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Abstract. Let n be a positive integer and consider F2n [ε] to be a finite ring of characteristic
2. The main goal of this paper is to investigate the binary Edwards curves, which is denoted
by EBa,d

, over the local ring F2n [ε], where ε2 = 0. Furthermore, we give some links with the
cryptography.

1 Introduction

The Edwards curve is an elliptic curve discovered in 2007, by mathematician Harold Edwards
[4], This model has been shown to be very promising because it has a complete group structure
and faster law of addition. Bernstein et al. introduced twisted Edwards curves and mentioned
several advantages of these curves compared to the Weierstrass elliptic functions [1]. In [10],
Boudabra et al. studied the twisted Edwards curves on the finite field Z/pZ, where p ≥ 5 is
a prime number, and on the rings Z/prZ and Z/prqsZ. In [7, 8] El Hamam et al. studied
the twisted Edwards curves over the ring Fq[e], e2 = e and Fq[e], e2 = 0. Bernstein et al.
introduced a new shape for ordinary elliptic curves on the fields of characteristic 2, with equation
a(X + Y ) + d(X2 + Y 2) = XY +XY (X + Y ) +X2Y 2 [6]. In [5], El Hamam et al. studied
the binary Edwards curves on the ring F2n [e], e2 = e.

In this work, we study binary Edwards curves over the ring F2n [ε], ε2 = 0. The motivation of
this article is the research of the properties of the binary Edwards curves on a finite ring, for use
in cryptography.

Let F2n be a finite field and n is a positive integer. The plan of this paper is the following: In
Section 2, we study the arithmetic of the ring F2n [ε], ε2 = 0. In Section 3, we define the binary
Edwards curves EBa,d

(F2n [ε]) over this ring. Moreover, we will define the group extension
EBa,d

(F2n [ε]) of EBa0,d0
(F2n) and give a bijection between the groupsEBa,d

and F2n×EBa0,d0
,

where EBa0,d0
is the binary Edwards curves over the finite field F2n . Furthermore, we close this

paper, by giving a link between the group EBa,d
and cryptography. We deduce that the discrete

logarithm problem in EBa,d
is equivalent to the discrete logarithm problem in EBa0,d0

×F2n and
#(EBa,d

) = 2n#(EBa0,d0
).

2 Arithmetic over the ring F2n[ε], ε
2 = 0

Let n be a positive integer, we consider the quotient ring B2 =
F2n [X]

(X2)
, where F2n is the finite

field of order 2n. The ring B2 is identified to the ring F2n [ε], ε2 = 0. Hence,

B2 = {x0 + x1ε | (x0, x1) ∈ F2
2n}.



260 Moha Ben Taleb El Hamam

The arithmetic operations in B2 can be decomposed into operations in F2n and they are com-
puted as follows: X+Y = (x0+y0)+(x1+y1)ε andX ·Y = (x0y0)+(x0y1+x1y0)ε, whereX
and Y are two elements in B2 represented by X = x0 + x1ε and Y = y0 + y1ε with coefficients
x0, x1, y0 and y1 ∈ F2n . The following results can easily be verified (see [3, 6, 9, 11, 12]).

• Let X = x0 + x1ε ∈ B2, X is invertible if and only if x0 ̸≡ 0 (mod 2), and its inverse is

X−1 = x−1
0 − x1x

−2
0 ε.

• B2 is a local ring, its maximal ideal is M = εB2.

• B2 is an F2n-vector space of dimension 2 and of basis {1, ε}.

• We consider the canonical projection τ defined by

τ : B2 −→ F2n ,

X 7−→ x0

is a surjective morphism of rings.

3 Binary Edwards curves over the ring B2

Let X,Y, a and d be four elements of B2 such that X = x0 + x1ε, Y = y0 + y1ε, a = a0 + a1ε
and d = d0 + d1ε.

Definition 3.1. A binary Edwards curve is defined over B2 by the equation a(X + Y ) + d(X2 +
Y 2) = XY +XY (X+Y )+X2Y 2, such that a and d+a2+a are invertible inB2. We denote it by
EBa,d

and we write: EBa,d
=

{
(X,Y ) ∈ B2

2 | a(X + Y ) + d(X2 + Y 2) = XY +XY (X + Y ) +X2Y 2
}
.

Lemma 3.2. Let a and d be in the ringB2, then d+a2+a is invertible if and only if d0+a2
0+a0 ̸≡ 0

(mod 2).

Proof. We have:

d+ a2 + a = d0 + d1ε+ (a0 + a1ε)
2 + a0 + a1ε

= d0 + d1ε+ a2
0 + a0 + a1ε

= d0 + a2
0 + a0 + (d1 + a1)ε.

