
Palestine Journal of Mathematics

Vol 14(2)(2025) , 232–243 © Palestine Polytechnic University-PPU 2025

TWO SHARED SETS PROBLEM IN WIDER SENSE C
Jhilik Banerjee and Abhijit Banerjee

Communicated by Sarika Verma

Corresponding author: Abhijit Banerjee

MSC 2010 Classifications: 30D35.

Keywords and phrases: Meromorphic functions, generating polynomial, weighted sharing, shared sets.

Abstract In this manuscript, in view of the introduced definition of weighted sharing of sets
in wider sense, we nurture the relation between two meromorphic functions having multiple
poles, sharing the zeros of two sets of polynomials, each characterized by distinct zeros. In the
applications part of our paper we have further refined our results for a specific class of functions
and supported by examples to enhance the coherence of the paper.

1 Introduction and Background

Let S be a set of distinct elements of C ∪ {∞} and

Ef (S) =
⋃
a∈S

{z : f(z)− a = 0},

where each zero is counted according to its multiplicity. If we do not count the multiplicity the
set

⋃
a∈S

{z : f(z) − a = 0} is denoted by Ef (S). If Ef (S) = Eg(S) (Ef (S) = Eg(S)) we say

that f and g share the set S CM (IM).
We assume that readers are familiar with the standard notations of value distribution theory

as available in [9] and consequently we are not going to explain this part again. Further for
the standard notations of set sharing, we refer to the second paragraph of [3], which in turn
automatically includes the definition of value sharing. Inspired from the famous question of
Gross [8], Lin-Yi (see Question B, p. 74, [14]) posed a question concerning the relation between
two meromorphic sharing two sets.

It is to be observed that question by Lin [14] was somehow answered by Yi in 1994 [17]
before its appearance. Later, in 1996, Li-Yang [13] provided a different answer of the same
question. Numerous researches were being investigated to explore the potential solutions to the
questions. In fact, the origin of the idea of Bi-unique range set (see [1], [15]) is due to the search
for a potential solution of question of Lin [14]. It should be noted that, in the Bi-unique range
sets problems, one set, which we will refer as the ground set, is chosen from C and the second
set, which we will refer as the derived set, consists of the zeros of the derivative of the generating
polynomial of the ground set.

Next we recall the following definition, which appeared in the earlier of 2001 [10] to further
expedite the research.

Definition 1.1. [10] Let k be a non negative integer or infinity. For a ∈ C ∪ {∞} we denote by
Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is counted m times if
m ≤ k and k + 1 times if m > k. Let S be a set of distinct elements of C ∪ {∞}. We denote by
Ef (S, k) the set

⋃
a∈S

Ek(a; f). If Ef (S, k) = Eg(S, k), then we say that f and g share the set S

with weight k and denote it by (S, k).
Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0). If S is a singleton, then we get the

definition of weighted sharing of values.
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In 2021, Banerjee-Mallick [15] proved the following theorem for Bi-unique range sets for a
polynomial of degree 5.

Theorem A. [15] Let S1 = {0, c1, c2 . . . , cm}, S2 = {z : zn+azn−m+ bzn−2m+ c = 0}, where
n (≥ 2m + 3), gcd (m,n) = 1, a2

4b = n(n−2m)
(n−m)2 and a, b, c ∈ C∗ be such that c ̸= βi,

βiβj

(βi+βj)

where βi = −(cni + acn−m
i + bcn−2m

i ). Then S1 and S2 are bi-unique range sets of weights 1
and 3 respectively.

However, the existence of bi-unique range sets corresponding to the zeros of lower degree
polynomials are still unaddressed. The purpose of this paper is to investigate the potential exis-
tence of bi-unique range sets of smaller cardinality and to explore their applications, particularly
in the context of a function and its derivative, as discussed in the final section. It is worth noting
that while the study in [5] focused on lower-degree polynomials in a non-Archimedean field, our
investigation takes a distinctly different approach. To facilitate our discussion, we now present
the following definition.

Definition 1.2. Let f and g be two non-constant meromorphic functions and P (z) and Q(z) be
two polynomials of degree n without any multiple zero. Let

SP = {z : P (z) = 0} and SQ = {z : Q(z) = 0}.

We say that f and g share the sets SP and SQ with weight l in the wider sense if Ef (SP , l) =
Eg(SQ, l) and we denote it by f , g share (SP , SQ; l).

