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Abstract In this paper, we investigate a new and natural topology on the homogeneous prime
spectrum of a graded commutative ring called the flat topology, which is a generalization of
the classical flat topology on the prime spectrum. We extend some well-known results in the
classical case and we discuss fundamental property, emphasizing how it relates to the algebraic
structure of commutative graded rings. Our goal is to provide an algebraic characterization of
topological properties relative to this new topology.

1 Introduction

Assume that G is an abelian group with identity e. A G-graded commutative ring R is a com-
mutative ring expressed as the direct sum of additive subgroups Rg indexed by elements g ∈ G,
and RgRg′ ⊆ Rgg′ for all g, g′ ∈ G. The elements of Rg are homogeneous elements of R of
degree g. Such homogeneous elements can be represented as h(R) = ∪

g∈G
Rg. For any element

a ∈ R, a can be expressed uniquely as
∑

g∈G ag, where ag ∈ Rg is the g-component of a in Rg.
An ideal I of R is said to be a graded ideal of R if it satisfies the condition I = ⊕

g∈G
(I ∩Rg). In

particular, a graded ideal P of R is a graded prime ideal of R, if P ̸= R, and for any homoge-
neous elements r and s of R such that rs ∈ P , either r ∈ P or s ∈ P . The G-graded spectrum,
also known as the homogeneous prime spectrum of R, is simply the collection of all graded
prime ideals of R, and it is denoted by Spec∗(R). For more information, see [3], [10], [2], [6]
and [11]. For a commutative ring R and an ideal I of R, we recall that the variety of I is the
subset V (I) := {P ∈ Spec(R) /I ⊆ P}. From [8] and [13] the collection {V (I) /I is a finitely
generated ideal of R} forms a basis of opens of a topology on Spec(R), called the flat topology
on the prime spectrum. Note that for each finitely generated ideal I , the set Spec(R) − V (I) is
a closed subset for the same topology; it is denoted by D(I). In addition, M.Aqalmoun, in [4],
has constructed a new topology on the S-prime spectrum called the S-flat topology.
In the present paper, we define a new topology on the homogeneous prime spectrum of a G-
graded commutative ring R, and we study some topological proprieties like compactness, irre-
ducibility, and connectedness. For this, let I be a graded ideal of R; the G-variety of I is the sub-
set V ∗(I) := {P ∈ Spec∗(R) /I ⊆ P}. The collection {V ∗(I) /I is a finitely generated graded ideal of R}
forms the basis of the opens of a topology on Spec∗(R), called the flat topology on the homoge-
neous prime spectrum. Furthermore, the set Spec∗(R) − V ∗(I) is a closed subset for the same
topology, denoted by D∗(I).In what follows, R refers to a G-graded commutative ring.
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2 Compactness

We begin this section with some useful properties for graded ideals and finitely generated graded
ideals of a G-graded commutative ring.

Lemma 2.1. Let I be a graded ideal of R. The following statements are equivalent:

(i) I is generated by a finitely elements of R.

(ii) I is generated by a finitely homogeneous elements of R.

Proof. "(ii) =⇒ (i)" Immediate.
"(i) =⇒ (ii)" Assume that I = (a0, a1, ..., an) where a0, a1, ..., an are elements of R. For
any i, 0 ≤ i ≤ n there exists ai,g ∈ Rg such that ai =

∑
g∈G

ai,g, hence ai =
∑

g∈supp{ai}
ai,g

where supp{ai} = {g ∈ G/ai,g ̸= 0} is a finite subset of G. As a result, for all x ∈ h(R),
xai =

∑
g∈supp{ai}

xai,g. Consequently I = (a0,g, a1,g, ..., an,g)g∈
n
∪
i=0

supp{ai}
.

Lemma 2.2. Let (Ii)1≤i≤n be a finite family of graded ideals of R and P be a graded prime ideal
of R. If I1I2...In ⊆ P , then there exists i, 1 ≤ i ≤ n such that Ii ⊆ P .