Since τ(d+ a2 + a) = d0 + a2
0 + a0, then d+ a2 + a is invertible if and only if d0 + a2

0 + a0 ̸≡ 0
(mod 2).

Using Lemma 3.2, if a and d + a2 + a are invertible in B2, then EBτ(a),τ(d)
(F2n) is binary

Edwards curve over the finite field F2n and we notice EBa0,d0
. We write:

EBa0,d0
=

{
(x, y) ∈ F2

2n | a0(x+ y) + d0(x
2 + y2) = xy + xy(x+ y) + x2y2} .

Theorem 3.3. Let a = a0 + a1ε, d = d0 + d1ε, X = x0 + x1ε and Y = y0 + y1ε be elements of
B2 such that a(X + Y ) + d(X2 + Y 2) = XY +XY (X + Y ) +X2Y 2, then

a0(x0 + y0) + d0(x2
0 + y2

0) = x0y0 + x0y0(x0 + y0) + x2
0y

2
0 + (E + Fx1 +Gy1)ε, where

E = −a1(x0 + y0)− d1(x2
0 + y2

0), F = −a0 + y0 + y2
0 and G = −a0 + x0 + x2

0.
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Proof. We have:

a(X + Y ) = (a0 + a1ε)(x0 + x1ε+ y0 + y1ε)

= a0(x0 + y0) + [a0(x1 + y1) + a1(x0 + y0)]ε,

d(X2 + Y 2) = (d0 + d1ε)((x0 + x1ε)
2 + (y0 + y1ε)

2)

= d0(x
2
0 + y2

0) + d1(x
2
0 + y2

0)ε,

XY = (x0 + x1ε) + (y0 + y1ε)

= x0y0 + (x0y1 + x1y0)ε,

XY (X + Y ) = (x0 + x1ε)(y0 + y1ε)((x0 + x1ε) + (y0 + y1ε))

= x0y0(x0 + y0) + (x2
0y1 + x1y

2
0)ε,

X2Y 2 = (x0 + x1ε)
2(y0 + y1ε)

2

= x2
0y

2
0 .

If a(X + Y ) + d(X2 + Y 2) = XY +XY (X + Y ) +X2Y 2, then
a0(x0 + y0) + d0(x2

0 + y2
0) = x0y0 + x0y0(x0 + y0) + x2

0y
2
0 + (E + Fx1 +Gy1)ε, where

E = −a1(x0 + y0)− d1(x2
0 + y2

0), F = −a0 + y0 + y2
0 and G = −a0 + x0 + x2

0.

Corollary 3.4. If (X,Y ) ∈ EBa,d
, then (x0, y0) ∈ EBa0,d0

.

Proof. If (X,Y ) ∈ EBa,d
, then a(X+Y )+ d(X2 +Y 2) = XY +XY (X+Y )+X2Y 2. So, by

Theorem 3.3, we have a0(x0+y0)+d0(x2
0+y

2
0) = x0y0+x0y0(x0+y0)+x2

0y
2
0+(E+Fx1+Gy1)ε.

As (1, ε) is a basis of B2, then a0(x0 + y0) + d0(x2
0 + y2

0) = x0y0 + x0y0(x0 + y0) + x2
0y

2
0 . Thus

(x0, y0) ∈ EBa0,d0
.

4 The group law of the binary Edwards curve EBa,d

The authors in [2] presented an addition law for the binary Edwards curve EB,a0,d0(F2n). This
addition law on EB,a0,d0(F2n) is strongly unified: it can be used with two identical inputs, i.e.,
to double. Given two points (X1, Y1) and (X2, Y2) in the binary Edwards curve EB,a,d, compute
the sum (X3, Y3) = (X1, Y1) + (X2, Y2) if it is defined:

X3 =
a(X1 +X2) + d(X1 + Y1)(X2 + Y2) + (X1 +X2

1 )(X2(Y1 + Y2 + 1) + Y1Y2)

a+ (X1 +X2
1 )(X2 + Y2)

, (4.1)

Y3 =
a(Y1 + Y2) + d(X1 + Y1)(X2 + Y2) + (Y1 + Y 2

1 )(Y2(X1 +X2 + 1) +X1X2)

a+ (Y1 + Y 2
1 )(X2 + Y2)

. (4.2)

If the denominators a+ (X1 +X2
1 )(X2 + Y2) and a+ (Y1 + Y 2

1 )(X2 + Y2) are invertible in B2,
then the sum (X3, Y3) is a point on EB,a,d, with (0, 0) is the neutral element and −(X1, Y1) =
(Y1, X1).

Corollary 4.1. The following mapping is well defined:

τ̃ : EBa,d
→ EBa0,d0

,

(X,Y ) 7→ (τ(X), τ(Y )) .
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Proof. From the previous theorem, we have (τ(X), τ(Y )) ∈ EBa0,d0
.

