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Abstract In this research, we provide certain novel requirements for the existence and unique-
ness of fuzzy solutions for a type of Caputo-Fabrizio fuzzy differential equations with integral
boundaries. The required findings are demonstrated by employing the Banach and Krasnoselski
fixed point theorems. First, we give the two analytic form solution equivalent the main equation
and then we show the existence and uniqueness of solutions with the help of the Banach, as
well as Krasnoselski’s fixed point theorem. Moreover, we examine the generalized Ulam Hy-
ers (GUH) and Ulam Hyers Rassias stability for our main problem. An example is provided to
demonstrate the reliability of our findings.

1 Introduction

The area of fractional calculus has garnered a lot of interest in recent years. Renowned scientists
have contributed to this feature by adding many fractional operators in various articles. Ad-
vanced computer yields higher quality conclusions than traditional computations. He explained
the mechanics of a variety of real-world occurrences that occur among two numbers. Addition-
ally, fractional derivatives provide additional levels of independence and make generalizations
to integers fractional derivatives. Podlubny provides a physical and geometrical explanation of
the fractional-order derivatives [3]. An analysis of various dynamical systems in the sense of
fractional-order operators can be seen in [23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35] . The appli-
cations of the said calculus in engineering may be studied in [22]. Some fuzzy fractional-order
linear and non-linear dynamical problems have been analyzed for semi-analytical solutions us-
ing fractional transform [28, 29]. Many types of publications have also been based on existence,
uniqueness and numerical analysis under fractional-order concepts see [36].

Modern analysis could be expanded upon many different areas of the natural and physical
fields. Such operators have applications in both practical mathematics and mathematical theory.
Currently, let’s use these types of operators to some of the information’s more oblique features.
Uncertainty may be present in quantum physics, chemical science, and the arrangement of chro-
mosomes among individuals as well as different organisms. The theories of fuzziness were
initially brought to sets by Zadeh [12] in 1965 by establishing the membership functions. The
concept of uncertainty has since been employed in various domains, namely, Fuzzy structure,
the fixed point theorem, fuzzy automatons, systems of control, and other topics are covered.
Zadeh, Chang, and a variety of researchers have used the concept of fuzzy sets to create fuzzy
management and various membership functions [13]. Using the concept of fuzzyness and asso-
ciated operators, numerous academics have written the fundamental fuzzy differential equations
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[14]. You can get more information about fundamental fuzzy mathematics and the investigation
of FDE in the citations [15, 16]. Given the uncertainty in the initial information, DE has been
stated in an ambiguous way since 2001. The essential ideas of integral equations were stated in
fuzzy structure by some academics, including "Dobius" and "Prada" [17]. We use FD and IE
or system to solve all issues when the input is uncertain or ambiguous. As a result, numerous
scholars have presented a lot of study on these kinds of FDE’s [18, 19, 20, 21, 38, 39].

The introduction of fuzzy sets and fuzzy logic into research has caused an extensive effect on
the development of numerous notions and connections. Indeed, among the primary advantages
of fuzziness reasoning known as Fuzzy Logic Generalization is the generalizing of outlined
ideas and gained connections founded on crisp sets over those founded on fuzzy sets. Fuzzy
differential equations (FDEs) are a sort of differential equation FL-generalization. FDEs are a
sort of uncertain differential equation where the uncertain outcomes for settings, parameters,
and possibly boundaries are represented as fuzzy integers. The granularity precisiation of a
precisiend that shows an imprecise value provided to a parameter yields a fuzzy value. As a
consequence, a FDE can be thought of as a DE where variables, values, as well as constraints
are inaccurate data that are precised as data granularity. In this sense, a FDE can be thought of
as a subclass of granular-DEs.

Stability analysis is a key part of mathematically applied science which is useful in an as-
sortment of industrial and scientific disciplines. Ulam’s stable can be seen of as a subset of
materials elastic that began with Ulam [9], who defined the stability of a functional equation,
which was subsequently handled by Hyers [10] via the additive function specified on the Banach
space. This discovery prompted Rassias to examine and broaden the stability notion, producing
the Hyers Ulam Rassias stability.

Influenced by previous investigations, the main objective of the present investigation is to
analyze the existence and uniqueness of solutions, along with the stability results, of the forth-
coming Fuzzy Caputo-Fabrizio FDE (FCFFDE) with boundary setting restrictions:{

u′(t) + CFDαu(t) = f(t, u(t)), t ∈ I = [0, T ],
u(T ) = Iβ0+u(η), β > 0, η ∈ I.