Proof. Suppose the contrary. For all 1 ≤ i ≤ n, Ii ̸⊆ P , that is there exists xi ∈ Ii ∩ h(R)

such that xi ̸∈ P for all i. Hence x =
n∏

i=0
xi is not in P . Which is a contradiction, since

I1I2...In ⊆ P .

Let I be a graded ideal of R. The graded radical of I denoted by Grad(I) is defined as follow:

Grad(I) = {x =
∑
g∈G

xg ∈ R / for all g ∈ G: xg ∈
√
I}.

Lemma 2.3. Let I be a graded ideal of R. Then

Grad(I) = ∩
P∈V ∗(I)

P.

Proof. See for instance [3, Lemma 3.10].

In what follows an open (respectively closed ) subset of Spec∗(R) with respect to the flat
topology is said flat open (respectively flat closed).

Remark 2.4. Let I be a graded ideal of R. If Grad(I) = Grad(J) for some finitely generated
graded ideal J . Then V ∗(I) is a flat open.

Proof. Assume that Grad(I) = Grad(J), then D∗(I) = D∗(J) which is equivalent to V ∗(I) =
V ∗(J). That is V ∗(I) is a flat open.

Remark 2.5. Let I be a graded ideal of a G-graded ring R. If x is an homogeneous element of
R, then x ∈ Grad(I) if and only if x ∈

√
I .

Lemma 2.6. Let I and J be graded ideals of R. We have

Grad(Grad(I)Grad(J)) = Grad(IJ).

Proof. First we start by showing that
√

Grad(I)Grad(J) ∩ h(R) =
√√

I
√
J ∩ h(R). Let x be

a homogeneous element of R. If x ∈
√√

I
√
J =

√√
I ∩

√
J , then there exists n ∈ N∗ such

that xn ∈
√
I ∩

√
J . Hence xn ∈ Grad(I) ∩ Grad(J). Therefore x2n ∈ Grad(I)Grad(J), that is

x ∈
√

Grad(I)Grad(J).
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The reciprocal inclusion is immediate, since Grad(I) ⊆
√
I . As result

Grad(Grad(I)Grad(J)) =

x =
∑
g∈G

xg ∈ R

∣∣∣∣∣ for all g ∈ G

xg ∈
√

Grad(I)Grad(J)


= {x =

∑
g∈G

xg/ for all g ∈ G : xg ∈
√√

I
√
J}

= {x =
∑
g∈G

xg/ for all g ∈ G : xg ∈
√
IJ}

= Grad(IJ).

Remark 2.7. For any finitely generated graded ideals I and J of R. IJ and I + J are finitely
generated graded ideals of R.(Also generalizes to a finite number of ideals.)

Proposition 2.8. Let S be a collection of finitely generated graded ideals of R. Consider

S′ = {
∏

J∈S1

J/S1 is a finite subset of S}

As result, we have ∪
J∈S

V ∗(J) = ∪
J∈S′

V ∗(J).

Proof. If Q =
∏

J∈S1

J,Q′ =
∏

J∈S′
1

J ∈ S′, then QQ′ =
∏

J∈S0

J ∈ S′ since S0 ⊆ S1 ∪ S′
1 is a finite

subset of S.
Clearly ∪

J∈S
V ∗(J) ⊆ ∪

J∈S′
V ∗(J), since S ⊆ S′. For the inverse, let Q ∈ S′, there exits

J1, J2, ...; Jn a finitely generated graded ideals of R such that Q =
∏n

i=1 Ji, hence V ∗(Q) =

V ∗(
∏n

i=1 Ji) =
n
∪
i=1

V ∗(Ji) ⊆ ∪
J∈S

V ∗(J). That is ∪
J∈S′

V ∗(J) ⊆ ∪
J∈S

V ∗(J).

Now, we are able to establish the mean result of this section.

Theorem 2.9. Let I be a graded ideal of R. Then V ∗(I) is quasi-compact subset of Spec∗(R)
with respect to the flat topology.