2 Main results

For two non zero complex number a and k, consider the following two polynomials P4(z) and
P̂4(z) given by

P4(z) =
z4

4
− az3

3
− c4 (2.1)

= Q4(z)− c4, c4 ̸= 0, − a4

12

and

P̂4(z) = k

(
z4

4
− az3

3

)
− ĉ4

= kQ4(z)− ĉ4, ĉ4 ̸= 0, −ka
4

12
.

With respect to the above introduced polynomials, let us state the following two theorems.

Theorem 2.1. Let S4 = {z | P4(z) = 0} and Ŝ4 = {z | P̂4(z) = 0} , where P4(z) and P̂4(z) is
given by (2.1). Let f and g be two non constant meromorphic functions having multiple poles,
satisfying Ef (S4, 3) = Eg(Ŝ4, 3) and Ef ({0, a}, 1) = Eg({0, a}, 1), then f ≡ g.

Question 2.1. Does Theorem 2.1 hold good if the second set i.e. the derived set contain only the
element 0?

The following two theorems provide the answer of Question 2.1.

Theorem 2.2. Let S4 and Ŝ4 be as in Theorem 2.1. Let f and g be two non constant meromorphic
functions having multiple poles, satisfying Ef (S4, 3) = Eg(Ŝ4, 3), Ef ({0}, 0) = Eg({0}, 0),
then we get f ≡ g.
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Note 2.1. For a = 1 and c4 =
1
12 , the set S4 defined in Theorem 2.1 becomes:

S4 = {z | P4(z) = 0}

=

1
3
−

√
(2 − 3

t + 3t)

3
√

2
− 1

2

√√√√√
8

9
+

2
3t

− 2t
3

− 8
√

2

9
√
(2 − 3

t + 3t)

,
1
3
−

√
(2 − 3

t + 3t)

3
√

2
+

1
2

√√√√√
8

9
+

2
3t

− 2t
3

− 8
√

2

9
√
(2 − 3

t + 3t)

,
1
3
+

√
(2 − 3

t + 3t)

3
√

2
− 1

2

√√√√√
8

9
+

2
3t

− 2t
3

+
8
√

2

9
√
(2 − 3

t + 3t)

,
1
3
+

√
(2 − 3

t + 3t)

3
√

2
+

1
2

√√√√√
8

9
+

2
3t

− 2t
3

+
8
√

2

9
√
(2 − 3

t + 3t)


 ,

where t = (
√

2−1)
1
3 . Similarly, choosing a = 1, k = 2, ĉ4 =

1
3 and replacing t by t̂ = (

√
5−2)

1
3 ,

we get Ŝ4 = {z | P̂4(z) = 0}. Now, from Theorem 2.1, 2.2 and in view of the sets S4 and Ŝ4, we
know that there does not exist two distinct meromorphic functions f, g such that Ef (S4,m) =

Eg(Ŝ4,m) along with Ef ({0, a}, k1) = Eg({0, a}, k1) or Ef ({0}, k2) = Eg({0}, k2) hold.

To further reduce the weights of the sets as given in Theorem 2.1 and Theorem 2.2, we
introduce another couple polynomial of degree 5, P5(z) and P̂5(z) given as follows:

P5(z) =
z5

5
− az4

4
− c5 (2.2)

= Q5(z)− c5, c5 ̸= 0, − a5

20

and

P̂5(z) = k

(
z5

5
− az4

4

)
− ĉ5

= kQ5(z)− ĉ5, ĉ5 ̸= 0, −ka
5

20
.

With respect to the polynomials (2.2) we have the following theorem.

Theorem 2.3. S5 = {z | P5(z) = 0} and Ŝ5 = {z | P̂5(z) = 0}, where P5(z) and P̂5(z) is given
by (2.2). Let f and g be two non constant meromorphic functions with multiple poles satisfying
Ef (S5, 2) = Eg(Ŝ5, 2) and Ef ({0}, 0) = Eg({0}, 0), then f ≡ g.

The following example shows that for 4 ≤ n ≤ 5, under specific situation, the condition of
having no simple poles for f and g can not be removed in Theorem 2.2 and Theorem 2.3.

Example 2.1. In (2.1) and (2.2), if we put k = 1 and ci = ĉi, i = 4, 5, then Si = Ŝi in Theorem
2.2 and Theorem 2.3. Under this specific situation, let

g(z) =
na

n− 1

(
1 + ez + e2z + . . .+ e(n−2)z

1 + ez + e2z + . . .+ e(n−1)z

)
, f ≡ ezg

and Si be as in Theorem 2.2 and Theorem 2.3 for i = 4, 5. As fn−1
(
f − na

(n−1)

)
≡

gn−1
(
g − na

(n−1)

)
, Ef (Si,∞) = Eg(Si,∞) for i = 4, 5 and also Ef ({0},∞) = Eg({0},∞).

