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Abstract The main motive of this paper is to study the commutativity of prime and semiprime
rings. Let R be a prime ring, a ̸= 0 ∈ R and I a non zero ideal of R. If d is a derivation on R

satisfying the identities (i) a
(
[d(x), d(y)]m − [x, y]n

)
= 0, (ii) a

(
d([x, y])m − [x, y]n

)
= 0 for

all x, y ∈ I , then R is a commutative ring.

1 Introduction

Throughout this paper, unless specifically stated, R always denotes a prime ring with center
Z(R) and with extended centroid C, Q its two sided Martindale quotient ring. For any a, b ∈ R,
a ring R is said to be prime if whenever aRb = 0 implies a = 0 or b = 0 and is semiprime
if for any a ∈ R, aRa = 0 implies a = 0. A mapping f is called an additive mapping on
R if f(x + y) = f(x) + f(y) holds for all x, y ∈ R. By d, we mean a derivation of R. An
additive mapping d : R → R is called a derivation of R, if d(xy) = d(x)y + xd(y) holds
for all x, y ∈ R. Let R be a ring and S ⊆ R. A mapping f : R → R is called strong-
commutativity preserving (scp) on S, if [f(x), f(y)] = [x, y] for all x, y ∈ S. Given x, y ∈ R, we
set [x, y]0 = x, [x, y]1 = [x, y] = xy − yx and [x, y]k = [[x, y]k−1, y] for k > 1.

The Engel type identity with derivation appeared first time in the well known paper of Posner
[28]. Posner [28] proved that for a nonzero derivation d of R, if [d(x), x] ∈ Z(R) for all x ∈ R,
then R is commutative. Daif and Bell [12] proved that if R is a semiprime ring and I is a two-
sided ideal of R such that d([x, y]) = ±[x, y] for all x, y ∈ I , then I is central ideal.

In [7], Ashraf and Rehman proved that if I is a nonzero ideal of R such that R satisfies
any one of the following conditions: (i) d([x, y]) = [x, y], (ii) d(xy + yx) = xy + yx, (iii)
d(x)d(y) + d(y)d(x) = xy + yx; for all x, y ∈ I , then R is commutative. In 2009, Argaç and
Inceboz [6] proved the result by considering d(xy + yx)n = xy + yx for all x, y ∈ I , where I
is a nonzero ideal of R and n ≥ 1 fixed integer, and then obtained that R is commutative. On
the other hand, Herstein [19] proved that if char (R) ̸= 2 and R admits a nonzero derivation d
on R such that [d(x), d(y)] = 0 for all x, y ∈ R, then R is commutative. For semiprime ring R,
Bell and Daif [9] proved that the nonzero right ideal ρ of R is central, if [d(x), d(y)] = [x, y] for
all x, y ∈ ρ. In [29], Sharma and Dhara proved that if char (R) ̸= 2 and d a nonzero derivation
of R such that [[d(x), d(y)]n, [y, x]m] = 0 for all x, y ∈ R, where m,n ≥ 0 are fixed integers,
then R must be commutative. Further, number of algebraists study the structure of rings via
derivations. For example, we refer the reader to ([5, 1, 2, 3, 4]), where further references can
be found).

In [13], Filippis showed that if R is of characteristic different from 2 and I a nonzero ideal of
R such that [[d(x), x], [d(y), y]] = 0 for all x, y ∈ R, then R is commutative. Dhara proved the
same conclusion in [17] when [[d(x), x]n, [y, d(y)]m]t = 0 for all x, y ∈ R, where n ≥ 0,m ≥
0, t ≥ 1 are fixed integers.
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There are many papers which study the identities involving derivations with left annihilator
conditions. In [16], Dhara and Sharma studied the case when a[[d(x), x]n, [y, d(y)]m]t = 0 for
all x, y ∈ R, 0 ̸= a ∈ R fixed and proved that if d ̸= 0, then prime ring R must be commutative.