If (X1, Y1) = (X2, Y2), then

τ̃(X2, Y2) = (τ(X2), τ(Y2))

= (τ(X1), τ(Y1))

= τ̃(X1, Y1).

Lemma 4.2. τ̃ is a surjective morphism of groups.

Proof. Let (x0, y0) ∈ EBa0,d0
, then there exists (X,Y ) ∈ EBa,d

such that τ̃(X,Y ) = (x0, y0). By
Theorem 3.3, we have: a0(x0+y0)+d0(x2

0+y
2
0) = x0y0+x0y0(x0+y0)+x2

0y
2
0+(E+Fx1+Gy1)ε.

As (1, ε) is a basis of B2, then E = −(Fx1 +Gy1).
Put f(x, y) = a0(x+ y) + d0(x2 + y2)− xy − xy(x+ y)− x2y2, we have:
∂f

∂x
(x0, y0) = a0 − y0 − y2

0 = −F and
∂f

∂y
(x0, y0) = a0 − x0 − x2

0 = −G.

The coefficients −F and −G are partial derivatives of a function f(x, y) at the point (x0, y0),
can not be all zero. We can then conclude that (x1, y1) exists. Thus, τ̃ is a surjective.

Lemma 4.3. The mapping
ϑ : F2n → EBa,d

,

x 7→ (xε, xε)

is an injective morphism of groups.

Proof. It is obvious that ϑ is well defined and injective. Let x1, x2 ∈ F2n such that P =
(x1ε, x1ε) and Q = (x2ε, x2ε). By (4.1) and (4.2), we have P + Q = ((x1 + x2)ε, (x1 + x2)ε),
then ϑ(x1 +x2) = ϑ(x1)+ϑ(x2) and we conclude that ϑ is an injective morphism of groups.

Corollary 4.4. Let S = ϑ(F2n), then S = ker(τ̃).

Proof. Let (xε, xε) ∈ S, then τ̃(xε, xε) = (0, 0). We conclude that (xε, xε) ∈ ker(τ̃), thus
S ⊂ ker(τ̃). Let P = (X,Y ) ∈ ker(τ̃), then τ̃(X,Y ) = (0, 0). Therefore, X = xε and Y = yε,
then (X,Y ) = (xε, yε). Thus ker(τ̃) ⊂ S. Finally, S = ker(τ̃).

Remark 4.5. As ϑ(F2n) is isomorphic to F2n , so S ∼= F2n . Therefore, S is an abelian 2-group
of order 2n.

Theorem 4.6. The sequence

0 −→ S −→ EBa,d
−→ EBa0,d0

−→ 0

is a short exact sequence which defines the group extension EBa,d
of EBa0,d0

by S.

Proof. τ̃ is a surjective morphism of groups, S = ϑ(F2n) = ker(τ̃) and ϑ is an injective mor-
phism of groups. We deduce the sequence 0 −→ S −→ EBa,d

−→ EBa0,d0
−→ 0 is a short exact

sequence which defines the group extension EBa,d
of EBa0,d0

by S.

Theorem 4.7. Let n′ = #(EBa0,d0
) the cardinality of EBa0,d0

. If 2 does not divide n′, then the
short exact sequence 0 −→ S −→ EBa,d

−→ EBa0,d0
−→ 0 is split.

Proof. Since 2 does not divide n′, then there exists an integer b such that n′b = 1 (mod 2). So,
there is an integer c such that 1 − n′b = 2c. Let ψ the morphism defined by

ψ : EBa,d
→ EBa,d

,

P 7→ (1 − n′b)P .
We have:

τ̃ : EBa,d
→ EBa0,d0

,

(X,Y ) 7→ (τ(X), τ(Y ))
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is a surjective morphism of groups by Lemma 4.2. Then, there exists a unique morphism φ, such
that the following diagram commutes:

EBa,d

ψ
//

τ̃

##

EBa,d

EBa0,d0

φ
;;

Indeed, let P ∈ ker(τ̃) = ϑ(F2n), then ∃x ∈ F2n such that P = (xε, xε). We have (1 − n′b)P =
2cP = (0, 0), then P ∈ ker(ψ). It follows that ker(τ̃) ⊆ ker(ψ), this prove the above assertion.

Now, let us prove that τ̃ oφ = idEBa0,d0
. Let Q ∈ EBa0,d0

, since τ̃ is surjective, there exists
P ∈ EBa,d

such that τ̃(P ) = Q. We have φ(Q) = (1−n′b)P = P −n′bP and n′Q = (0, 0),
then n′τ̃(P ) = (0, 0) and τ̃(n′P ) = (0, 0) implies that n′P ∈ ker(τ̃) and so, n′bP ∈ ker(τ̃).
Therefore, τ̃(nbP ) = (0, 0). On the other hand, φ(Q) = (1−n′b)P = P −n′bP, then τ̃ oφ(Q) =
τ̃(P )− (0, 0) = Q and so, τ̃ ◦ φ = idEBa0,d0

. Therefore, the sequence is split.

