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Abstract Let S and T be disjoint finite sets of prime numbers. In this paper we use an
elementary method to find the proportion of square-full numbers which are divisible by all the
prime numbers in S and by none of those in T .

1 Introduction and results

A positive integer is square-full if all the distinct primes in its prime factorization have multiplic-
ity (or exponent) greater than or equal to 2. Let G be the set of all square-full numbers. Let G(x)
be the number of square-full integers not exceeding x. In 1935 Erdös and Szekeres [3] proved
that

G(x) =
ζ(3/2)
ζ(3)

x1/2 +O(x1/3). (1.1)

For a study of these asymptotic formulas, we refer to [4, Chapter 14.4 ]. In [9], the author used an
elementary method to prove that the ratio of odd to even square-full numbers is asymptotically
1 : 1 +

√
2

2 . Articles related to [9] are studied by authors (cf. [2, 7, 10, 11, 12, 13]). The
motivation of these works arise from Scott’s work in [8], which conjectured that the ratio of odd
to even square-free numbers is asymptotically 2 : 1. Later, Jameson [5] showed that Scott’s
conjecture is true and reproved it in [6]. Very recently, Brown [1] reproved Jameson’s result
and generalized it. Brown proved that the proportion of all numbers which are square-free and
divisible by all of the primes in T and by none of the primes in P is

6
π2

∏
p∈T

1
1 + p

∏
p∈P

p

1 + p
,

where P and T are disjoint sets of prime numbers with T finite. Thus, it would be interesting to
study this proportion of square-full numbers.

In this paper, we use the elementary method in [9] to study the proportion of all numbers
which are square-full and divisible by all of the primes in a given set and by none of the primes
in another set. Let A be a given set and x > 1, and let A(x) denote the number of elements of A
not exceeding x. We prove the following theorem.

Theorem 1.1. Let S and T be disjoint finite sets of prime numbers. Let GS−T be the set of all
square-full numbers which are divisible by all the prime numbers in S and by none of those in
T . Then, the limit

lim
x→∞

GS−T (x)

x1/2

exists. Moreover, as x → ∞, we have

GS−T (x)

G(x)
=

∏
p∈T

p3/2 − p1/2

1 + p3/2

∏
p∈S

1 + p1/2

1 + p3/2 .
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Remark 1.2. Applying Theorem 1.1 with S = {2} and T empty, we see that

G{2}−∅(x)

G(x)
=

1 + 21/2

1 + 23/2 , x → ∞,

and applying Theorem 1.1 with T = {2} and S empty, we see that

G∅−{2}(x)

G(x)
=

23/2 − 21/2

1 + 23/2 , x → ∞.

Then, as x → ∞,

G∅−{2}(x)

G{2}−∅(x)
=

23/2 − 21/2

1 + 21/2 .

This recovers the result in [9].

2 Lemmas and notations

We will use the following Lemmas, the first of which is a generalized version of Theorem 1 in
[9]. Let p be a prime number. Let Wp = {n ∈ G : p | n} and Cp = {n ∈ G : (n, p) = 1}.

Lemma 2.1. For a given prime number p, the limits

lim
x→∞

Cp(x)

x1/2 and lim
x→∞

Wp(x)

x1/2

exist. Moreover, as x → ∞, we have

Cp(x)

Wp(x)
= p−√

p.

Proof of Lemma 2.1. First, we split the set Wp into the sets Wp1 and Wp2, where Wp1 = {n ∈
Wp : n

p2 ∈ G} and Wp2 = {n ∈ Wp : n
p2 /∈ G}. It is obvious that,

Wp1(x) = G(x/p2) (2.1)

and

Wp2(x) = Cp(x/p
3). (2.2)

In view of (2.1) and (2.2), we have

Wp(x) = G(x/p2) + Cp(x/p
3). (2.3)

From (2.3) and G(x) = Cp(x) +Wp(x), we have

G(x)−G(x/p2) = Cp(x) + Cp(x/p
3). (2.4)

Now we replace x in (2.4) by x
p3i and for a positive integer v, we take the alternate summation∑2v

i=0(−1)i on the both side of (2.4). Then,

2v∑
i=0

(−1)iG(
x

p3i )−
2v∑
i=0

(−1)iG(
x

p2+3i ) =
2v∑
i=0

(−1)iCp(
x

p3i ) +
2v∑
i=0

(−1)iCp(
x

p3i+3 )

= Cp(x) + Cp(
x

p6v+3 ). (2.5)

In view of (1.1), we have, for ϵ > 0,

(
ζ(3/2)
ζ(3)

