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Abstract The objective of this study is to investigate the F -structure that satisfies the equa-
tion F 3 + F 2 + F = 0. Our study focuses on the examination of the Para-Cauchy-Riemann
structure and its correlation with the F -structure. The issue of integrability, partial integrability,
and complete integrability is also addressed in relation to this particular structure. Additionally,
we furnish several examples of the F -structure.

1 Introduction

The study of the F -structure that satisfies the equation F 3+F = 0, where F represents a nonzero
tensor field of type (1, 1) on a differentiable manifold, was formulated by Yano [23, 24], Ishihara
and Yano [13], and Nakagawa [18]. In addition to the F -structure that satisfies F 3 − F = 0,
Singh and Vohra [19], Matsumoto [17], and Baik [3] have also examined this structure. These
concepts have been widely adopted by many authors in various guises, comprehensively cov-
ering many aspects related to the F -structure, including the integration conditions for the F -
structure, CR structures, parallelism of distributions and submanifolds of the F -structure F see
[7, 8, 9, 11, 14, 26]. Recent investigations have been conducted on the F -structure, as docu-
mented in the publications authored by [1, 5, 12, 15, 20, 21]. Studying structures on a differen-
tiable manifold is a significant research subject in differential geometry, attracting considerable
attention in contemporary times.

The primary goal of this work is to investigate the F -structure where F 3 + F 2 + F = 0.
Following the introduction, in section 2, we examine some fundamental features of operators
l and m defined by the F -structure. In Section 3, we show several properties of the Nijenhuis
tensor of F , l and m, while in Section 4, we explore the Para-Cauchy-Riemann structure and the
link between the F structures. In Section 5, we establish the necessary and sufficient conditions
for the integrability of distributions induced by operators l and m. In section 6, we study the
partial and complete integrability criteria of the F -structure, while in the final section, we present
several examples of the F -structure.

2 The F -structure satisfying F 3 + F 2 + F = 0

Let Mn be an n-dimensional manifold. A distribution D of dimension k on M is a subbundle of
TM such that, for all point x of M , Dx is a k-dimensional subspace of TxM . A vector field X on
M is said to belong (tangent) to D if Xx ∈ Dx for all x ∈ M . The set of vector fields belonging
to D is also denoted by D. D is said to be involutive if [X,Y ] belongs to D for every vector fields
X,Y belonging to D i.e. [X,Y ] ∈ D, for every vector fields X,Y ∈ D. A submanifold N of M
is called an integral manifold of D if TxN = Dx for any point x ∈ N . We say the distribution
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D is integrable if, through each point of M , there exists an integral manifold of D. We need
the classical theorem of Frobenius, which we formulate as follows ([4, p.197]). A distribution is
integrable if and only if it is involutive (see [16, 10] for more details).

Let Mn be an n-dimensional manifold and F be a nonzero (1, 1)-tensor field on M of rank
rank(F ) = r satisfying the polynomial equation:

F 3 + F 2 + F = 0, (2.1)

such a structure on M is called an F -structure of rank r and of degree 3. If the rank of F ,
rank(F ) = r = constant, then M is called an F -structure manifold of degree 3.

We define two operators l and m on M respectively by

l = F 3, (2.2)

m = I − F 3, (2.3)

where I denotes the identity operator on M [22], then we get

Lemma 2.1. Let M be an F -structure manifold, then we have

l+m = I, (2.4)

l2 = l, (2.5)

m2 = m, (2.6)

Fl = lF = F, (2.7)

Fm = mF = 0, (2.8)

lm = ml = 0. (2.9)

Proof. i) Combining (2.2) and (2.3) we get (2.4).

ii) l2 = (F 2 + F )2

= F 4 + 2F 3 + F 2

= F 3 + F 4 + F 3 + F 2

= l+ F (F 3 + F 2 + F )

= l.

iii) m2 = (I − l)2 = I − 2l+ l2 = I − 2l+ l = I − l = m.

iv) Fl = FF 3 = −F (F 2 + F ) = −F 3 − F 2 = F.

v) Fm = F (I − l) = F − Fl = 0.

vi) lm = l(I − l) = l − l2 = l − l = 0.