Here both f and g have simple poles but f ̸≡ g.
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For the standard definitions and notations of the value distribution theory we refer to [9] and
for the definitions of N(r, a; f |≥ k), N(r, a; f |= k) for k ≥ 1, NL(r, 1; f), NL(r, 1; g) and
N∗(r, a; f, g) we refer to [2], [11], [12], [16].

Recall that, N∗(r, a; f, g) = N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) + NL(r, a; g),
when f , g share (a, 0).

3 Lemmas

In this section we present some lemmas which will be needed in the sequel. Let Fi and Gi are
pairs of non constant meromorphic functions defined in C as follows:

Fi ≡
Qi(f)

ci
, Gi ≡

kQi(g)

ĉi
∀i = 4, 5. (3.1)

Henceforth we shall denote by Hi and Φi the following two functions

Hi ≡

(
F

′′

i

F
′
i

− 2F
′

i

Fi − 1

)
−

(
G

′′

i

G
′
i

− 2G
′

i

Gi − 1

)
(3.2)

and

Φi ≡

(
F

′

i

Fi − 1
− G

′

i

Gi − 1

)
,∀i = 4, 5. (3.3)

Lemma 3.1. [16] If F , G be two non constant meromorphic functions such that they share (1, 1)
and H ̸≡ 0 then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 3.2. [4] Let f and g be two non constant meromorphic functions sharing (1,m), where
1 ≤ m <∞. Then

N(r, 1; f) +N(r, 1; g)−N(r, 1; f |= 1) +
(
m− 1

2

)
N∗(r, 1; f, g)

≤ 1
2
[N(r, 1; f) +N(r, 1; g)].

Lemma 3.3. [4] Let f be a non constant meromorphic function and P (f) = a0+a1f+. . .+anfn,
where a0, a1, a2, . . . , an are constants and an ̸= 0. Then T (r, P (f)) = nT (r, f) +O(1).

Lemma 3.4. Let f and g be two non constant meromorphic functions and F4 and G4 be defined
by (3.1) such that Ef (S4, 0) = Eg(Ŝ4, 0), Ef ({0, a}, p) = Eg({0, a}, p), 0 ≤ p < ∞ and
H4 ̸≡ 0. Then

N(r,∞;H4) ≤ N(r, 0; f |≥ p+ 1) +N(r, a; f |≥ p+ 1) +N∗(r, 1;F4, G4) +N(r,∞; f)

+N(r,∞; g) +N0(r, 0; f ′) +N0(r, 0; g′),

where N0(r, 0; f ′) is the reduced counting function of those zeros of f ′ which are not zeros of
f(f − a)(F4 − 1) and N0(r, 0; g′) is similarly defined.

Proof. This lemma can be proved in the line of proof of Lemma 2.2 in [4].

Lemma 3.5. Let f and g be two non constant meromorphic functions. Fi and Gi be defined by
(3.1) such that Ef (Si, 0) = Eg(Ŝi, 0) for i = 4, 5 and Ef ({0}, p) = Eg({0}, p), 0 ≤ p <∞ and
Hi ̸≡ 0. Then

N(r,∞;Hi) ≤ N(r, 0; f |≥ p+ 1) +N∗(r, 1;Fi, Gi) +N(r,∞; f) +N(r,∞; g)

+N0(r, 0; f ′) +N0(r, 0; g′),

where N0(r, 0; f ′) is the reduced counting function of those zeros of f ′ which are not zeros of
f(Fi − 1) and N0(r, 0; g′) is similarly defined.
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Proof. We omit the proof since the proof can be carried out in the line of the proof of Lemma
2.2 of [4].

Lemma 3.6. [3] Let F4 and G4 be given by (3.1). If F4, G4 share (1,m), where 0 ≤ m < ∞.
Then

(i) NL(r, 1;F4) ≤
1

m+ 1

(
N(r, 0; f) +N(r,∞; f)−N⊗(r, 0; f

′
)
)
+ S(r, f)

(ii) NL(r, 1;G4) ≤
1

m+ 1

(
N(r, 0; g) +N(r,∞; g)−N⊗(r, 0; g

′
)
)
+ S(r, g),

where N⊗(r, 0; f
′
) = N(r, 0; f ′ | f ̸= 0, w1, w2, w3, w4) and w1, w2, w3, w4 be the roots of the

equation P4(z) = 0, N⊗(r, 0; g′) is defined similarly to N⊗(r, 0; f ′). Similar results hold for
F5, G5.