(1.1)

where u(t) is a continuously differentiable fuzzy function on I; f : I × E → E is continuous;
CFDα(·) is the fuzzy Caputo-Fabrizio fractional derivative, α ∈ (0, 1); and Iβ0+(·) is the fuzzy
Riemann Liouville fractional integral.

The following are the major findings: Initially, for Eq. (1.1), we establish the Ulam Hyers
and the Ulam Hyers Rassias stability results. subsequently via the Banach contraction concept,
we acquire an adequate requirement to determine the uniqueness of the result for Eq. (1.1).
Then, by employing Krasnoselskii’s fixed point theorem, we supply an appropriate prerequisite
for proving the existence of the solution to Eq. (1.1). Upon this framework, we derive the Ulam
stability and inequalities conclusions for Equation (1.1) using the Laplace transformation.

However, to the best of our knowledge, the aforementioned analysis has not been properly
used to study fuzzy fractional differential equations (FFDEs). The idea of a nonsingular frac-
tional derivative is new and has very recently received attention. The Caputo derivative is of use
to modeling phenomena which takes account of interactions within the past and also problems
with nonlocal properties. In this sense, one can think of the equation as having "memory." This
contrasts with parabolic equations such as the heat operator ∂t − ∆ that gives no account for
the past, the groundwater flow equations within confined, unconfined, and leaky aquifers and
also other diffusion problems. Here, we remark that, recently, some valuable work related to
applications of the nonsingular kernel type derivatives CF and ABC have been considered.

This article asserts its originality from the following perspectives.

• In the context of the fuzzy Caputo-Fabrizio fractional differentiability idea, a mathematical
shape of the solution for the Fuzzy Fractional Differential Equation has been defined and
there are a few studies that apply this approach to deal with this kind of equations.

• The existence and uniqueness of solutions are demonstrated by employing the Krasnosel-
skii’s fixed point theorem, as well as Banach’s fixed point theorems, and referring to all
research, there are only a few publications accessible to address FCFFDE’s using this tech-
nique. As an outcome, the analytical process and the resulting conclusions are fundamen-
tally novel.
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• We define Ulam Hyers Rassias stability of fuzzy Caputo-Fabrizio fractional differential
equations, and this is the first investigation of this type of stability of FCFFDE.

The remainder of our paper is structured as following. Section 2 contains Several fundamental
principles and required assumptions. In Section 3, we develop adequate conditions to demon-
strate the existence and uniqueness of solutions to the fuzzy Caputo Fabrizio fractional differ-
ential equation. In Section 4, we show that the fuzzy Caputo-Fabrizio fractional differential
equation has Ulam stability. Section 5 includes an example to demonstrate our theorems.

2 Background Materials

In the current part, we will go over various fundamental mathematics theorem, lemmas, and
definitions, along with some widely-known fraction operators.

Definition 2.1. [3] The mapping Q : R → [0, 1] is referred to be a fuzzy number if the criteria
that follow are met:

(1) Q is upper semi continuous;

(2) Q {ν (x1) + ν (x2)} ≥ min {Q (x1) , Q (x2)};

(3) ∃x0 ∈ R;Q (x0) = 1, i.e., Q is normal;

(4) cl{x ∈ R, Q(x) > 0} is restricted and continuous, with cl representing closure for x sup-
port.

The set of fuzzy numbers is denoted generally as E .

Definition 2.2. [3] The setting format of a "fuzzy set" is (Q(r)), Q̄(r)), for 0 ≤ r ≤ 1 and the
subsequent criteria are valid:

(1) Q(r) is left defined on [0, 1] and has a bound growing set on (0, 1).

(2) Q̄(r) is right defined on [0, 1], and has a bound diminishing set on (0, 1];

(3) Q̄(r) ≥ Q(r).

(4) If Q(r) = Q̄(r) = r, so r is a crisp set.

For addition and scalar multiplying in E , we obtain

[Q1 +Q2]
r
= [Q1]

r
+ [Q2]

r
, [λQ]r = λ[Q]r.

Assume Q1, Q2 ∈ E , if there’s Q3 ∈ E such as Q1 = Q2 + Q3, so Q3 is referred to as the
Hukuhara difference of Q1 and Q2 and it’s indicated by Q1 ⊖Q2.