Lemma 2.2. Let M be an F -structure manifold, then we have

F 3/2l = lF 3/2 = F 3/2, (2.10)

F 3/2m = mF 3/2 = 0. (2.11)

Proof. In consequence of (2.7) and (2.8), we get (2.10) and (2.11).
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Proposition 2.3. Let M be an F -structure manifold, the following identities hold

Im lx = kermx, (2.12)

Immx = ker lx, (2.13)

Im lx = ImFx, (2.14)

ker lx = kerFx, (2.15)

TxM = Im lx ⊕ Immx, (2.16)

dim(Im lx) = r , dim(Immx) = n− r, (2.17)

ker lx = kerF 3/2
x , (2.18)

for all x ∈ M .

Proof. For all x ∈ M and X ∈ TxM ,
(i) If X ∈ Im lx, There is Z ∈ TxM, X = lZ, using (2.9), we have mX = mlZ = 0, then
X ∈ kermx.
Conversely, If X ∈ kermx, so mX = 0, using (2.4), we have lX = X , and from it X ∈ Im lx.
Therefore Im lx = kermx.
(ii) The formula (2.13) is obtained by a proof similar to that of the formula (2.12).
(iii) If X ∈ Im lx, There is Z ∈ TxM, X = lZ, using (2.2), we have X = F 3Z = FY , where
Y = F 2Z ∈ TxM , then X ∈ ImFx.
Conversely, If X ∈ ImFx, There is Z ∈ TxM, X = FZ, using (2.7), we have X = lFZ = lY ,
where Y = FZ ∈ TxM , then X ∈ Im lx.
(vi) The formula (2.15) is obtained by a proof similar to that of the formula (2.14).
(v) By applying the well-known rank theorem in linear algebra on TxM , we find
TxM = Im lx ⊕ ker lx, using (2.13), we get TxM = Im lx ⊕ Immx.
(vi) By (2.14) and (2.16), we find dim(Im lx) = dim(ImFx) = rank(F ) = r and
dim(Immx) = n− r.
(vii) The formula (2.18) is obtained by a proof similar to that of the formula (2.14).

Thus, the operators l and m acting in the tangent space at each point of M are, therefore,
complementary projection operators, and there exist two complementary distributions Dl = Im l
and Dm = Imm corresponding to the projection operators l and m respectively. From (2.17),
the dimensions of Dl and Dm are r and n− r respectively.

From (2.10), we find

(F 3/2)2l = (F 3/2)2 = F 3 = l,

it is clear that F 3/2 acts on Dl as an almost product structure and on Dm as a null operator.
Hence r must be even, i.e. r = 2k.

3 Nijenhuis tensor

The Nijenhuis tensor NF of F is expressed as follows

NF (X,Y ) = [FX,FY ]− F [FX, Y ]− F [X,FY ] + F 2[X,Y ], (3.1)

for any vector fields X and Y on M .
The integrability of F -structure is equivalent to the vanishing of the Nijenhuis tensor [10, 13,

25].
The Nijenhuis tensor NF satisfies the following relations:

NF (mX,mY ) = F 2[mX,mY ], (3.2)

lNF (mX,mY ) = F 2[mX,mY ], (3.3)

mNF (X,Y ) = m[FX,FY ], (3.4)

mNF (FX,FY ) = m[F 2X,F 2Y ], (3.5)

mNF (lX, lY ) = m[FX,FY ], (3.6)
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for any vector fields X and Y on M .

Proposition 3.1. Let M be an F -structure manifold, we have the following equivalences

mNF (X,Y ) = 0 ⇔ mNF (FX,FY ) = 0 ⇔ mNF (lX, lY ) = 0, (3.7)

for any vector fields X and Y on M .

Proof. The proof follows from (3.4), (3.5) and (3.6).

Proposition 3.2. Let M be an F -structure manifold, we have the following equivalence

NF (FX,FY ) = 0 ⇔ NF (lX, lY ) = 0, (3.8)

for any vector fields X and Y on M .