Lemma 3.7. Let f and g be two non constant meromorphic functions. Let F4 andG4 be given by
(3.1) such that Ef (S4,m) = Eg(Ŝ4,m), Ef ({0, a}, p) = Eg({0, a}, p), 0 ≤ p <∞ and Φ4 ̸≡ 0.
Then

(2p+ 1)
{
N(r, 0; f |≥ p+ 1) +N(r, a; f |≥ p+ 1)

}
≤ N∗(r, 1;F4, G4) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).

Proof. By the given condition clearly F4 and G4 share (1,m). Also we see that,

Φ4 =
f2(f − a)f ′

c4(F4 − 1)
− kg2(g − a)g′

ĉ4(G4 − 1)
.

Let, z0 be an a-point or 0-point of f with multiplicity r. Since Ef ({0, a}, p) = Eg({0, a}, p),
z0 is a zero of Φ4 of multiplicity r + r − 1 = 2r − 1 if r ≤ p and a zero of Φ4 of multiplicity at
least 2(p+ 1)− 1=2p+ 1 if r > p. Hence, by the definition of Φ4 and by simple calculation we
can write that,

(2p+ 1)
{
N(r, 0; f |≥ p+ 1) +N(r, a; f |≥ p+ 1)

}
≤ N(r, 0; Φ4) ≤ T (r,Φ4) ≤ N(r,∞; Φ4) + S(r, F ) + S(r,G)

≤ N∗(r, 1;F4, G4) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).

Lemma 3.8. Let f and g be two non constant meromorphic functions. F4 and G4 be given by
(3.1) satisfying Ef (S4,m) = Eg(Ŝ4,m), Ef ({0}, p) = Eg({0}, p) for 0 ≤ p < ∞ and Φ4 ̸= 0;
Then

(3p+ 2)N(r, 0; f |≥ p+ 1)

≤ N∗(r, 1;F4, G4) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).

Proof. We omit the proof since the proof can be carried out in the line of the proof of Lemma
3.7.

Lemma 3.9. Let f and g be two non constant meromorphic functions and F5 and G5 be given
by (3.1) satisfying Ef (S5,m) = Eg(Ŝ5,m), Ef ({0}, p) = Eg({0}, p) 0 ≤ p < ∞ and Φ5 ̸≡ 0.
Then

(4p+ 3)N(r, 0; f |≥ p+ 1)

≤ N∗(r, 1;F5, G5) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).

Proof. We omit the proof since the proof can be carried out in the line of the proof of Lemma
3.7.
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4 Proofs of the theorems

Proof of Theorem 2.1. Let F4 andG4 be given by (3.1). SinceEf (S4, 3) = Eg(Ŝ4, 3), from (3.1)
it follows that F4 and G4 share (1, 3). Suppose H4 ̸≡ 0.

If possible Φ4 ≡ 0. Then from (3.3) we have,

(F4 − 1) ≡ c(G4 − 1). (4.1)

Next, using (4.1) in the definition of H4 we get, H4 ≡ 0, which is a contradiction. Using
Lemma 3.2 for m = 3, Lemma 3.3, Lemma 3.1, Lemma 3.4 for p = 1, Lemma 3.7 for p = 0 and
p = 1, Lemma 3.6 for m = 3 and the Second Fundamental theorem we get

5{T (r, f) + T (r, g)}
≤ N(r, 0; f) +N(r, a; f) +N(r,∞; f) +N(r, 1;F4) +N(r, 0; g) +N(r, a; g)

+N(r,∞; g) +N(r, 1;G4)−N0(r, 0; f ′)−N0(r, 0; g′) + S(r, f) + S(r, g)

≤ N(r, a; f |≥ 2) +N(r, 0; f |≥ 2) + 2
{
N(r, 0; f) +N(r, a; f)

}
+ 2N(r,∞; f)

+2N(r,∞; g) +
1
2
[N(r, 1;F4) +N(r, 1;G4)]−

(
3 − 3

2

)
N∗(r, 1;F4, G4)

+S(r, f) + S(r, g)

≤ 1
3
{
N∗(r, 1;F4, G4) +N(r,∞; f) +N(r,∞; g)

}
+ 2{N∗(r, 1;F4, G4)

+N(r,∞; f) +N(r,∞; g)}+ 2{N(r,∞; f) +N(r,∞; g)}

+2{T (r, f) + T (r, g)} − 3
2
N∗(r, 1;F4, G4) + S(r, f) + S(r, g)

≤ 5
6
N∗(r, 1;F4, G4) +

13
3
{N(r,∞; f) +N(r,∞; g)}+ 2{T (r, f) + T (r, g)}

+S(r, f) + S(r, g)

≤ 55
12

{T (r, f) + T (r, g)}+ S(r, f) + S(r, g),

which is a contradiction.
Therefore, H4 ≡ 0. For two constants A (̸= 0), B, from (3.2) we get

1
F4 − 1

≡ A

G4 − 1
+B.