In [15], Dhara et al. proved that if 0 ̸= a ∈ R such that a((d(xy+ yx))n − (xy+ yx))m = 0
for all x, y ∈ I , where I is a nonzero ideal of R and m ≥ 1, n ≥ 1 are fixed integers, then R
must be commutative. Further, Huang [21] proved the following:

Let R be a prime ring with a derivation d, I a nonzero ideal of R and m,n fixed positive
integers. (i) If (d[x, y])m = [x, y]n for all x, y ∈ I , then R is commutative. (ii) If char (R) ̸= 2
and [d(x), d(y)]m = [x, y]n for all x, y ∈ I , then R is commutative.

Note that in the second result, it is assumed that char (R) ̸= 2. In the present paper, our aim
is to study the same situation of Huang [21] with left annihilator condition in a prime ring. In
our result, the characteristic assumption is omitted. We prove that if R is a prime rings with a
derivation d, I a nonzero ideal of R and 0 ̸= a ∈ R such that (i) a((d[x, y])m − [x, y]n) = 0 for
all x, y ∈ I , or (ii) a([d(x), d(y)]m − [x, y]n) = 0 for all x, y ∈ I , where m,n are fixed positive
integers, then R must be commutative. Moreover, we also study the situations in semiprime rings.

It is well known that any derivation of R can be uniquely extended to a derivation of Q, and
so any derivation of R can be defined on the whole of Q. Moreover Q is a prime ring as well as
R and the extended centroid C of R coincides with the center of Q. We refer to [8, 26] for more
details.

Denote by Q ∗C C{X,Y } the free product of the C-algebra Q and C{X,Y }, the free C-
algebra in noncommuting indeterminates X,Y .

We mention a very important result which will be used quite frequently as follows:

Theorem 1.1. [23, Kharchenko] Let R be a prime ring, d a nonzero derivation on R and I a
nonzero ideal of R. If I satisfies the differential identity

f(r1, r2, . . . , rn, d(r1), d(r2), . . . , d(rn)) = 0

for any r1, r2, . . . , rn ∈ I then any one of following holds:
(i) I satisfies the generalized polynomial identity f(r1, r2, . . . , rn, x1, x2, . . . , xn) = 0;
(ii) d is Q-inner i.e., for some q ∈ Q, d(x) = [q, x] and I satisfies the generalized polynomial
identity f(r1, r2, . . . , rn, [q, r1], [q, r2], . . . , [q, rn]) = 0.

2 Main Results

Theorem 2.1. Let R be a prime ring, I a nonzero ideal of R and 0 ̸= a ∈ R. Suppose that d is a
derivation of R and n ≥ 1,m ≥ 1 fixed integers such that a

(
[d(x), d(y)]m − [x, y]n

)
= 0 for all

x, y ∈ I . Then R is commutative.

Proof. If R is commutative, then we have our conclusion. So we assume that R is noncom-
mutative and then we show a number of contradictions. If d = 0, then our hypothesis reduces
to

a[x, y]n = 0 (2.1)

for all x, y ∈ I . By [11, Theorem 2], this generalized polynomial identity (GPI) is also satisfied
by Q and hence by R. Let w = [x, y]n. Then aw = 0. From (2.1) we can write a[p, wqa]n = 0 for
all p, q ∈ R. Since aw = 0, it reduces to a(pwqa)n = 0. This can be written as (wqap)n+1 = 0
for all p, q ∈ R. By Levitzki’s lemma [20, Lemma 1.1], wqa = 0 for all q ∈ R. Since R is prime,
either a = 0 or w = 0. Since a ̸= 0, w = [x, y]n = 0 for all x, y ∈ R. This is a polynomial
identity. By [24, lemma 1], there exists a field F such that R ⊆ Mm(F ) with m > 1 and R
and Mm(F ) satisfy the identity [x, y]n = 0. But by choosing x = e12 and y = e21, we get
[x, y]n = e11 + (−1)ne22, which is a contradiction.