Proof. (i) Assume that NF (FX,FY ) = 0, we replace X,Y with F 2X , F 2Y , respectively, we
obtain NF (lX, lY ) = 0.
(ii) Conversely, assume that NF (lX, lY ) = 0, we replace X,Y with FX , FY , respectively, we
obtain NF (FX,FY ) = 0.

Proposition 3.3. Let M be an F -structure manifold. If F is integrable, then we have

(i) F 2[FX,FY ] + F [X,Y ] = l
(
[FX, Y ] + [X,FY ]

)
,

(ii) [FX,FY ] = l[FX,FY ],

(iii) m[FX,FY ] = 0,

for any vector fields X and Y on M .

Proof. (i) Since NF (X,Y ) = 0 we obtain

[FX,FY ] + F 2[X,Y ] = F
(
[FX, Y ] + [X,FY ]

)
,

we operate it by F 2 we get

F 2([FX,FY ] + F 2[X,Y ]
)
= F 3([FX, Y ] + [X,FY ]

)
.

Using (2.2) and (2.7), we find

F 2[FX,FY ] + F [X,Y ] = l
(
[FX, Y ] + [X,FY ]

)
.

(ii) From (2.7), we find

NF (X,Y )− lNF (X,Y ) = [FX,FY ]− l[FX,FY ], (3.9)

since NF (X,Y ) = 0 we obtain, [FX,FY ] = l[FX,FY ].
(iii) Using (2.4), we find m[FX,FY ] = 0.

Let Nl and Nm denote the Nijenhuis tensors corresponding to the operators l and m respec-
tively, then

Nl(X,Y ) = [lX, lY ]− l[lX, Y ]− l[X, lY ] + l[X,Y ],

Nm(X,Y ) = [mX,mY ]−m[mX,Y ]−m[X,mY ] +m[X,Y ],

for any vector fields X and Y on M .

Proposition 3.4. Let M be an F -structure manifold, then we have

Nl(X,Y ) = Nm(X,Y ) = m[lX, lY ] + l[mX,mY ], (3.10)

for any vector fields X and Y on M .
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Proof. Using (2.4), we have, lX +mX = X , then

Nl(X,Y ) = [lX, lY ]− l[lX, lY +mY ]− l[lX +mX, lY ]

+l[lX +mX, lY +mY ],

= [lX, lY ]− l[lX, lY ]− l[lX,mY ]− l[lX, lY ]− l[mX, lY ]

+l[lX, lY ] + l[lX,mY ] + l[mX, lY ] + l[mX,mY ]

= [lX, lY ]− l[lX, lY ] + l[mX,mY ]

= m[lX, lY ] + l[mX,mY ].

Nm(X,Y ) = [mX,mY ]−m[mX, lY +mY ]−m[lX +mX,mY ]

+m[lX +mX, lY +mY ],

= [mX,mY ]−m[mX, lY ]−m[mX,mY ]−m[lX,mY ]−m[mX,mY ]

+m[lX, lY ] +m[lX,mY ] +m[mX, lY ] +m[mX,mY ]

= [mX,mY ]−m[mX,mY ] +m[lX, lY ]

= m[lX, lY ] + l[mX,mY ].

By virtue of Proposition 3.4, we get the following proposition.

Proposition 3.5. Let M be an F -structure manifold, the both operators l and m are integrable
if and only if

Nl(X,Y ) = 0,

or

l[mX,mY ] = −m[lX, lY ],

for any vector fields X and Y on M .

Proposition 3.6. Let M be an F -structure manifold, the following identities hold

Nl(lX, lY ) = m[lX, lY ], (3.11)

Nl(mX,mY ) = l[mX,mY ], (3.12)

Nl(X,Y ) = Nl(lX, lY ) +Nl(mX,mY ), (3.13)

mNF (X,Y ) = Nl(FX,FY ), (3.14)

Nl(lX,mY ) = 0,

Nl(mX, lY ) = 0,

for any vector fields X and Y on M .