Using Lemma 3.3, from the above equation we can say that T (r, g) = T (r, f) + O(1) and
S(r, f) = S(r, g). Let us assume that B ̸= 0. Then we obtain,

F4 − 1 ≡ G4 − 1
B
{
(G4 − 1) + A

B

} . (4.2)

Case 1: Assume that A ̸= B. Let us take the polynomial

ϕ(z) =
z4

4
− az3

3
− ĉ4

k

(
1 − A

B

)
.

As A ̸= B and ĉ4 ̸= 0, 0 is not a zero of ϕ(z). If possible, let a be a zero of ϕ(z) of multiplicity
2 and other zeros are simple say, α1, α2. Then in view of (4.2) and Lemma 3.3, using the Second
Fundamental theorem, we get

2T (r, g) ≤ N(r, a; g) +N(r, α1; g) +N(r, α2; g) +N(r,∞; g) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g) + S(r, g)

≤ T (r, g) + S(r, g),
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a contradiction. Hence all the zeros of ϕ(z) are simple say βi for i = 1, 2, 3, 4. By the Second
Fundamental theorem we have

3T (r, g) ≤
4∑

i=1

N(r, βi; g) +N(r,∞; g) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g) + S(r, g)

≤ T (r, g) + S(r, g),

which is a contradiction.
Case 2: Let us consider A = B. Let us take (1 +A) ̸= 0. Then we get

F4 =
(1 +A)

(
G4 − 1

1+A

)
AG4

. (4.3)

Let us assume the polynomial

ψ(z) =
z4

4
− az3

3
− ĉ4

k

(
1

1 +A

)
.

As ĉ4 ̸= 0, 0 cannot be a zero of ψ(z). If possible, let a be a zero of ψ(z) of multiplicity 2.
Clearly, other zeros of ψ(z) are simple namely, βi, i = 1, 2. Then by (4.3), Lemma 3.3 and the
Second Fundamental theorem we get

4T (r, g) ≤ N(r, a; g) +N(r, β1; g) +N(r, β2; g) +N(r, 0; g) +N

(
r,

4a
3

; g
)

+N(r,∞; g) + S(r, g)

≤ N(r, 0;F4) +N(r,∞; f) +N(r,∞; g) + S(r, g)

≤ N(r, 0; f) +N

(
r,

4a
3

; f
)
+N(r,∞; f) +N(r,∞; g) + S(r, g)

≤ 3T (r, g) + S(r, g),

which is a contradiction. Therefore, all the zeros of ψ(z) are simple. Next, by the similar
arguments as used in Case 1 to handle this situation, we can again get at a contradiction.

Let (1 +A) = 0. Then we get

kf3
(
f − 4a

3

)
g3
(
g − 4a

3

)
= 16c4ĉ4. (4.4)

It is clear from (4.4), 0 is an e.v.P. (exceptional value of Picard) of both f and g. Again, if z0 is
a pole of g of order q then z0 has to be a 4a

3 point of f and let z0 is a zero of
(
f − 4a

3

)
of order

k1. Hence by (4.4), we have 4q = k1. It is evident that z0 is a zero of
(
f − 4a

3

)
of multiplicity at

least 4. Further, by the Second Fundamental theorem and the above facts we get

T (r, f) ≤ N(r, 0; f) +N

(
r,

4a
3

; f
)
+N(r,∞; f) + S(r, f)

≤ 1
4
T (r, f) +

1
2
T (r, f) + S(r, f),

which gives a contradiction. Hence combining all the cases we can conclude that, B = 0.
We can write

(G4 − 1) ≡ A(F4 − 1)

=⇒ P̂4(g) ≡ Aĉ4

c4
P4(f) (4.5)