Definition 2.3. [1] The extended Hukuhara difference (gH-difference) between two fuzzy sets
Q1, Q2 is described as:

Q1 ⊖gH Q2 = Q3 ⇔

{
(i) Q1 = Q2 +Q3

Or (ii) Q2 = Q1 + (−1)Q3.
(2.1)

Remark 2.4. [2] According on the specification of the width of the r-cuts set of Q ∈ E , we get
from (2.1):

a) The state of being Q1 ⊖gH Q2 in (i) is len ([Q1]
r
) ≥ len ([Q2]

r
).

b) The state of being Q1 ⊖gH Q2 in (ii) is len ([Q2]
r
) ≥ len ([Q1]

r
).

The distance between two fuzzy numbers is calculated as follows:

D∞ (Ψ1,Ψ2) = sup
r∈[0,1]

{
| Ψ1(r)− Ψ2(r) |, | Ψ̄1(r)− Ψ̄2(r) |

}
,

= sup
r∈[0,1]

DH ([Ψ1]
r
, [Ψ2]

r
) .
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where DH is the Hausdorff metric.
The metric sets (E ,D∞) is complet and the metric D∞ has the very next admissible qualities.

D∞ (Ω1 + Ω3,Ω2 + Ω3) = D∞ (Ω1,Ω2) ,

D∞ (ϱΩ1, ϱΩ2) =| ϱ | D∞ (Ω1,Ω2)

D∞ (Ω1,Ω2) ≤ D∞ (Ω1,Ω3) +D∞ (Ω3,Ω2) ,

for all Ω1,Ω2,Ω3 ∈ E and ϱ ∈ R.
We will denote by C1 (I, E) the set of continuous differentiable fuzzy sets on I with norm

∥f∥ = D∞
(
f, 0̃

)
.

Definition 2.5. [5] Consider a continuous fuzzy number u on I; we define fuzzy fractional order
integral in Caputo Fabrizio kind w.r.t t as

CF Iαu(t) =
1 − α

M(α)
u(∅) + α

M(α)

∫ t

0
u(s)ds, α, s ∈ (0,∞), (2.2)

where M(0) = M(1) = 1. After that, if u(t) ∈ LF (I) ∩ CF (I), CF (I) is the set of the fuzzy
continuous function, and LF (I) is the set of Lebesgue fuzzy integrable function, accordingly,
the fractional order Caputo-Fabrizio fuzzy integral can be calculated as:[

CF Iαu(t)
]r

= [Iαur(t), I
αur(t)] , 0 ≤ r ≤ 1 (2.3)

or

CF Iαu(t) =
1 − α

M(α)
u(t) +

α

M(α)

∫ t

0
u(s)ds, α, s ∈ (0,∞) (2.4)

CF Iαu(t) =
1 − α

M(α)
u(t) +

α

M(α)

∫ t

0
u(s)ds, α, s ∈ (0,∞) (2.5)

Definition 2.6. [5] Likewise, for a function u(t) ∈ LF (I) ∩ CF (I), as u = [ur, ūr], 0 ≤ r ≤ 1
and the fractional degree Caputo-Fabrizio differential operator in the fuzzy form is stated as[

CFDαũ (t)
]r

= [Dαur (t) ,Dαur (t)] , 0 < α ≤ 1 (2.6)

here

CFDαur (t) =
M(α)

1 − α

[∫ t

0
u′(s) exp

(
−α(t− s)

1 − α

)
ds

]
, (2.7)

CFDαur (τ0) =
M(α)

1 − α

[∫ t

0
u′(s) exp

(
−α(t− s)

1 − α

)
ds

]
, (2.8)

where the integral exists, and m = ⌈α⌉+ 1. Since α is in the range (0, 1],m = 1.

Theorem 2.7. [8] If u is a continuous function and there’s K > 0 and µ such as

∥u(t)∥ ≤ Keµt, t ≥ 0, (2.9)

Afterwards the Laplace transform L[u(t)](s) exists.

Definition 2.8. [3] The Laplace transform for the fuzzy function u for t, whether real or complex,
is provided as

U(s) = L[u(t)] =

∫ ∞

0
e−stu(t)dt. (2.10)

Definition 2.9. [4] The CF Laplace transform is

L
[
CFDα+nu(t)

]
=

sn+1u(s)− snu(0)− sn−1u′(0) . . .− un(0)
s+ α(1 − s)

. (2.11)
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According to The definition 2 in [6] and The definition (2.6) in [7], we define the Ulam Hyers
and the Ulam Hyers Rassias stability results for Eq. (1.1).