Proof. By virtue of (2.5), (2.6), (2.9) and (3.10), we get

(i) Nl(lX, lY ) = m[l2X, l2Y ] + l[mlX,mlY ] = m[lX, lY ],

(ii) Nl(mX,mY ) = m[lmX, lmY ] + l[m2X,m2Y ] = l[mX,mY ],

(iii) Nl(lX,mY ) = m[l2X, lmY ] + l[mlX,m2Y ] = 0,

(iv) Nl(mX, lY ) = m[lmX, l2Y ] + l[m2X,mlY ] = 0.

(v) By virtue of (3.10), (3.11) and (3.12) we get (3.13).
(vi) In (3.11), replacing X,Y with FX,FY , respectively, we find

Nl(FX,FY ) = m[FX,FY ].

By (3.4), we obtain (3.14).
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Proposition 3.7. Let M be an F -structure manifold, the following identity hold

NF (mX,mY ) = F 2Nl(mX,mY ),

for any vector fields X and Y on M .

Proof. By virtue of (3.12), we have Nl(mX,mY ) = l[mX,mY ], we operate it by F 2, we find
F 2Nl(mX,mY ) = F 2[mX,mY ].
On the other hand by (3.2), we have NF (mX,mY ) = F 2[mX,mY ].
Hence NF (mX,mY ) = F 2Nl(mX,mY ).

4 Para-Cauchy-Riemann structure

Let B denotes the set of para-complex numbers (hyperbolic numbers) defined by

B = {x+ jy : x, y ∈ R, j2 = 1, j ̸= ±1} ≃ R2.

and
TBM = {X + jY : X,Y ∈ TM} = TM ⊗R B,

denotes the para-complexified tangent bundle of differentiable manifold M [6].
A Para-CR-structure on M is a para-complex subbundle H of TBM such that H ∩H = {0}

and H is involutive, where H denotes the para-complex conjugate of H . In this case, we say M
is a para-CR-manifold.

Let F -structure on M of rank r = 2k satisfying the equation (2.1). We define para-complex
subbundle H of TBM by

H = {X + jF 3/2X, X ∈ Dl}. (4.1)

Then, we have

Real(H) = Dl and H ∩H = {0}. (4.2)

Indeed,

Z ∈ H ∩H ⇒ Z = X + jF 3/2X = X − jF 3/2X, X ∈ Dl

⇒ F 3/2X = 0

⇒ Z = X ∈ kerF 3/2,

from, (2.13), (2.16) and (2.18), we have Z ∈ kerF 3/2 = ker l = Dm

then, Z ∈ Dl ∩Dm = {0}.

Lemma 4.1. Let M be an F -structure manifold, the following identity hold

[P,Q] = [X,Y ] + [F 3/2X,F 3/2Y ] + j([F 3/2X,Y ] + [X,F 3/2Y ]), (4.3)

for any P = X + jF 3/2X,Q = Y + jF 3/2Y ∈ H , where X,Y ∈ Dl.

Proof.

[P,Q] = [X + jF 3/2X,Y + jF 3/2Y ]

= [X,Y ] + [X, jF 3/2Y ] + [jF 3/2X,Y ] + [jF 3/2X, jF 3/2Y ])

= [X,Y ] + [F 3/2X,F 3/2Y ] + j([F 3/2X,Y ] + [X,F 3/2Y ]).

Lemma 4.2. Let M be an F -structure manifold, the following identity hold

l([F 3/2X,Y ] + [X,F 3/2Y ]) = [F 3/2X,Y ] + [X,F 3/2Y ], (4.4)

l[F 3/2X,F 3/2Y ] = [F 3/2X,F 3/2Y ], (4.5)

for any X,Y ∈ Dl.
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Proof.

l([F 3/2X,Y ] + [X,F 3/2Y ]) = l
(
F 3/2X.Y − Y.F 3/2X +X.F 3/2Y − F 3/2Y.X

)
= lF 3/2X.Y − lY.F 3/2X + lX.F 3/2Y − lF 3/2Y.X,

as X,Y ∈ Dl, we have lX = X, lY = Y and using (2.10), we get

l([F 3/2X,Y ] + [X,F 3/2Y ]) = F 3/2X.Y − Y.F 3/2X +X.F 3/2Y − F 3/2Y.X

= [F 3/2X,Y ] + [X,F 3/2Y ].