− ϵ)x1/2 ≤ G(x) ≤ (
ζ(3/2)
ζ(3)

+ ϵ)x1/2, (2.6)
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for x > x0. Then, from (2.6), we choose a positive integer k satisfying x/p6k+3 < x0 < x/p6k+2

and from (2.5), we have

Cp(x) + Cp(
x

p6k+3 ) ≥
2k∑
i=0

(−1)i(
ζ(3/2)
ζ(3)

− (−1)iϵ)
x1/2

p3i/2

−
2k∑
i=0

(−1)i(
ζ(3/2)
ζ(3)

+ (−1)iϵ)
x1/2

p1+3i/2

=
ζ(3/2)
ζ(3)

( p3/2

1 + p3/2 +
1

p3k(1 + p3/2)

)(
1 − 1

p

)
x1/2

−
( p3/2

p3/2 − 1
+

1
p3k(p3/2 − 1)

)(
1 +

1
p

)
ϵx1/2.

From 1
p3k(1+p3/2)

(
1 − 1

p

)
> 0,

(
p3/2

p3/2−1 + 1
p3k(p3/2−1)

)
< 2 and

(
1 + 1

p

)
≤ 3

2 , we have

Cp(x) ≥
ζ(3/2)
ζ(3)

( p3/2

1 + p3/2

)(
1 − 1

p

)
x1/2 − 3ϵx1/2 − Cp(

x

p6k+3 ). (2.7)

We note that Cp(
x

p6k+3 ) ≤ x
p6k+3 < x0. In view of (2.7), we have

Cp(x) ≥
ζ(3/2)
ζ(3)

( p3/2

1 + p3/2

)(
1 − 1

p

)
x1/2 − 3ϵx1/2 − x0.

Thus, for x >
(

x0
ϵ

)2
,

Cp(x) ≥
(ζ(3/2)

ζ(3)

( p3/2

1 + p3/2

)(
1 − 1

p

)
− 4ϵ

)
x1/2. (2.8)

To deal with the upper bound, we know that Cp(
x

p6k+3 ) ≥ 0, and from (2.5), we have

Cp(x) ≤
2k∑
i=0

(−1)iG(
x

p3i )−
2k∑
i=0

(−1)iG(
x

p2+3i ),

for k such that x/p6k+3 < x0 < x/p6k+2. By the same reason, i.e, for ϵ > 0, we take x0 such that
( ζ(3/2)

ζ(3) − ϵ)x1/2 ≤ G(x) ≤ ( ζ(3/2)
ζ(3) + ϵ)x1/2, for x > x0, then

Cp(x) ≤
2k∑
i=0

(−1)i(
ζ(3/2)
ζ(3)

+ (−1)iϵ)
x1/2

p3i/2 −
2k∑
i=0

(−1)i(
ζ(3/2)
ζ(3)

− (−1)iϵ)
x1/2

p1+3i/2

=
ζ(3/2)
ζ(3)

( p3/2

1 + p3/2 +
1

p3k(1 + p3/2)

)(
1 − 1

p

)
x1/2

+
( p3/2

p3/2 − 1
+

1
p3k(p3/2 − 1)

)(
1 +

1
p

)
ϵx1/2.

From 1
p3k(1+p3/2)

(
1− 1

p

)
x1/2 ≤ x1/2

p3k+3/2 ≤ x
1/2
0 ,

(
p3/2

p3/2−1 +
1

p3k(p3/2−1)

)
< 2 and

(
1+ 1

p

)
≤ 3

2 , we
have

Cp(x) ≤
ζ(3/2)
ζ(3)

( p3/2

1 + p3/2 +
1

p3k(1 + p3/2)

)(
1 − 1

p

)
x1/2 +

ζ(3/2)
ζ(3)

x
1/2
0 + 3ϵx1/2.

Thus, for x > x0
ϵ2

ζ2(3/2)
ζ2(3) ,

Cp(x) ≤
(ζ(3/2)

ζ(3)

( p3/2

1 + p3/2

)(
1 − 1

p

)
+ 4ϵ

)
x1/2. (2.9)
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In view of (2.8) and (2.9), we have(ζ(3/2)
ζ(3)

( p3/2

1 + p3/2

)(
1 − 1

p

)
− 4ϵ

)
x1/2 ≤ Cp(x) ≤

(ζ(3/2)
ζ(3)

( p3/2

1 + p3/2

)(
1 − 1

p

)
+ 4ϵ

)
x1/2,

(2.10)

for x >
(

x0
ϵ

)2
.