Definition 2.10. The Ulam Hyers stability of Eq. (1.1) exists if and only if for any possible
solution u(t) of

∥u′(t) + CFDαu(t)− f(t, u(t))∥ ≤ ε, t ∈ I (2.12)

where ε > 0, there’s a constant C > 0 and a solution v(t) of Eq. (1.1) fulfilling

∥u(t)− v(t)∥ ≤ C × ε, t ∈ I (2.13)

Definition 2.11. The Ulam Hyers Rassias stability of Eq. (1.1) exists if and only if for any
possible solution u(t) of

∥u′(t) + CFDαu(t)− f(t, u(t))∥ ≤ κ(t), t ∈ I (2.14)

where κ(t) ∈ C (I,R+), there’s a constant Ωκ > 0 and a solution v(t) of Equation (1.1) fulfilling

∥u(t)− v(t)∥ ≤ Ωκ × κ(t), t ∈ I (2.15)

Theorem 2.12. The solution of the fuzzy fractional Eq. (1.1) is provided by

u(t) = Iβ0+u(η) +

∫ T

0
G(t, s)f(s, u(s))ds, (2.16)

where

G(t, s) =

{
bαe

aα(t−s) − bαe
aα(T−s), 0 ≤ s ≤ t,

−bαe
aα(T−s) − (1 − bα), t ≤ s ≤ T,

(2.17)

and
aα =

α+ 1
α− 1

, bα =
1

α+ 1
. (2.18)

Proof. Because u(t) is a differentiable function on I , u′(t) is a bounded function on I . According
to 2.6, CFDαu(t) is likewise a bounded function. Following that there are constants k1, k2 > 0
and µ1, µ2 that ensure

∥u′(t)∥ ≤ k1e
µ1t, t ≥ 0,

∥CFDαu(t)∥ ≤ k2e
µ2t, t ≥ 0.

(2.19)

According to the theorem (2.7), the Laplace’s transformation of u′(t) and CFDαu(t) exists.
Using Laplace’s transformation for the first equation of (1.1), we arrive to the following

outcome:

sũ(s)− u(0) +
sũ(s)− u(0)
s+ α(1 − s)

= f̃(s, u(s)) (2.20)

or

ũ(s) =
1
s
u(0) +

1
s+ 1 + α(1 − s)

f̃(s, u(s)) +
α(1 − s)

s(s+ 1 + α(1 − s))
f̃(s, u(s)) (2.21)

We may conclude by using the Laplace inverse transform for the previously equation, the fol-
lowing outcome:

u(t) = u(0) + bα

∫ t

0
eaα(t−s)f(s, u(s))ds+ (1 − bα)

∫ t

0
f(s, u(s))ds (2.22)

Then

u(T ) = u(0) + bα

∫ T

0
eaα(T−s)f(s, u(s))ds+ (1 − bα)

∫ T

0
f(s, u(s))ds (2.23)

Because u(T ) = Iβ0+u(η), so

u(0) = Iβ0+u(η)− bα

∫ T

0
eaα(T−s)f(s, u(s))ds− (1 − bα)

∫ T

0
f(s, u(s))ds (2.24)
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Therefore

u(t) =Iβ0+u(η)− bα

∫ T

0
eaα(T−s)f(s, u(s))ds− (1 − bα)

∫ T

0
f(s, u(s))ds

+ bα

∫ t

0
eaα(t−s)f(s, u(s))ds+ (1 − bα)

∫ t

0
f(s, u(s))ds

(2.25)

We deduce from the formulation of G(t, s)

u(t) = Iβ0+u(η) +

∫ T

0
G(t, s)f(s, u(s))ds. (2.26)

Remark 2.13.∫ t

0
| G(t, s) | ds =

∫ t

0
| bαeaα(t−s) − bαe

aα(T−s) | ds

≤
∫ t

0
| bαeaα(t−s) | ds+

∫ t

0
| bαeaα(T−s) | ds

≤
∫ t

0
eaα(t−s)ds+

∫ t

0
eaα(T−s)ds

≤ 1
aα

exp(aαt)−
1
aα

exp(aα(T − t)) +
1
aα

exp(aαT )

≤ 1
aα

(2 exp(aαT )− 1) = ρ.

As a result, there’s a fixed ρ > 0 that is so∫ T

0
| G(t, s) | ds ≤ ρ, t ∈ I. (2.27)

Theorem 2.14. (Krasnoselskii’s fixed-point-theorem [37]). Permit S to be a bound convex closed
part of a Banach space X , and P , Q : S −→ X meet the subsequent conditions:

(i) Pu+Qv ∈ S, for each u, v ∈ S,

(ii) P is entirely continuous,

(iii) Q is a contraction,

Therefore, P +Q has at least sigular fixed point.

3 Existence and Uniqueness Theorems for FFDE

The subsequent hypothesis will be required during this work:

A1 : f : I × E → E is a continuous function.