The formula (4.5) is obtained by a similar calculation.

Theorem 4.3. Let M be an F -structure manifold. If F 3/2 is integrable, then the para-complex
subbundle H defined by (4.1) is a para-CR-structure on M .

Proof. From (4.2), we have Real(H) = Dl and H ∩ H = {0}. It remains to show that H is
involutive, let P = X + jF 3/2X, Q = Y + jF 3/2Y ∈ H , such that X,Y ∈ Dl. Using using
(4.3), (4.4) and (4.5), we get

[P,Q] = [X,Y ] + [F 3/2X,F 3/2Y ] + j([F 3/2X,Y ] + [X,F 3/2Y ]).

Since F 3/2 is integrable, then NF 3/2(X,Y ) = 0 i.e.

[X,Y ] + [F 3/2X,F 3/2Y ] = F 3/2([F 3/2X,Y ] + [X,F 3/2Y ]
)
,

we operate it by F 3/2 we get

F 3/2([X,Y ] + [F 3/2X,F 3/2Y ]
)
= l[F 3/2X,Y ] + [X,F 3/2Y ],

hence,

F 3/2([X,Y ] + [F 3/2X,F 3/2Y ]
)
= [F 3/2X,Y ] + [X,F 3/2Y ],

from that we find,

[P,Q] = [X,Y ] + [F 3/2X,F 3/2Y ] + jF 3/2([X,Y ] + [F 3/2X,F 3/2Y ]
)
∈ H.

5 Integrability conditions of distributions induced of F -structure

Theorem 5.1. Let M be an F -structure manifold. The distribution Dl is integrable if and only if

Nl(lX, lY ) = 0, (5.1)

or

m[lX, lY ] = 0,

for any vector fields X and Y on M .

Proof. The distribution Dl is integrable if and only if for any vector fields X and Y on M we
have

[lX, lY ] ∈ Dl.

By virtue of (2.11) and (3.11) we get,

[lX, lY ] ∈ Dl ⇔ m[lX, lY ] = 0 ⇔ Nl(lX, lY ) = 0.



312 A. Zagane

Theorem 5.2. Let M be an F -structure manifold. The distribution Dm is integrable if and only
if

Nl(mX,mY ) = 0, (5.2)

or

l[mX,mY ] = 0,

for any vector fields X and Y on M .

Proof. The distribution Dm is integrable if and only if for any vector fields X and Y on M we
have

[mX,mY ] ∈ Dm.

By virtue of (2.13) and (3.12) we get,

[mX,mY ] ∈ Dm ⇔ l[mX,mY ] = 0 ⇔ Nl(mX,mY ) = 0.

Theorem 5.3. Let M be an F -structure manifold. The distributions Dl and Dm are both inte-
grable if and only if

Nl(X,Y ) = 0,

or

l[mX,mY ] = −m[lX, lY ],

for any vector fields X and Y on M .

Proof. (i) Suppose that Dl and Dm are both integrable. It follows from (5.1) and (5.2)

Nl(lX, lY ) = 0, Nl(mX,mY ) = 0.

By virtue of (3.13) we have,

Nl(X,Y ) = Nl(lX, lY ) +Nl(mX,mY ) = 0.

(ii) Conversely, assume that Nl(X,Y ) = 0. It follows from (3.13) that

Nl(lX, lY ) +Nl(mX,mY ) = 0.

We replace in him X,Y by lX, lY (resp. by mX,mY ), we get

Nl(lX, lY ) = 0, (resp. Nl(mX,mY ) = 0.

Then, Dl and Dm are both integrable.