Proof. Let ∪
J∈S

V ∗(J) be a flat open cover of V ∗(I) where S is a collection of finitely generated

graded ideals, that is V ∗(I) ⊆ ∪
J∈S

V ∗(J). By using the same notation in the proposition 2.8 we

get V ∗(I) ⊆ ∪
J∈S′

V ∗(J).

Now, we show that there exists a homogeneous ideal J ∈ S′ such that V ∗(I) ⊆ V ∗(J).
Suppose the contrary. Consider Γ the set of all graded ideals Q of R, such that for all J ∈ S′:
Grad(J) ̸⊆ Grad(Q). Γ ̸= ∅, since I ∈ Γ. By applying Zorn’s lemma we will prove that Γ

admits a maximal element which will be a graded prime ideal of R. To do this, let (Qn) be an
ascending chain of elements of Γ and Q = ∪

n
Qn. If Q ̸∈ Γ, then there exists J = (J1, J2, ..., Jm)

where J1, J2, ..., Jm ∈ h(R) such that Grad(J) ⊆ Grad(Q), that is for all i, 1 ≤ i ≤ m there
exits ni ∈ N∗: Jni

i ∈ Q. Since (Qn) is an ascending chain, then there exits N ∈ N such that
Jni
i ∈ QN . Hence Ji ∈ Grad(QN ). Which is a contradiction with QN ∈ Γ. As consequence

Q ∈ Γ. By using Zorn’s lemma Γ has a maximal element, say P .
Thus P is a graded prime ideal of R. If not, there exits r1 and r2 some homogeneous elements
of R, such that r1r2 ∈ P and r1, r2 ̸∈ P . Consider Qr1 = P + (r1) and Qr2 = P + (r2).
Clearly Qr1 , Qr2 ̸⊆ P . Since P is the maximal element in Γ, then there exist Jr1 , Jr2 ∈ S′ such
that Grad(Jr1) ⊆ Grad(Qr1) and Grad(Jr2) ⊆ Grad(Qr2). Consequently Grad(Jr1)Grad(Jr2) ⊆
Grad(Qr1)Grad(Qr2). Further Grad(Grad(Jr1)Grad(Jr2)) ⊆ Grad(Grad(Qr1)Grad(Qr2)), this
leads to
Grad(Jr1Jr2) ⊆ Grad(Qr1Qr2). However Qr1Qr2 = P . That is Grad(J) ⊆ Grad(P ) where
J = Jr1Jr2 . Therefore P ̸∈ Γ. Which is a contradiction.
As result P is a graded prime ideal of R and for any finitely genrated graded ideal J of R we
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have Grad(J) ̸⊆ Grad(P ), which implies that P ̸∈ V ∗(J). Hence P ̸∈ ∪
J∈S′

V ∗(J) which is a

contradiction with P ∈ V ∗(I). As a consequence V ∗(I) ⊆ V ∗(
∏n

i=1 Ji) =
n
∪
i=1

V ∗(Ji). That is

V ∗(I) is a quasi-compact subset of Spec∗(R) with respect to the flat topology.

Corollary 2.10. (i) The quasi-compact open sets of Spec∗(R) with respect to the flat topology
are V ∗(I) where I is a finitely generated graded ideal of R.

(ii) Spec∗(R) is quasi-compact with respect to the flat topology.

(iii) Let I be a graded ideal of R. Then V ∗(I) is a flat open if and only if Grad(I) = Grad(J)
for some finitely generated graded ideal J .

Proof. (i) Clearly V ∗(I) is a flat open since I is a finitely generated graded ideal. In addition,
from the previous theorem V ∗(I) is quasi-compact with respect to the flat topology.
Conversely, let Θ be a quasi-compact open subset of Spec∗(R) with respect to the flat
topology. Then Θ = ∪

J∈S
V ∗(J) where S is a collection of finitely generated graded ideals of

R. For another hand Θ is quasi-compact, that is Θ =
n
∪
i=1

V ∗(Ji) = V ∗(
∏n

i=1 Ji). Therefore

Θ = V ∗(J) where J =
∏n

i=1 Ji is a finitely generated graded ideal.