Now we assume d ̸= 0. Now we divide the proof in two parts:
Case-1: If d is not Q-inner, then by Kharchenko’s Theorem [23] we have from the assumption

that

a
(
[u, v]m − [x, y]n

)
= 0 (2.2)
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for all x, y, u, v ∈ R. In particular, for u = 0, we have

a[x, y]n = 0

for all x, y ∈ R. Then by same argument as before, we get a = 0, a contradiction.
Case-2: We assume the case when d is Q-inner derivation, for some b ∈ Q let d(x) = [b, x]

for all x ∈ R. Since d ̸= 0, b /∈ C. Set f(x, y) = a
(
[[b, x], [b, y]]m − [x, y]n

)
= 0. Then

f(x, y) is a nontrivial generalized polynomial identity (GPI) for R. By Chuang [11, Theorem
2], f(x, y) is also a GPI for Q. Denote by F either the algebraic closure of C or C according as
C is either infinite or finite, respectively. Then, by a standard argument (see for instance, [25,
Proposition], f(x, y) is also a GPI for Q⊗CF . Since Q⊗CF is centrally closed prime F -algebra
[18, Theorem 2.5 and 3.5], by replacing R, C with Q⊗C F and F , respectively, we may assume
R is centrally closed and C is either finite or algebraically closed. By Martindale’s Theorem [27],
R is then a primitive ring having nonzero socle H with C as the associated division ring. Hence
by Jacobson’s Theorem [22, p.75] R is isomorphic to a dense ring of linear transformations of
some vector space V over C, and H consists of the linear transformations in R of finite rank. If
V is finite dimensional over C then the density of R on V implies that R ∼= Mk(C), where k =
dimCV .

Since R is noncommutative, dimCV ≥ 2.

We show that for any v ∈ V , v and bv are linearly C-dependent. Suppose that v and bv are
linearly independent for some v ∈ V . By density there exist x, y ∈ R such that

xv = bv, xbv = b2v,

yv = 0, ybv = −v.

Then [[b, x], [b, y]]mv = 0 and [x, y]nv = v. Hence

0 = a
(
[[b, x], [b, y]]m − [x, y]n

)
v = av.

This implies that if av ̸= 0, then v and bv are linearly C-dependent. Now suppose that av = 0.
Since a ̸= 0, there exists w ∈ V such that aw ̸= 0 and then a(v+w) = aw ̸= 0. By the previous
argument we have that w, bw are linearly C-dependent and (v+w), b(v+w) are also. Thus there
exist α, β ∈ C such that bw = wα and b(v + w) = (v + w)β. Moreover, v and w are clearly
C-independent and so by density there exist x, y ∈ R such that

xw = 0, xv = v + w,

yw = v + w, yv = v.

Then [x, y]w = v + w, [x, y]2w = w, [[b, x], [b, y]]w = 0, [[b, x], [b, y]]v = 0 and hence by using
av = 0, we get

0 = a
(
[[b, x], [b, y]]m − [x, y]n

)
w = −aw,

a contradiction. Hence for each v ∈ V , bv = vαv for some αv ∈ C. It is very easy to prove that
αv is independent of the choice of v ∈ V . Thus we can write bv = vα for all v ∈ V and α ∈ C
fixed.

Now let r ∈ R, v ∈ V . Since bv = vα,

[b, r]v = (br)v − (rb)v = b(rv)− r(bv) = (rv)α− r(vα) = 0.

Thus [b, r]v = 0 for all v ∈ V i.e., [b, r]V = 0. Since [b, r] acts faithfully as a linear
transformation on the vector space V , [b, r] = 0 for all r ∈ R. Therefore, b ∈ Z(R) implies
d = 0, a contradiction.