A2 : f(s, u) fulfills the Lipschitz requirement for the second parameter:

∥f (s, u)− f (s, v) ∥ ≤ Cf∥u− v∥, u, v ∈ E , s ∈ I

A3 : Let κ(t) : I −→ R+ fulfill∫ t

0
κ(s)ds ≤ Ωκ · κ(t),Ωκ > 0, t ∈ I.

Theorem 3.1. Assume that (A1) and (A2) are met, therefore Equation (1.1) has a unique solution
assuming

ηβ/(Γ(β + 1)) + ρCf < 1. (3.1)
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Proof. Since f ∈ C(I × E , E), there’s b > 0 such as

∆ = max
t∈[0,T ],u∈E

|f(t, u)|. (3.2)

Allow F to be an operator stated by

(Fu)(t) = Iβ0+u(η) +

∫ T

0
G(t, s)f(s, u(s))ds. (3.3)

First, we show that F translates a closed set to another closed set.
Allow Bσ =

{
u ∈ C1(I, E) | ∥u∥ ≤ σ, σ ≥ ρ∆Γ(β+1)

Γ(β+1)−ηβ > 0
}

. For u ∈ Bσ, as a result of this

∥(Fu)(t)∥ ≤ 1
Γ(β)

∫ η

0
(η − s)β−1∥u(s)∥ds+

∫ T

0
| G(t, s) || f(s, u(s)) | ds

≤ ηβ

Γ(β + 1)
σ + ρ∆ ≤ σ.

This implies F (Bσ) ⊆ Bσ.
Afterwards we demonstrate that F is a contraction.
Allow u1, u2 ∈ C1(I, E), for any t ∈ I; as an outcome of this

∥ (Fu1) (t)− (Fu2) (t)∥ ≤ | 1
Γ(β)

∫ η

0
(η − s)β−1 (u1(s)− u2(s)) ds

+

∫ T

0
G(t, s) (f (s, u1(s))− f (s, u2(s))) ds |

≤
(

ηβ

Γ(β + 1)
+ ρCf

)
∥u1 − u2∥ .

Since ηβ/(Γ(β + 1)) + ρCf < 1, for u1, u2 ∈ C1(I, E),F is a contraction. According to the
Banach fixed point theorem, F has a unique fixed point u(t) ∈ C1(I, E); As expected, the
Equation (1.1) has a singular solution.

Theorem 3.2. Assume that (A1) and (A2) are met; thus Equation (1.1) has at least one solution
as long as ηβ/(Γ(β + 1)) + ρCf < 1

Proof. Let f ∈ C(I × E1, E1), there exists ∆ > 0 such as

∆ = max
t∈I,u∈E

|f(t, u)| (3.4)

Allow Bσ =
{
u ∈ C1(I, E) | ∥u∥ ≤ σ, σ ≥ ρ∆Γ(β+1)

Γ(β+1)−ηβ > 0
}

.
Let operators P and Q be stated by

(Pu)(t) =

∫ T

t

(
−bαe

aα(T−s) − (1 − bα)
)
f(s, u(s))ds,

(Qu)(t) =Iβ0+u(η) +

∫ t

0

(
−bαe

aα(T−s) + bαe
aα(t−s)

)
f(s, u(s))ds.
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First, for each u1, u2 ∈ Bσ, by the Remark 2.13, as a side effect of that

∥Pu1 +Qu2∥ =∥
∫ T

t

(
−bαe

aα(T−s) − (1 − bα)
)
f(s, u1(s))ds+ Iβ0+u2(η)

+

∫ t

0

(
−bαe

aα(T−s) + bαe
aα(t−s)

)
f(s, u2(s))ds∥

≤ ∥
∫ T

t

G(t, s)f(s, u1(s))ds+

∫ t

0
G(t, s)f(s, u2(s))ds∥

+ ∥ 1
Γ(β)

∫ η

0
(η − s)β−1u2(s)ds∥

≤
∫ T

t

|G(t, s)|∥f(s, u1(s))∥ds+
∫ t

0
|G(t, s)|∥f(s, u2(s))∥ds

+
1

Γ(β)

∫ η

0
(η − s)β−1∥u2(s)∥ds

≤ ∆(

∫ T

t

|G(t, s)|ds+
∫ t

0
|G(t, s)|∥ds) + σ

Γ(β)

∫ η

0
(η − s)β−1ds

≤ ρ∆ +
ηβ

Γ(β + 1)
σ ≤ σ.

