the researchers will able to justify how the results
on classical subspace are valid as a particular case of our present study. This study can be
treated as the study of a special type of advanced fuzzy linear algebraic structure. This study
opens a new window for the researchers who are interested to study more about subspace in
Fermatean fuzzy setting. Moreover, investigation about subspace under some other types of
uncertain environment will be easy for the researchers who will go through this work. At last,
FFSS has been used in the career placement scenario to evaluate overlapping skills and how they
transfer between different career options.
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