Theorem 5.4. Let M be an F -structure manifold. The distribution Dl is integrable if and only if

NF (X,Y ) = lNF (X,Y ), (5.3)

or

[FX,FY ] = l[FX,FY ],

for any vector fields X and Y on M .
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Proof. Suppose that, Dl is integrable, then for any vector fields X and Y on M we have

[lX, lY ] ∈ Dl.

Using (2.4) and (2.11), we get

[lX, lY ] ∈ Dl ⇔ m[lX, lY ] = 0

⇔ [lX, lY ]− l[lX, lY ] = 0. (5.4)

In the last equation we replace X,Y with FX,FY , respectively and using (2.7) we obtain

[FX,FY ]− l[FX,FY ] = 0. (5.5)

Using (3.9), we find NF (X,Y ) = lNF (X,Y ).
Conversely, suppose that NF (X,Y ) = lNF (X,Y ), then from (3.9) we obtain (5.5). Replacing
X and Y with F 2X and F 2Y , respectively and using (2.2) we obtain (5.4), which implies
[lX, lY ] ∈ Dl i.e Dl is integrable.

Theorem 5.5. Let M be an F -structure manifold, the following conditions are equivalent

(i) Dl is integrable,

(ii) Nl(lX, lY ) = 0,

(iii) NF (X,Y ) = lNF (X,Y ),

(iv) mNF (X,Y ) = 0,

(v) mNF (FX,FY ) = 0,

(vi) mNF (lX, lY ) = 0,

(vii) Nl(FX,FY ) = 0,

for any vector fields X and Y on M .

Proof.
(1) From Theorem 5.1, we have (i) ⇔ (ii).
(2) From Theorem 5.4, we have (i) ⇔ (iii), hence (ii) ⇔ (iii).
(3) From (2.4), we get (iii) ⇔ (iv).
(4) From (3.7), we get (iv) ⇔ (v) ⇔ (vi).
(5) From (3.14), we get (iv) ⇔ (vii), hence (vi) ⇔ (vii).
(6) Suppose that Nl(FX,FY ) = 0. Comparing it with (3.4) and (3.14), we obtain
m[FX,FY ] = 0. In this, we replace X and Y by F 2X and F 2Y respectively, we obtain

m[lX, lY ] = 0 ⇔ [lX, lY ] ∈ Dl.

Hence, (vii) ⇔ (i).

Theorem 5.6. Let M be an F -structure manifold. The distribution Dm is integrable if and only
if

NF (mX,mY ) = 0, (5.6)

or

lNF (mX,mY ) = 0,

for any vector fields X and Y on M .

Proof. The distribution Dm is integrable if and only if [mX,mY ] ∈ Dm for any vector fields X
and Y on M . Using (2.13), we get

[mX,mY ] ∈ Dm ⇒ l[mX,mY ] = 0

⇒ F 2l[mX,mY ] = 0

⇒ F 2[mX,mY ] = 0.
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From (3.2), we get NF (mX,mY ) = 0.
Conversely, assume that NF (mX,mY ) = 0, from (3.2), we find F 2[mX,mY ] = 0. We operate
it by F we get l[mX,mY ] = 0, i.e. [mX,mY ] ∈ Dm, hence the distribution Dm is integrable.
Using (3.3) we get NF (mX,mY ) = 0 ⇔ lNF (mX,mY ) = 0.

By virtue of Proposition 3.7, Theorem 5.2 and Theorem 5.6, we get the following theorem.

Theorem 5.7. Let M be an F -structure manifold, the following conditions are equivalent

(i) Dm is integrable,

(ii) Nl(mX,mY ) = 0,

(iii) NF (mX,mY ) = 0,

(iv) lNF (mX,mY ) = 0,

(v) F 2Nl(mX,mY ) = 0,

for any vector fields X and Y on M .

From Theorem 5.4 and Theorem 5.6 we deduce

Corollary 5.8. Let M be an F -structure manifold. If F is an integrable structure, then both
distributions Dl and Dm are integrable.

Remark 5.9. If both distributions Dl and Dm are integrable, then F not necessary integrable,
see (Example 7.2).