As a consequence, we’ve gotten Pu1 +Qu2 ∈ Bσ.
So, for every u1, u2 ∈ C1I ,

∥Qu1 −Qu2∥ = ∥Iβ0+u1(η) +

∫ t

0

(
−bαe

aα(T−s) + bαe
aα(t−s)

)
f(s, u1(s))ds

− Iβ0+u2(η) +

∫ t

0

(
−bαe

aα(T−s) + bαe
aα(t−s)

)
f(s, u2(s))ds∥

≤ ∥ 1
Γ(β)

∫ η

0
(η − s)β−1(u1(s)− u2(s))ds+

∫ t

0
G(t, s)(f(s, u1(s))− f(s, u2(s)))ds∥

≤ 1
Γ(β)

∫ η

0
(η − s)β−1∥u1(s)− u2(s)∥ds+

∫ t

0
|G(t, s)|∥f(s, u1(s))− f(s, u2(s))∥ds

≤ ηβ

Γ(β + 1)
∥u1(s)− u2(s)∥+ ρCf∥u1(s)− u2(s)∥

≤
(

ηβ

Γ(β + 1)
+ ρCf

)
∥u1(s)− u2(s)∥

As
(

ηβ

Γ(β+1) + ρCf

)
< 1, Q is a contraction.

Lastly, we demonstrate that the operator P is completely continuous.
Step 1. Operator P is continuous.
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Allow un to be a converging series, un −→ u ∈ C1(I, E), by Remark 2.13 and (A2); we get

∥ (Pun) (t)− (Pu)(t)∥ =∥
∫ T

t

(
−bαe

aα(T−s) − (1 − bα)
)
f(s, un(s))ds

−
∫ T

t

(
−bαe

aα(T−s) − (1 − bα)
)
f(s, u(s))ds∥

≤ ∥
∫ T

t

(
−bαe

aα(T−s) − (1 − bα)
)
(f(s, un(s))− f(s, u(s))) ds∥

≤
∫ T

t

(
−bαe

aα(T−s) − (1 − bα)
)
∥f(s, un(s))− f(s, u(s))∥ds

≤
∫ T

t

(
−bαe

aα(T−s) − (1 − bα)
)
ds (Cf∥un − u∥)

≤
∫ T

t

G(t, s)ds (Cf∥un − u∥)

≤ ρCf∥un − u∥

Because un −→ u, we gain Pun −→ Pu; thus we gain the desired result.
Step 2. P is bound on Bσ.

∥(Pu)(t)∥ =∥
∫ T

t

(
−bαe

aα(T−s) − (1 − bα)
)
f(s, u(s))ds∥

≤ ∥
∫ T

t

G(t, s)f(s, u(s))ds∥

≤
∫ T

t

|G(t, s)|∥f(s, u(s))∥ds

≤ ρ∆

Step 3. Operator P is equicontinuous in C1(I, E).
Allow t1, t2 ∈ I such that t2 < t1, and u ∈ Bσ; we obtain

∥(Pu) (t1)− (Pu) (t2) ∥ =∥
∫ T

t1

(
−bαe

aα(T−s) − (1 − bα)
)
f(s, u(s))ds

−
∫ T

t2

(
−bαe

aα(T−s) − (1 − bα)
)
f(s, u(s))ds∥

≤ ∥
∫ t1

t2

(
−bαe

aα(T−s) − (1 − bα)
)
f(s, u(s))ds∥

≤
∫ t1

t2

| −bαe
aα(T−s) − (1 − bα) | ∥f(s, u(s))∥ds

≤ ∆

∫ t1

t2

| −bαe
aα(T−s) − (1 − bα) | ds

≤ ∆ | t1 − t2 |

Therefore, P is equi-continuous.
Based on the previous steps and the Arzela-Ascoli theorem, P is completely continuous.

According to the theorem 2.14, P +Q has at least singular fixed point, and beacause

(P +Q) (t) = Iβ0+u(η) +

∫ T

0
G(t, s)f(s, u(s))ds, (3.5)

Based on the theorem 2.12, the problem (1.1) has at least singular solution.
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4 Stability Results

Theorem 4.1. Assume that (A1) and (A2) are met; so the problem ((1.1)) has the Ulam Hyers
stability on I .