(ii) Since (0) is a graded ideal of R. Then Spec∗(R) = V ∗((0)) is quasi-compact with respect
to the flat topology.

(iii) ⇐=: See remark 1.
=⇒: If V ∗(I) is a flat open. Then V ∗(I) = ∪

J∈S
V ∗(J) where S is a collection of finitely

generated graded ideals of R. By using the quasi-compactness of V ∗(I) we get V ∗(I) =
n
∪
i=1

V ∗(Ji). For another hand
n
∪
i=1

V ∗(Ji) = V ∗(
n∏

i=1
Ji), that is V ∗(I) = V ∗(J) where J =

n∏
i=1

Ji is a finite generated graded ideal of R. As result Grad(I) = Grad(J) for some finitely

generated graded ideal J .

Now, we discuss when V ∗(r)’s where r is a homogeneous element of R forms a basis of the
flat topology.

Theorem 2.11. The collection of V ∗(r) Where r runs through all homogeneous elements of R
form a basis of the flat topology if and only if for any finitely generated graded ideal Ithere exists
r ∈ h(R) such that Grad(I) = Grad(r).

Proof. ⇐=: Immediate.
=⇒: Assume that the collection of V ∗(r) where r ∈ h(R) forms a basis of the flat topology.
Let I be a finitely generated graded ideal of R. Since V ∗(I) is a flat open, then there exits a
collection S of the homogeneous element of R such that V ∗(I) = ∪

r∈S
V ∗(r). For another hand

V ∗(I) is quasi-compact with respect to the flat topology. Hence V ∗(I) =
n
∪
i=1

V ∗(ri), that is

V ∗(I) = V ∗(r) where r =
n∏

i=1
ri is a homogeneous element of R.

3 Irreducibility

We start this section by determining the closure of any point P of Spec∗(R). For this, consider
the following set

Λ∗(P ) = {Q ∈ Spec∗(R)/Q ⊆ P}

Proposition 3.1. Let P be a graded prime ideal of R. Then the closure of P is Λ∗(P ) with
respect to the flat topology.
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Proof. Let Q be an element of the closure of P . Clearly P ∈ V ∗(Q), since V ∗(Q) is a neigh-
borhood of Q. That is Q ⊆ P . Thus Q ∈ Λ∗(P ).
Conversely, let Q ∈ Λ∗(P ), we get Q ⊆ P . Consider V ∗(I) a basis of opens of Spec∗(R) con-
taining Q. Then I ⊆ Q ⊆ P . Therefore P ∈ V ∗(I). Thus any neighborhood of Q contains P .
As a result Λ∗(P ) is the closure of P with respect to the flat topology.

The following result provides that the set of flat closed points of the homogeneous prime spec-
trum of R and the set of all minimal graded prime ideals of R, known as min∗(R), are the same.

Corollary 3.2. Let P be a graded prime ideal of R. Then P is a flat closed point of Spec∗(R) if
and only if P is a minimal graded prime ideal of R.

Proof. Assume that P is a flat closed point. That is Λ∗(P ) = {P}. Let I be a graded ideal of R.
If I ⊆ P , then I ∈ Λ∗(P ) = {P} as consequence I = P .
Conversely, suppose that P is a minimal graded ideal of R. Let I be an element of Λ∗(P ), I ⊆ P .
This implies I = P . Therefore Λ∗(P ) = {P}.

Now, we will show that every irreducible closed subset of Spec∗(R) with respect to the flat
topology has a unique generic point. That is Spec∗(R) is a sober space with respect to the flat
topology. The following result proves the existence.

Theorem 3.3. Every irreducible closed subset of Spec∗(R) with respect to the flat topology has
a generic point.

Proof. Let K be an irreducible closed subset of Spec∗(R) with respect to the flat topology.
Consider W = {r ∈ h(R)/K ∩ V ∗(r) ̸= ∅}. We will show that there exists a point P of
K ∩ ( ∩

r∈W
V ∗(r)) in order to obtain K = Λ∗(P ).