Theorem 5.10. Let M be an F -structure manifold. The distributions Dl and Dm are both inte-
grable if and only if

NF (X,Y ) = lNF (lX, lY ) +NF (lX,mY ) +NF (mX, lY ), (5.7)

for any vector fields X and Y on M .

Proof. i) Suppose that Dl and Dm are both integrable. Using (2.4), we get

NF (X,Y ) = NF (lX +mX, lY +mY )

= NF (lX, lY ) +NF (lX,mY ) +NF (mX, lY ) +NF (mX,mY ). (5.8)

Then from (5.3) and (5.6), we have

NF (X,Y ) = lNF (X,Y ) and NF (mX,mY ) = 0.

By virtue of (5.8), we get (5.7).
ii) Conversely, assume that (5.7) is satisfied. Using (5.8), we find

lNF (lX, lY ) = NF (lX, lY ) +NF (mX,mY ).

We replace X,Y with mX,mY respectively, we get NF (mX,mY ) = 0, as well
lNF (lX, lY ) = NF (lX, lY ), i.e. Dl and Dm are both integrable.

By virtue of Proposition 3.5, Theorem 5.3 and Theorem 5.10, we get the following theorem.

Theorem 5.11. Let M be an F -structure manifold, the following conditions are equivalent

(i) l and m are integrable,

(ii) Dl and Dm are integrable,

(iii) Nl(X,Y ) = 0,

(iv) NF (X,Y ) = lNF (lX, lY ) +NF (lX,mY ) +NF (mX, lY ),

for any vector fields X and Y on M .



Para-Cauchy-Riemann manifold and integrability conditions · · · 315

6 Partial integrability and complete integrability of F -structure

Suppose that the distribution Dl is integrable and take an arbitrary vector field U in an integral
manifold of Dl. We define an operator F̃ by

F̃U = FU,

then F̃ leaves invariant tangent spaces of every integral manifolds of Dl. Also, F̃ 3/2 acts as an
almost product structure on each integral manifold of Dl.

For any vector fields U and V tangent to integral manifold of Dl, we denote by

NF̃ (U, V ) = [F̃U, F̃V ]− F̃ [F̃U, V ]− F̃ [U, F̃V ] + (F̃ )2[U, V ],

the Nijenhuis tensor of the structure F̃ induced on each integral manifold of Dl from the structure
F . Then we have

NF̃ (lX, lY ) = NF (lX, lY ), (6.1)

for any vector fields X and Y on M . Indeed since the distribution Dl is integrable, we find

NF̃ (lX, lY ) = [F̃ lX, F̃ lY ]− F̃ [F̃ lX, lY ]− F̃ [lX, F̃ lY ] + (F̃ )2[lX, lY ]

= [FlX, F lY ]− F̃ [FlX, lY ]− F̃ [lX, F lY ] + F 2[lX, lY ]

= [FlX, F lY ]− F [lFX, lY ]− F [lX, lFY ] + F 2[lX, lY ]

= NF (lX, lY ).

Definition 6.1. [25] We call an F -structure to be partially integrable if the distribution Dl is
integrable and the structure F̃ induced from F on each integral manifold of Dl is integrable.
see[10, 19].

Theorem 6.2. Let M be an F -structure manifold. A necessary and sufficient condition for an F -
structure to be partially integrable is that one of the following equivalent conditions be satisfied:

NF (lX, lY ) = 0, (6.2)

or

NF (FX,FY ) = 0,

for any vector fields X and Y on M .

Proof. Suppose that F -structure is partially integrable, then from (3.8) and (6.1), we find
NF̃ (lX, lY ) = 0 ⇔ NF (lX, lY ) = 0 ⇔ NF (FX,FY ) = 0.
Conversely, from (3.8), we have NF (lX, lY ) = 0 ⇔ NF (FX,FY ) = 0, then by (6.1), the
structure F̃ is integrable. Also NF (lX, lY ) = 0, implies mNF (lX, lY ) = 0, by Theorem 5.5,
we find, Dl is integrable. Thus, F -struoture is partially integrable.