Proof. Say that (A1)− (A2) are true, according to Theorems 3.1 and 3.2, Eq. (1.1) has a unique
solution. From the theorem 2.12, Eq. (1.1) has the following solution

u(t) = u(0) + bα

∫ t

0
eaα(t−s)f(s, u(s))ds+ (1 − bα)

∫ t

0
f(s, u(s))ds (4.1)

Allow v(t) satisfy v(0) = u(0) and be a solution of the inequality

∥v′(t) + CFDαv(t)− f(t, v(t))∥ ≤ ε, t ∈ I. (4.2)

R(t) = v′(t) + CFDαv(t)− f(t, v(t)), t ∈ I. (4.3)

So

v′(t) + CFDαv(t) = R(t) + f(t, v(t)), t ∈ I,

∥R(t)∥ ≤ ε, t ∈ I.

We infer from the evidence of Theorem 2.12

v(t) = v(0)+ bα

∫ t

0
eaα(t−s) [R(s) + f(s, v(s))] ds+(1− bα)

∫ t

0
[R(s) + f(s, v(s))] ds (4.4)

Then

∥v(t)− v(0)− bα

∫ t

0
eaα(t−s)f(s, v(s))ds+ (1 − bα)

∫ t

0
f(s, v(s))ds∥

= ∥bα
∫ t

0
eaα(t−s)R(s)ds+ (1 − bα)

∫ t

0
R(s)ds∥

≤ bα

∫ t

0
eaα(t−s)∥R(s)∥ds+ (1 − bα)

∫ t

0
∥R(s)∥ds

≤ bα

∫ t

0
∥R(s)∥ds+ (1 − bα)

∫ t

0
∥R(s)∥ds

≤
∫ t

0
∥R(s)∥ds

≤ ε.

Then

∥v(t)−u(t)∥ = ∥v(t)− u(0)− bα

∫ t

0
eaα(t−s)f(s, u(s))ds− (1 − bα)

∫ t

0
f(s, u(s))ds∥

≤ ∥v(t)− v(0)− bα

∫ t

0
eaα(t−s)f(s, v(s))ds− (1 − bα)

∫ t

0
f(s, v(s))ds∥

+ ∥bα
∫ t

0
eaα(t−s) (f(s, v(s))− f(s, u(s))) ds+ (1 − bα)

∫ t

0
(f(s, v(s))− f(s, u(s))) ds∥

≤ ε+ bα

∫ t

0
∥f(s, v(s))− f(s, u(s))∥ds+ (1 − bα)

∫ t

0
∥f(s, v(s))− f(s, u(s))∥ds

≤ ε+ Cf

∫ t

0
∥v(s)− u(s)∥ds
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We derive from the Gronwall Bellman inequality

∥v(t)− u(t)∥ ≤
[

exp
(∫ t

0
Cfds

)]
· ε ≤ exp (CfT ) · ε. (4.5)

Based on the definition (2.10), Eq. (1.1) has the Ulam Hyers stability.

Theorem 4.2. Assume that (A1) , (A2), and (A3) are met; thus Eq. (1.1) has the Ulam Hyers
Rassias stability on I .

Proof. Assume (A1) and (A2) to be true, by Theorems 3.1 and 3.2, Eq. (1.1) has a unique
solution. From the theorem 2.12, Eq. (1.1) has the following unique solution

u(t) = u(0) + bα

∫ t

0
eaα(t−s)f(s, u(s))ds+ (1 − bα)

∫ t

0
f(s, u(s))ds (4.6)

Allow v(t) satisfy v(0) = u(0) and be a solution of the inequality

∥v′(t) + CFDαv(t)− f(t, v(t))∥ ≤ κ(t), t ∈ I. (4.7)

Let

R(t) = v′(t) + CFDαv(t)− f(t, v(t)), t ∈ I (4.8)

Therefore

v′(t) + CFDαy(t) = R(t) + f(t, v(t)), t ∈ I,

∥R(t)∥ ≤ κ(t), t ∈ I.

We infer from the evidence of Theorem 2.12,

v(t) = v(0)+ bα

∫ t

0
eaα(t−s) [R(s) + f(s, u(s))] ds+(1− bα)

∫ t

0
[R(s) + f(s, u(s))] ds (4.9)

Thereafter, by (A3), we get

∥v(t)− v(0)− bα

∫ t

0
eaα(t−s)f(s, v(s))ds+ (1 − bα)

∫ t

0
f(s, v(s))ds∥

= ∥bα
∫ t

0
eaα(t−s)R(s)ds+ (1 − bα)

∫ t

0
R(s)ds∥

≤ bα

∫ t

0
eaα(t−s)∥R(s)∥ds+ (1 − bα)

∫ t

0
∥R(s)∥ds

≤ bα

∫ t

0
∥R(s)∥ds+ (1 − bα)