First we start by showing that the intersection of sets V ∗(r) for all r in the set W is not an empty
set ( ∩

r∈W
V ∗(r) ̸= ∅). Suppose the contrary, it implies that the homogeneous spectrum Spec∗(R)

is equal to ∪
r∈W

D∗(r). We can further conclude that Spec∗(R) can be represented as
n
∪
i=1

D∗(ri),

where n is a finite strictly positive integer. Consequently, the intersection
n
∩
i=1

V ∗(ri) must also

yield an empty set. Therefore
n
∩
i=1

(K∩V ∗(ri)) = K∩(
n
∩
i=1

V ∗(ri)) = ∅. However, this conclusion

leads to a contradiction with the irreducibility of K. As result ∩
r∈W

V ∗(r) ̸= ∅.

Now we show that K ∩ ( ∩
r∈W

V ∗(r)) ̸= ∅. For this, we will proceed by absurdity. If K ∩
( ∩
r∈W

V ∗(r)) = ∅, then ∩
r∈W

V ∗(r) ⊆ Spec∗(R) − K is flat open, since K is flat closed. That

is Spec∗(R) − K = ∪
J∈S

V ∗(J) where S is a collection of finitely generated graded ideals of

R. Let I be the graded ideal of R generated by the elements of W . We get the set V ∗(I)
is contained in the union ∪

J∈S
V ∗(J), then it implies that V ∗(I) is also contained in the union

m
∪
i=1

V ∗(Ji). This follows from the flat quasi-compact nature of V ∗(I) with respect to the flat

topology. Next, we can conclude that V ∗(I) is contained in V ∗(J ′), where J ′ is the product
m∏
i=1

Ji. Consequently, the complement D∗(J ′) is a subset of D∗(I) = ∪
r∈W

D∗(r), this implies

that D∗(J ′) is contained in the union
l
∪
i=1

D∗(ri), where ri ∈ W . This inclusion is from the quasi-

compact nature of D∗(J ′) with respect to the Zariski topology. Subsequently, we can establish

that K is contained in the union
l
∪
i=1

D∗(ri) since K is a subset of D∗(J ′). This leads us to the

observation that the intersection of K with the intersection
l
∩
i=1

V ∗(ri) results in an empty set, that

is K ∩ (
l
∩
i=1

V ∗(ri)) = ∅. However, this conclusion contradicts the fact that K is irreducible.

As consequence K ∩ ( ∩
r∈W

V ∗(r)) ̸= ∅. Hence K = Λ∗(P ), where P ∈ K ∩ ( ∩
r∈W

V ∗(r)).

Lemma 3.4. Let P,Q ∈ Spec∗(R). Then Λ∗(P ) = Λ∗(Q) if and only if P = Q.
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Proof. First, Λ∗(P ) = Λ∗(Q) implies that P is an element of Λ∗(Q). In turn, this implies that P
is a subset of Q. As a result P = Q.

Remark 3.5. Every irreducible closed subset of Spec∗(R) with respect to the flat topology has a
unique generic point, that is Spec∗(R) is a sober space with respect to the flat topology.

Proposition 3.6. The map ϕ that for each P associates Λ∗(P ) is a bijection between Spec∗(R)
and the set of irreducible closed subsets of Spec∗(R) with respect to the flat topology.

Proof. Let P and Q be a graded prime ideals of R. Now we show that ϕ is an injective map.
Assume that ϕ(P ) = ϕ(Q), that is Λ∗(P ) = Λ∗(Q). This equality further implies that the sets P
and Q are equal. Thus ϕ is injective. On the other hand, by using the previous theorem, for any
irreducible closed subset K of Spec∗(R) there exits P ∈ Spec∗(R) such that K = Λ∗(P ), hence
ϕ(P ) = K. Consequently, ϕ is a bijection.