Thus,

kc4

ĉ4
Q4(g) ≡ AQ4(f) + c4(1 −A).
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Now, we intend to prove A = 1. On the contrary, suppose A ̸= 1. Let us take the polynomial
χ(z) = AQ4(z) + c4(1 − A). Suppose 0 is a zero of χ(z). Then we get A = 1, which is not
possible. If a is a zero of χ(z), then we can say that χ(z) = (z − a)2W1(z), W1(a) ̸= 0. It is
obvious that, W1(z) has all simple zeros namely, γ1, γ2. By simple calculation we get

kc4

ĉ4
Q4(g) ≡ A

{
Q4(f) +

c4(1 −A)

A

}
.

i.e.,

kc4

ĉ4
g3
(
g − 4a

3

)
≡ A(f − a)2

3
(3f2 + 2fa+ a2), (4.6)

where c4(1−A)
A = −Q4(a) = a4

12 . Apparently, from (4.6) a-points of f are 0-points of g. Let
z0 be a a-point of f of multiplicity k1 and 0-points of g of multiplicity k2. Then (4.6) gives us
2k1 = 3k2, which implies that least value of k1 is 3. The zeros of the polynomial (3z2+2za+a2)
are simple and let us denote them by β̃i for i = 1, 2. Using the Second Fundamental theorem
and (4.6) we can write

2T (r, f) ≤ N(r, a; f) +N(r, β̃1; f) +N(r, β̃2; f) +N(r,∞; f) + S(r, f)

≤ N(r, a; f) +N

(
r,

4a
3

; g
)
+N(r,∞; g) + S(r, g)

≤
(

1
3
+ 1 +

1
2

)
T (r, f) + S(r, f),

a contradiction.
Hence a is not a zero of χ(z) and all the zeros of χ(z) are simple, let them be α̂i, i = 1, 2, 3, 4.

Again by the Second Fundamental theorem we can deduce a contradiction. So, A = 1 and we
get F4 ≡ G4. i.e.,

f3
(
f − 4a

3

)
≡ kc4

ĉ4
g3
(
g − 4a

3

)
. (4.7)

Clearly, from (4.7) f , g share (0,∞), ( 4a
3 ,∞) and (∞,∞).

We now proceed to prove f ≡ g. On the contrary, suppose that f ̸≡ g. Let us consider h = f
g

be constant. Then from (4.7) we can write

g

(
h4 − kc4

ĉ4

)
− 4a

3

(
h3 − kc4

ĉ4

)
≡ 0.

It follows that, h ̸= 1, h3 ̸= kc4
ĉ4

, h4 ̸= kc4
ĉ4

and g ≡ 4a
3

(
h3− kc4

ĉ4

)
(
h4− kc4

ĉ4

) , a constant, which is impossible.

Next, let h be non-constant. Then

f ≡ 4a
3

h
(
h3 − kc4

ĉ4

)
(
h4 − kc4

ĉ4

) and g ≡ 4a
3

(
h3 − kc4

ĉ4

)
(
h4 − kc4

ĉ4

) .
In view of the hypothesis of the theorem, we know f and g share ({0, a}, 1) and from (4.7)

we have just deduced f , g share (0,∞) and (∞,∞). Therefore, h does not have zeros and poles.
Poles of f are at the zeros of the polynomial

(
z4 − kc4

ĉ4

)
say, β̂i, i = 1, 2, 3, 4. Then by the

Second Fundamental theorem we can say that,

4T (r, h) ≤ N(r, 0;h) +
4∑

i=1

N(r, β̂i;h) +N(r,∞;h) + S(r, h)

≤ N(r,∞; f) + S(r, h)

≤ 2T (r, h) + S(r, h),

which is contradiction. Hence f ≡ g.
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Proof of the Theorem 2.2. Let F4 and G4 be given by (3.1). Since Ef (S4, 3) = Eg(Ŝ4, 3), from
(3.1) it follows that F4 and G4 share (1, 3). Suppose H4 ̸≡ 0. Clearly by the same arguments as
used in the proof of Theorem 2.1, Φ4 ̸≡ 0. By Lemma 3.2 for m = 3, Lemma 3.3, Lemma 3.1,
Lemma 3.5 for p = 0, Lemma 3.8 for p = 0 and the Second Fundamental Theorem we get

4{T (r, f) + T (r, g)}
≤ N(r, 1;F4) +N(r, 0; f) +N(r,∞; f) +N(r, 1;G4) +N(r, 0; g) +N(r,∞; g)

−N0(r, 0; f
′
)−N0(r, 0; g

′
) + S(r, f) + S(r, g)