∫ t

0
∥R(s)∥ds

≤
∫ t

0
∥R(s)∥ds

≤
∫ t

0
κ(s)ds ≤ Ωκ · κ(t).
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So

∥v(t)−u(t)∥ = ∥v(t)− u(0)− bα

∫ t

0
eaα(t−s)f(s, u(s))ds− (1 − bα)

∫ t

0
f(s, u(s))ds∥

≤ ∥v(t)− v(0)− bα

∫ t

0
eaα(t−s)f(s, v(s))ds− (1 − bα)

∫ t

0
f(s, v(s))ds∥

+ ∥bα
∫ t

0
eaα(t−s) (f(s, v(s))− f(s, u(s))) ds+ (1 − bα)

∫ t

0
(f(s, v(s))− f(s, u(s))) ds∥

≤ ε+ bα

∫ t

0
∥f(s, v(s))− f(s, u(s))∥ds+ (1 − bα)

∫ t

0
∥f(s, v(s))− f(s, u(s))∥ds

≤ Ωκ · κ(t) + Cf

∫ t

0
∥v(s)− u(s)∥ds

∥v(t)− u(t)∥ ≤ Ωκ × κ(t) +

∫ t

0

[
Ωκ × κ(s)× Cf exp

(∫ t

s

Cfdt

)]
ds

≤
[
Ωκ + Ω

2
κCf exp (Cf )

]
× κ(t).

According to Definition 2.11, Equation (1.1) has the Ulam Hyers Rassias stability on I .

5 An example

Considering the next Caputo Fabrizio fractional differential problem of sort{
u′(t) + CFD

2
3 u(t) = e−t

|u|+6 , t ∈ I = [0, 2],

u(2) = I
5
2

0+u
( 3

2

)
,

(5.1)

as well as the subsequent inequity

∥v′(t) + CFD
2
3 v(t)− e−t

| v | +6
∥ ≤ κ(t), t ∈ I (5.2)

Allow

α =
2
3
, β =

5
2
, η =

3
2

(5.3)

Therefore,

M

(
2
3

)
= 1, a 2

3
= −5, b 2

3
=

3
5
, (5.4)

Because

f(t, u) =
e−t

|u|+ 6
, (t, u) ∈ I × E (5.5)

After this, it comes that

∥f (t, u1)− f (t, u2) ∥ = e−t∥ 1
∥u1∥+ 6

− 1
∥u2∥+ 6

∥

≤ e−t∥ 1
(∥u1∥+ 6) (∥u2∥+ 6)

∥∥u1 − u2∥

≤ e−t∥u1 − u2∥
36

≤ 1
36

∥u1 − u2∥.

Hence, Cf = 1/36
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Then, (A1) and (A2) are fillfuls,

ηβ/(Γ(β + 1)) + ρCf = (
3
2
)

5
2 /Γ(

7
2
) + 0, 19998184 × 1/36 = 0, 8347410098 < 1.

By Theorems 3.1 and 3.2 , Eq. (5.1) has a unique solution.
Let κ(t) = et ∈ C(I,R+),

∫ t

0 κ(s)ds =
∫ t

0 esds = et −1 ≤ et; we derive Ωκ = 1 > 0.
Since v(t) fillful the next inequality:

∥v′(t) + CFD
2
3 v(t)− e−t

| v | +6
∥ ≤ κ(t), t ∈ I (5.6)

as a result of this

∥v(t)− v(0)− bα

∫ t

0
eaα(t−s)f(s, v(s))ds+ (1 − bα)

∫ t

0
f(s, v(s))ds∥ ≤ et (5.7)

Because (A1) , (A2), and (A3) are fillfuls, by Theorem 4.2, we gain

∥v(t)− u(t)∥ ≤
[
Ωκ + Ω

2
κCf exp (Cf )

]
× κ(t) ≤

(
1 +

1
36

e
1
36

)
· et. (5.8)

As a result, the equation possesses the Ulam Hyers Rassias stability.

6 Conclusion

This paper aims to identify the Ulam equilibrium of the Caputo Fabrizio fractional differential
problem via the integral boundary criterion using the Laplace transform approach. The Kras-
noselskii and Banach fixed point theorems are employed to illustrate the existence and unique-
ness of the solution to the fuzzy CF fractional differential equation. In addition, we developed
a solution for the problem using a novel Green’s function G(t, s). The CF fraction differential
equation’s Ulam stability is used to explore extraordinary deviations and nonlinearities in waves
movements and liquid flows. Since the Ulam equilibrium is frequently utilized, we intend to
investigate the Ulam notions of the fractional differential equations of the ABR and ABC in
subsequent investigations.
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