Corollary 4.8. If 2 does not divide #(EBa0,d0
), then EBa,d

∼= EBa0,d0
× F2n

Proof. From the Theorem 4.7, the sequence

0 −→ S −→ EBa,d
−→ EBa0,d0

−→ 0

is split, then EBa,d
∼= EBa0,d0

× S and since S = ker(τ̃) = Imϑ ∼= F2n , then the corollary is
proved.

Links with Cryptography

In this work, we have proved the bijection between EBa,d
and EBa0,d0

× F2n . In cryptography
applications, we deduce that the discrete logarithm problem inEBa,d

is equivalent to the discrete
logarithm problem in EBa0,d0

× F2n and #(EBa,d
) = 2n#(EBa0,d0

), which is an important and
useful factor in cryptography.

References
[1] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, C. Peters, Twisted Edwards curves. In: First International

Conference on Cryptology in Africa, Casablanca, Morocco, Progress in Cryptology — AFRICACRYPT,
Lecture Notes in Comput. Sci. Vol. 5023, Springer-Verlag, Berlin, (2008), pp. 389–405.

[2] D. J. Bernstein, T. Lange, and R. Rezaeian Farashahi, Binary Edwards Curves, In Oswald E., Rohatgi
P. (eds) Cryptographic Hardware and Embedded Systems - CHES (2008). Lecture Notes in Computer
Science, vol 5154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85053-3-16.

[3] A. Chillali, Elliptic curves of the ring Fq[ϵ], ϵn = 0, Int. Math. Forum, 6, (2011) no. 29–31, 1501–1505.

[4] H. Edwards, Normal form for elliptic curves, Bull. Amer. Math. Soc. (N.S.) 44 (2007) no. 03, 393–423.

[5] M. B. T. El Hamam, A. Chillali, L. El Fadil, Public key cryptosystem and binary Edwards
curves on the ring F2n [e], e

2 = e for data management. In: 2nd International Conference
on Innovative Research in Applied Science, Engineering and Technology (IRASET), (2022), doi:
10.1109/IRASET52964.2022.9738249.

[6] M. B. T. El Hamam, A. Chillali, L. El Fadil, Twisted Hessian curves over the ring Fq[e], e
2 = e. Bol. Soc.

Paran. Mat. (3s.) 40 (2022), doi: https://doi.org/10.5269/bspm.51867.

[7] M. B. T. El Hamam, A. Chillali, L. El Fadil, A New Addition Law in Twisted Edwards Curves on Non
Local Ring. In: Nitaj, A., Zkik, K. (eds) Cryptography, Codes and Cyber Security. I4CS (2022). Commu-
nications in Computer and Information Science, vol 1747. Springer, Cham. https://doi.org/10.1007/978-
3-031-23201-5_3.

[8] M. B. T. El Hamam, A. Chillali, L. El Fadil, TWISTED EDWARDS CURVE OVER THE RING Fq[e], e
2 =

0. Tatra Mt. Math. Publ.(2023) 83, 43-50.

[9] M. B. T. El Hamam, A. Grini, A. Chillali, L. El Fadil, El Gamal cryptosystem on a Montgomery curves
over non local ring, WSEAS Trans. Math. 21 (2022), 85–89.



264 Moha Ben Taleb El Hamam

[10] M. Boudabra, A. Nitaj, A new public key cryptosystem based on Edwards curves, J. Appl. Math. Comput.
61 (2019), no. 1–2, 431–450.

[11] M. B. T. El Hamam, A. Chillali, L. El Fadil, Classification of the elements of the twisted Hessian curves
in the ring Fq[e], e

3 = e2. Bol. Soc. Paran. Mat. (3s.) 42 (2024), doi: https://doi.10.5269/bspm.62308.

[12] A. Chillali, M. B. T. El Hamam, A. Grini, Twisted Hessian curve over a local ring.Bol. Soc. Paran. Mat.
(3s.) 42 (2024), doi: https://doi.10.5269/bspm.62583.

Author information
Moha Ben Taleb El Hamam, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz,
Fez, Morocco.
E-mail: mohaelhomam@gmail.com

Received: 2024-06-08

Accepted: 2024-11-03


	1 Introduction
	2 Arithmetic over the ring F2n[],2=0
	3 Binary Edwards curves over the ring B2
	4 The group law of the binary Edwards curve EBa,d