Theorem 2.2. Let R be a prime ring and I a nonzero ideal of R. Suppose that d is a derivation
of R and 0 ̸= a ∈ R such that a

(
(d([x, y]))m − [x, y]n

)
= 0 for all x, y ∈ I , n ≥ 1,m ≥ 1 fixed

integers, then R is commutative.
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Proof. We assume that R is noncommutative and then we show a number of contradictions. If
n = 1, then by [14, Corollary 2.5], R must be commutative, a contradiction. Hence assume
n ≥ 2.

First, we consider d = 0, then by our hypothesis we have for all x, y ∈ I ,

a[x, y]n = 0. (2.3)

By [11, Theorem 2], this GPI is also satisfied by Q and hence by R. Let v = [x, y]n. Then
av = 0. From (2.3) we can write a[t, v]n = 0 for all t ∈ R. Since av = 0, it reduces to
atvn = 0 for all t ∈ R. Since R is prime and a ̸= 0, we get vn = ([x, y]n)n = 0 for all
x, y ∈ R. This is a polynomial identity and hence there exists a field F such that R ⊆ Mm(F )
with m > 1 and R and Mm(F ) satisfy the same polynomial identity [24, lemma 1]. But by
choosing x = e12 + e21 and y = e11, we get [x, y]n = e21 + (−1)ne12 and hence 0 = ([x, y]n)n

= e11 + e22 or = ±(e21 − e12), which is a contradiction.
Next, we assume d ̸= 0. In light of Kharchenko’s Theorem [23], we divide the proof into two

parts:
Case-1: Let d be Q-outer. Since I satisfies a

(
(d([x, y]))m−[x, y]n

)
= 0, that is a

(
([d(x), y]+

[x, d(y)])m − [x, y]n
)

= 0, by Kharchenko’s Theorem [23], I satisfies a
(
([s, y] + [x, t])m −

[x, y]n
)
= 0. In particular, for s = t = 0, I satisfies the blended component

a[x, y]n = 0. (2.4)

By same argument as before, it yields a contradiction.
Case-2: Next, we assume the case when d is Q-inner derivation, for some b ∈ Q let

d(x) = [b, x] for all x ∈ R. Since d ̸= 0, b /∈ C. Set f(x, y) = a
(
[b, [x, y]]m − [x, y]n

)
.

Then f(x, y) is a nontrivial generalized polynomial identity (GPI) for R. By Chuang [11, Theo-
rem 2], f(x, y) is also a GPI for Q. Denote by F either the algebraic closure of C or C according
as C is either infinite or finite, respectively. Then, by a standard argument (see for instance,
[25, Proposition]), f(x, y) is also a GPI for Q ⊗C F . Since Q ⊗C F is centrally closed prime
F -algebra [18, Theorem 2.5 and 3.5], by replacing R, C with Q ⊗C F and F , respectively, we
may assume R is centrally closed and C is either finite or algebraically closed. By Martindale’s
Theorem [27], R is then a primitive ring having nonzero socle H with C as the associated divi-
sion ring. Hence by Jacobson’s Theorem [22, p.75], R is isomorphic to a dense ring of linear
transformations of some vector space V over C, and H consists of the linear transformations
in R of finite rank. If V is finite dimensional over C then the density of R on V implies that
R ∼= Mk(C) where k = dimCV .

Since R is noncommutative, dimCV ≥ 2.

We show that for any v ∈ V , v and bv are linearly C-dependent. Suppose that v and bv are
linearly independent for some v ∈ V . By density there exist x, y ∈ R such that

xv = 0, xbv = v,

yv = v, ybv = 0.

Then ([b, [x, y]])mv = v and [x, y]nv = 0. Hence

0 = a
(
[b, [x, y]]m − [x, y]n

)
v = av.