≤ N(r, 1;F4 |= 1) + 2N(r, 0; f) +
5
2
(T (r, f) + T (r, g))− 5

2
N∗(r, 1;F4, G4)

+N0(r, 0; f
′
) +N0(r, 0; g

′
) + S(r, f) + S(r, g)

≤ 3N(r, 0; f) + 3(T (r, f) + T (r, g))− 3
2
N∗(r, 1;F4, G4) + S(r, f) + S(r, g)

≤ 3
2
{N∗(r, 1;F4, G4) +N(r,∞; f) +N(r,∞; g)}+ 3(T (r, f) + T (r, g))

−3
2
N∗(r, 1;F4, G4) + S(r, f) + S(r, g)

≤ 15
4
(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

which is a contradiction.
Hence H4 ≡ 0. By the similar arguments used in Theorem 2.1, we will have B = 0.
Next if 0 is not an e.v.P. of both f and g, there exists a complex number z1 such that f(z1) =

g(z1) = 0, implies A = 1.
If 0 is an e.v.P of both f and g, then adopting the same methods that are used in Theorem 2.1

we will get (4.6). By the Second Fundamental theorem we possess

2T (r, f) ≤ N(r, a; f) +N(r, β̃1; f) +N(r, β̃2; f) +N(r,∞; f) + S(r, f)

≤ N

(
r,

4a
3

; g
)
+N(r,∞; f) + S(r, f)

≤
(

1 +
1
2

)
T (r, f) + S(r, f),

which is a contradiction. The proof for the rest of this theorem can be completed in a manner
consistent with the proof strategy employed for Theorem 2.1.

Proof of Theorem 2.3. Let F5 andG5 be given by (3.1). SinceEf (S5, 2) = Eg(Ŝ5, 2), from (3.1)
it follows that F5 and G5 share (1, 2). Suppose H5 ̸≡ 0. By the arguments of Theorem 2.1 we
have Φ5 ̸≡ 0. Using Lemma 3.2 for m = 2, Lemma 3.3 Lemma 3.1, Lemma 3.5 for p = 0,
Lemma 3.9 for p = 0, Lemma 3.6 for m = 2 from the Second Fundamental Theorem we get,

5{T (r, f) + T (r, g)}
≤ N(r, 1;F5) +N(r, 0; f) +N(r,∞; f) +N(r, 1;G5) +N(r, 0; g) +N(r,∞; g)

−N0(r, 0; f
′
)−N0(r, 0; g

′
) + S(r, f) + S(r, g)

≤ N(r, 1;F5 |= 1) + 2N(r, 0; f) + 3(T (r, f) + T (r, g))− 3
2
N∗(r, 1;F5, G5)

−N0(r, 0; f
′
)−N0(r, 0; g

′
) + S(r, f) + S(r, g)

≤ 3N(r, 0; f) +
7
2
(T (r, f) + T (r, g))− 1

2
N∗(r, 1;F5;G5) + S(r, f) + S(r, g)

≤ 4(T (r, f) + T (r, g)) +
1
2
N∗(r, 1;F5;G5) + S(r, f) + S(r, g)

≤ 13
3
(T (r, f) + T (r, g)) + S(r, f) + S(r, g),
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which is a contradiction.
Hence H5 ≡ 0. By the similar arguments of Theorem 2.2 we can say that f ≡ g.

5 Some relevant observations

Let us recall the definition of SUPM [7]. Next we generalize the same in the following way.

Definition 5.1. Let P (z) and Q(z) be two polynomials in C. For any non-constant meromorphic
(entire) functions f and g, P (f) ≡ cQ(g) implies f ≡ g, where c is any arbitrary nonzero
constant, then P (z) and Q(z) are called strong uniqueness polynomial for meromorphic (entire)
functions in the wider sense, SUPMWS (SUPEWS) in brief.

We now point out an important observation vis-a-vis Definition 5.1 in the proof of Theorems
2.1 to 2.3. Actually, in the shared set problems, the range sets are always the zero sets of some
suitable polynomials. As the proofs of Theorems 2.1 to 2.3 have been performed on the basis of
weighted sharing of sets in the wider sense, it is inevitable that in the proofs of Theorems 2.1 -
2.3, the SUPMWS will exits automatically.

Note 5.1. From (4.5) in Theorem 2.1, we can see that the polynomials (2.1) and (2.2) are SUPMWS.

6 Application

First we note that, for k = 1 and ci = ĉi, we have Si = Ŝi, i = 4, 5. Now, we will demon-
strate two examples, where we shall consider the sharing of two arbitrary sets with two distinct
functions f and f ′.