Corollary 3.7. There exists a correspondence between the set of maximal graded ideals of R
noted Max∗(R), and the set of irreducible components of Spec∗(R) with respect the flat topology,
via the following map:

φ : P 7→ Λ∗(P ).

Proof. φ is well defined and it is injective.
Let X be an irreducible component. Then X is a closed irreducible subset of Spec∗(R) with
respect to the flat topology. From the previous proposition, there exits P ∈ Spec∗(R) such
that X = Λ∗(P ). Let I be a graded ideal of R such that P ⊆ I ⊊ R. Suppose that I ̸= P ,
then I ̸∈ Λ∗(P ), thus I ̸∈ X which contradicts the fact that X is an irreducible component of
Spec∗(R) with respect the flat topology. As result P ∈ Max∗(R).

Definition 3.8. A topological space X is a spectral space if:

(i) X is quasi-compact,

(ii) X has a basis of sets which are quasi-compact and open,

(iii) The quasi-compact open sets of X are closed under finite intersections,

(iv) X is sober.

Proposition 3.9. Spec∗(R) is a spectral space with respect the flat topology.

Proof. Let S be a set of V ∗(I) where I is a finitely generated graded ideal of R. It follows
from the Corollary 2.10 that Spec∗(R) is quasi-compact with respect to the flat topology, and the
quasi-compact open sets of Spec∗(R) are V ∗(I) where I is a finitely generated graded ideal of
R. Then S is a basis of sets of Spec∗(R) of flat topology which are quasi-compact and open with
respect to the flat topology. In addition, S is closed under finite intersections. To prove this, let

J1, J2, ..., Jn be finitely generated graded ideals of Spec∗(R), then
n
∩
i=1

V ∗(Ji) = V ∗(
n∑

i=1
Ji). That

is
n
∩
i=1

V ∗(Ji) = V ∗(J) where J =
n∑

i=1
Ji is a finitely generated graded ideal of R. As a result

Spec∗(R) is a spectral space with respect to the flat topology, since from remark 4 Spec∗(R) is
a sober space with respect to the flat topology.

4 Connectivity

In this section, we start by expressing the general form of Zariski clopen sets. Next, we conclude
the correspondence between the set of flat clopen sets and the set of idempotent homogeneous
elements. Finally, we establish the relation between the connection of the homogeneous prime
spectrum of R while respecting the flat topology or the Zariski topology and the set of idempotent
homogeneous elements.

Lemma 4.1. Let x, y ∈ h(R). If R = (x, y), then R = (xm, ym) for all m ∈ N∗.
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Proof. Suppose the contrary. Then there exists a graded prime ideal P of R such that xm and
ym are in P , hence x, y ∈ P . Therefore (x, y) ⊆ P . (Contradiction)

An open and closed subset of Spec∗(R) with respect to the flat (respectively Zariski) topology
is said flat (respectively Zariski) clopen.

Proposition 4.2. The Zariski clopens subset of Spec∗(R) are D∗(a), where a is an idempotent
homogeneous element of R.