Definition 6.3. [2] Let M be an F -structure manifold. An F -structure is said to be completely
integrable if the distribution Dl and Dm are both integrable, and the structure F̃ induced from F
on each integral manifold of Dl is integrable.

From Definition 6.1 and Definition 6.3, we have the following theorem.

Theorem 6.4. Let M be an F -structure manifold. A necessary and sufficient condition for an
F -structure to be completely integrable is that the distribution Dm is integrable and that the
F -structure is partially integrable.

Theorem 6.5. Let M be an F -structure manifold. In order that the F -structure to be completely
integrable, it is necessary and sufficient that

NF (X,Y ) = NF (lX,mY ) +NF (mX, lY ), (6.3)

for any vector fields X and Y on M .
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Proof. i) Suppose that the F -structure is a completely integrable, i.e. Dm is integrable and F -
structure is partially integrable. Using (5.6), (5.8) and (6.2), we get (6.3).
ii) Conversely, assume that (6.3) is satisfied. Using (5.8), we find

NF (lX, lY ) +NF (mX,mY ) = 0.

In this relation we replace X,Y with mX,mY respectively, we get (5.6), as well (6.2), i.e.
Dm is integrable and F -structure is partially integrable, hence the F -structureis is completely
integrable.

Theorem 6.6. Let M be an F -structure manifold. In order that the F -structure to be integrable,
it is necessary and sufficient that the F -structure is completely integrable and

NF (lX,mY ) = −NF (mX, lY ),

for any vector fields X and Y on M .

7 Examples

Example 7.1. In R2, we define a tensor F of type (1, 1) by

F =

(
−1 1
−1 0

)
.

It is easy to find out that rank(F ) = 2 and F 3 + F 2 + F = 0. Then we have

l = F 3 = I, m = I − l = 0.

(Dl)x = TxR2, (Dm)x = {0} .

where x = (x1, x2) ∈ R2. It is easy to verify that F is integrable (partially and completely ),
then Dl and Dm are integrable.
We have F 3 = I then, F 3/2 = I1/2, For example we take

F 3/2 =

 a b

1 − a2

b
−a

 ,

where a, b are real constants and b ̸= 0, Because F 3/2 is integrable, we get

H =
{
X + jF 3/2X, X ∈ Dl

}
=

X + j

 a b

1 − a2

b
−a

X, X ∈ TR2


=


 x+ j(ax+ by)

y − j(
a2 − 1

b
x+ ay)

 , x, y ∈ R


is a para-CR-structure on R2.

Example 7.2. In M = {(x, y, z, t) ∈ R4, t ̸= 0} (4-dimensional manifold), we define the tensor
F of type (1, 1), by

F =


−1 0 0

1
t

0 −1 t 0

0 −1
t

0 0

−t 0 0 0

 .

It is easy to find out that rank(F ) = 4 and F 3 + F 2 + F = 0. Then we have

l = F 3 = I, m = I − l = 0.
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(Dl)(x,y,z,t) = T(x,y,z,t)M, (Dm)(x,y,z,t) = {0} .

For all vector fields X and Y on M , we have, mNF (X,Y ) = NF (mX,mY ) = 0, i.e. Dl and
Dm are both integrable.

NF (∂z, ∂t) = [F∂z, F∂t]− F [F∂z, ∂t]− F [∂z, F∂t] + F 2[∂z, ∂t]

= [t∂y,
1
t
∂x]− F [t∂y, ∂t]− F [∂z,

1
t
∂x] + 0

= −∂x − 1
t
∂z ̸= 0,

hence F is not integrable. On the other hand, we have

NF (l∂z, l∂t) = NF (∂z, ∂t) ̸= 0,

then F is not partially (completely) integrable.

8 Conclusion remarks

This work aims to show a relationship between the Para-Cauchy-Riemann structure and the
F -Structure that satisfies the equation F 3 + F 2 + F = 0. And obtain the necessary and suf-
ficient conditions for the integrability, partial integrability, and complete integrability of this
F -Structure. Overall, the results obtained in this work are new, diverse, engaging, and advanta-
geous. However, they could also be helpful for future studies on this topic.
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