This implies that if av ̸= 0, then v and bv are linearly C-dependent. Now suppose that av = 0.
Since a ̸= 0, there exists w ∈ V such that aw ̸= 0 and then a(v+w) = aw ̸= 0. By the previous
argument we have that w, bw are linearly C-dependent and (v+w), b(v+w) are also. Thus there
exist α, β ∈ C such that bw = wα and b(v + w) = (v + w)β. Moreover, v and w are clearly
C-independent and so by density there exist x, y ∈ R such that

xw = 0, xv = v + w,

yw = v + w, yv = v.
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Then [x, y]w = v+w, [x, y]2w = −2v, [x, y]3w = 0, [b, [x, y]]w = (v+w)(β−α), [b, [x, y]]v =
−(v + 2w)(β − α) and [b, [x, y]]2w = −w(β − α)2.

Hence for n ≥ 2, 0 = a
(
[b, [x, y]]m − [x, y]n

)
w = ±aw(β − α)m. Since aw ̸= 0, α = β

and so bv = vα contradicting the independent of v and bv. Hence for each v ∈ V , bv = vαv for
some αv ∈ C. It is very easy to prove that αv is independent of the choice of v ∈ V . Thus we
can write bv = vα for all v ∈ V and α ∈ C fixed.

Now let r ∈ R, v ∈ V . Since bv = vα,

[b, r]v = (br)v − (rb)v = b(rv)− r(bv) = (rv)α− r(vα) = 0.

Thus [b, r]v = 0 for all v ∈ V i.e., [b, r]V = 0. Since [b, r] acts faithfully as a linear
transformation on the vector space V , [b, r] = 0 for all r ∈ R. Therefore b ∈ Z(R) implies
d = 0, which is a contradiction.

Our next theorem is on semiprime rings. Let R be a semiprime ring and U be its left Utumi
quotient ring. Then C = Z(U) is the extended centroid of R ([10, p-38]). Let M(C) be the set
of all maximal ideals of C.

Theorem 2.3. Let R be a noncommutative semiprime ring, U the left Utumi quotient ring of R,
C = Z(U) the extended centroid of R, d a derivation on R and 0 ̸= a ∈ R. If any one of the
following holds:

(i) a
(
[d(x), d(y)]m − [x, y]n

)
= 0 for all x, y ∈ R,

(ii) a
(
(d([x, y]))m − [x, y]n

)
= 0 for all x, y ∈ R, where n ≥ 1,m ≥ 1 fixed integers, then

there exists central idempotent e ∈ U such that eU is commutative and (1 − e)a = 0.

Proof. First we consider the case a
(
[d(x), d(y)]m − [x, y]n

)
= 0 for all x, y ∈ R. Other case is

similar. We known the fact that any derivation of a semiprime ring R can be uniquely extended
to a derivation of its left Utumi quotient ring U and so any derivation of R can be defined on the
whole of U [26, Lemma 2]. Moreover R and U satisfy the same GPIs as well as same differential
identities. Thus

a
(
[d(x), d(y)]m − [x, y]n

)
= 0

for all x, y ∈ U . Let M(C) be the set of all maximal ideals of C and P ∈ M(C). Now by
the standard theory of orthogonal completions for semiprime rings (see [26, p.31-32]), we have
PU is a prime ideal of U invariant under all derivations of U . Moreover,

⋂
{PU | P ∈ M(C)

} = 0. Set U = U/PU. Then derivation d canonically induces a derivation d on U defined by
d(x) = d(x) for all x ∈ U . Therefore,

a
(
[d(x), d(y)]m − [x, y]n

)
= 0

for all x, y ∈ U . By the prime ring case of Theorem 2.1, we have either [U,U ] = 0 or a = 0.
In any case we have a[U,U ] ⊆ PU for all P ∈ M(C). Since

⋂
{PU | P ∈ M(C)} = 0,

a[U,U ] = 0. By using the theory of orthogonal completion for semiprime rings (see [8, Chapter
3]), there exists central idempotent e ∈ U such that eU is commutative and (1 − e)a = 0. Hence
the theorem is proved.
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