Proof. Let a be an idempotent homogeneous element. Then a2 = a, that is a(a− 1) = a2 − a =
0 ∈ P , for all P ∈ V ∗(a). If a − 1 ∈ P , then 1 = (a − 1) + a ∈ P (contradiction). Hence
P ∈ D∗(a−1). Conversely, let P ∈ D∗(a−1). Then a−1 ̸∈ P and a(a−1) = a2 −a = 0 ∈ P .
Thus a ∈ P , that is P ∈ V ∗(a). As result V ∗(a) = D∗(a− 1).
Let Θ be a Zariski clopen subset of Spec∗(R), there exits an ideals I and J of R such that
Θ = D∗(I) and Θ′ = Spec∗(R) − Θ = D∗(J). Then D∗(I) ∪ D∗(J) = Spec∗(R) and
D∗(I) ∩ D∗(J) = ∅, that is D∗(I) ∪ D∗(J) = Spec∗(R) and V ∗(I) ∪ V ∗(J) = Spec∗(R).
Therefore I + J = R and IJ ⊆ Grad((0)). Then there exists an homogeneous elements x ∈ I
and y ∈ J such that 1 = x+ y and (xy)N = 0 for some n ∈ N∗. As consequence, R = (x, y).
By using the previous lemma R = (xN , yN ), hence there exits α, β ∈ h(R), 1 = αxN + βyN .
For a = αxN we have a(1 − a) = αxNβyN = αβ(xy)N = 0. That is a2 = a ∈ IN ⊆ I and
1 − a = βyN ∈ JN ⊆ J . Then a ∈ I and we get D∗(a) ⊆ D∗(I).
Now we show that D∗(I) ⊆ D∗(a). Let P ∈ Spec∗(R) such that a ∈ P . Suppose that I ̸⊆ P ,
then IJ ⊆ Grad((0)) ⊆ P . Thus I ⊆ P or J ⊆ P . If J ⊆ P , then 1 − a ∈ J ⊆ P . Hence 1 ∈ P
since a ∈ P .(contradiction)
As result I ⊆ P and D∗(I) ⊆ D∗(a). Thus Θ = D∗(a) where a is an idempotent homogeneous
element of R.

Theorem 4.3. Let Θ be a subset of Spec∗(R). Then Θ is Zariski clopen if and only if Θ is flat
clopen.

Proof. Assume that Θ is a Zariski clopen. Then there exits an idempotent homogeneous element
a, such that Θ = V ∗(a) = D∗(a − 1) who is a flat clopen. Conversely, let Θ be a flat clopen,
then Θ = ∪

J∈S
V ∗(J) and Θ′ = Spec∗(R)−Θ = ∪

J∈S′
V ∗(J), where S and S′ are a collections of

finitely generated graded ideals of R. Hence Spec∗(R) = ∪
J∈S∪S′

V ∗(J) = ∪
J∈S1∪S′

1

V ∗(J), where

S1 (respectively S′
1) is a finite subset of S (respectively S′), since Spec∗(R) is quasi-compact

with respect to the flat topology. As consequence Θ = Θ ∩ Spec∗(R) = Θ ∩ ( ∪
J∈S1∪S′

1

V ∗(J)) =

∪
J∈S1

V ∗(J). With the same argument Θ′ = ∪
J∈S′

1

V ∗(J). Thus Θ and Θ′ are Zariski closed.

Therefore Θ is a Zariski clopen subset of Spec∗(R).

Remark 4.4. The flat clopens subsets of Spec∗(R) are V ∗(a) where a is an idempotent homo-
geneous element of R.

Corollary 4.5. The map ϕ : a 7−→ V ∗(a) is a bijection between the set of idempotent homoge-
neous elements of R and the set of flat clopens subsets of Spec∗(R).

Proof. ϕ is surjective from the previous corollary. Let a and a′ be idempotent homogeneous
elements of R. If the sets V ∗(a) and V ∗(a′) are equal, it means that Grad(a) and Grad(a′)
must also be equal. This equality implies that both a and a′ can be expressed as multiples of
each other. Specifically, there exist an homogeneous elements α and β of R such that a = βa′

and a′ = αa. Using these expressions, we can observe a′a = βa′ = a and aa′ = αa = a′.
Consequently, it follows that a = a′.

A connected subset of Spec∗(R) with respect to the flat (respectively Zariski) topology is
said flat (respectively Zariski) connected.

Corollary 4.6. The following statements are equivalent:

(i) Spec∗(R) is flat connected.
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(ii) Spec∗(R) is Zariski connected.

(iii) R has no nontrivial idempotent homogeneous elements.

Proof. "(i) ⇐⇒ (ii)" Immediate.
"(i) ⇐⇒ (iii)" Spec∗(R) is flat connected if and only if the flat clopens of Spec∗(R) are ∅ and
Spec∗(R), if and only if the flat clopens are V ∗(1) and V ∗(0), if and only if the idempotent
homogeneous elements of R are 0 and 1, if and only if R has no nontrivial idempotent homoge-
neous element.
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