Example 6.1. Consider S1 = {2, 2i, 1 + i,−1 + 3i}. Let f(z) = e−z + 1 + 3i. Then f and f ′
share (S1,∞), but f ̸≡ f ′.

Example 6.2. Take S2 = {1, i, 1 + i, 2 − i, 1 − i}. Let f(z) = e−z + 2. Then, f and f ′ share
(S2,∞), but f ̸≡ f ′.

So, even for the suitable choice of the function g = f ′, the presence of S4, S5 and {0} in
Theorems 2.2-2.3 are needed. Therefore, in view of Theorems 2.1-2.3 further investigations are
required in the direction of unicity of a meromorphic function and its derivatives.

To this end, we define

L(f) =
n∑

i=1

aif
(n),

where f (n) is the nth derivative of a meromorphic function f . First we observe that, if f has
multiple poles then practically f and L(f) share (∞, 1). Under this circumstances, statements
of Theorems 2.1-2.2 changes to the following forms.

Theorem 6.1. Under the same conditions of Theorem 2.1, for a meromorphic function f , satis-
fying Ef (S4, 2) = EL(f)(Ŝ4, 2) and Ef ({0, a}, 0) = EL(f)({0, a}, 0), f ≡ L(f).

Theorem 6.2. In analogous conditions of Theorem 2.2, for a meromorphic function f , satisfying
Ef (S4, 2) = EL(f)(Ŝ4, 2) and Ef ({0}, 0) = EL(f)({0}, 0), f ≡ L(f).

Theorem 6.3. In the similar context of Theorem 2.3, for a meromorphic function f , satisfying
Ef (S5, 1) = EL(f)(Ŝ5, 1) and Ef ({0}, 0) = EL(f)({0}, 0), f ≡ L(f).

Further, we can show that Theorems 6.2, 6.3 are not true for any arbitrary set consisting of 4
or 5 elements with respect to the traditional weighted sharing of a sets.

Example 6.3. Suppose U1 =

{
e

πi
6 , e

2πi
3 , e

7πi
6 , e

5πi
3

}
, U2 =

{
e

πi
8 , e

5πi
8 , e

9πi
8 , e

13πi
8

}
. Take

(i) f(z) = e−z , L(f) = 2f (3) + f (2) or
(ii) f(z) = eiz , L(f) = if (3) + f (2) + f ′ or
(iii) f(z) = e−iz , L(f) = if (4) − 2f (3),
it is easy to verify that, for i = 1, 2, f and L(f) share (Ui,∞) and ({0},∞), but f ̸≡ L(f).
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Example 6.4. Suppose

T1 =

{
e

2πi
15 , e

8πi
15 , e

14πi
15 , e

4πi
3 , e

26πi
15

}
, T2 =

{
e

πi
10 , e

πi
2 , e

9πi
10 , e

13πi
10 , e

17πi
10

}

and f(z) = e
e

2πi
5 z

. Then f and L(f) = f ′ share (Ti,∞) , i = 1, 2 and ({0},∞), but f ̸≡ L(f).

Further, taking f and g as entire functions in the statements of the Theorems 2.1 to 2.3 reduce
to the followings.

Theorem 6.4. Consider S4, Ŝ4 as in Theorem 2.1. Let f and g be two non constant entire func-
tions, satisfying Ef (S4, 1) = Eg(Ŝ4, 1) and Ef ({0, a}, 0) = Eg({0, a}, 0), then f ≡ g.

Theorem 6.5. Under the identical conditions of Theorem 6.4, if Ef (S4, 1) = Eg(Ŝ4, 1) and
Ef ({0}, 0) = Eg({0}, 0), then f ≡ g.

Theorem 6.6. Take S5, Ŝ5 as in Theorem 2.3. Let f and g be two non constant entire functions,
satisfying Ef (S5, 0) = Eg(Ŝ5, 0) and Ef ({0}, 0) = Eg({0}, 0), then f ≡ g.

The following examples shows that Theorems 6.5 and 6.6 is not true for any arbitrary sets
consisting 4 or 5 elements.

Example 6.5. Suppose Vn = {1, λ, λ2, . . . , λn−1}, where λn = 1, 4 ≤ n ≤ 5. Choose f(z) =
eδz and g(z) = λre−δz, r = 0, 1, 2, . . . , (n− 1), δ being a non zero complex number. Clearly f
and g share (Vn,∞), ({0},∞) but f ̸≡ g.
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