The inequality (2.10) shows that the limit limx→∞
Cp(x)
x1/2 exists and the existence of limx→∞

Wp(x)
x1/2

follows from G(x) = Cp(x) +Wp(x).
Now we let

Wp(x) ∼ ax1/2 and Cp(x) ∼ bx1/2, for some a, b ∈ R+. (2.11)

In view of (1.1), (2.4) and (2.11), we have

ax1/2 ∼ 1
p

ζ(3/2)
ζ(3)

x1/2 +
1

p3/2
ζ(3/2)
ζ(3)

x1/2 − a

p3/2x
1/2.

This give us

a =
1 + p1/2

1 + p3/2
ζ(3/2)
ζ(3)

. (2.12)

Again, from (1.1), (2.4) and (2.11), we also have

b =
p3/2 − p1/2

1 + p3/2
ζ(3/2)
ζ(3)

. (2.13)

Then the last assertion of Lemma follows from (2.12) and (2.13).

Lemma 2.2. For k ≥ 2, let p1, ..., pk be distinct prime numbers. Denote by

Wp1,...,pk
:= {n ∈ G : pi | n, for all i = 1, ..., k},

and
Wp1,...,pk−1,pk

:= {n ∈ G : pi | n, for all i = 1, ..., k − 1 but (n, pk) = 1}.

Then the limits

lim
x→∞

Wp1,...,pk
(x)

x1/2 and lim
x→∞

Wp1,...,pk−1,pk
(x)

x1/2

exist. Moreover, as x → ∞, we have

Wp1,p2,...,pk−1,pk
(x)

Wp1,p2,...,pk
(x)

= pk −√
pk.

Proof of Lemma 2.2 . We prove Lemma 2.2 by the mathematical induction on k, for k ≥ 2.
Let P(k) be the statement “ there are positive real numbers ak and bk such that Wp1,p2,...,pk

(x) ∼
akx

1/2 and Wp1,p2,...,pk−1,pk
(x) ∼ bkx

1/2”.
First, we will show that P(2) is true.

Each element in Wp1,p2 is of the form pα2 m, where m ∈ Wp1,p2 and α ≥ 2. By the same technique
as in the proof of Lemma 2.1, we have

Wp1,p2(x) = Wp1(
x

p2
2
) +Wp1,p2(

x

p3
2
), (2.14)

and

Wp1 = Wp1,p2 ∪Wp1,p2 . (2.15)
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From (2.14) and (2.15), we have

Wp1(x)−Wp1(
x

p2
2
) = Wp1,p2(x) +Wp1,p2(

x

p3
2
). (2.16)

From (2.12) in Lemma 2.1, we have

lim
x→∞

Wp1(x)−Wp1(
x
p2

2
)

x1/2 =
1 + p

1/2
1

1 + p
3/2
1

ζ(3/2)
ζ(3)

(
1 − 1

p2

)
. (2.17)

From (2.16) and (2.17), we prove the existence of limx→∞
Wp1,p2 (x)

x1/2 by the same proof as that of
the existence of limx→∞

Cp(x)
x1/2 in (2.4).

In view of (2.16) and (2.17), we have, as x → ∞,

b2 =
(p3/2

2 − p
1/2
2

p
3/2
2 + 1

)(1 + p
1/2
1

1 + p
3/2
1

)ζ(3/2)
ζ(3)

. (2.18)

In view of (2.14) and (2.15), we also have

Wp1(
x

p2
2
) +Wp1(

x

p3
2
) = Wp1,p2(x) +Wp1,p2(

x

p3
2
). (2.19)

From (2.12) in Lemma 2.1, we have

lim
x→∞

Wp1(
x
p2

2
) +Wp1(

x
p3

2
)

x1/2 =
1 + p

1/2
1

1 + p
3/2
1

ζ(3/2)
ζ(3)

( 1
p2

+
1

p
3/2
2

)
. (2.20)

From (2.15) and (2.18)-(2.20), we have limx→∞
Wp1,p2 (x)

x1/2 exists. In view of (2.19) and (2.20),
we have, as x → ∞,

a2 =
(1 + p

1/2
2

1 + p
3/2
2

)(1 + p
1/2
1

1 + p
3/2
1

)ζ(3/2)
ζ(3)

. (2.21)

Then, from (2.18) and (2.21), P(2) is true.
Assume that ak−1 and bk−1 exist. Each element in Wp1,p2,...,pk

is of the form pαk

k m, where
m ∈ Wp1,p2,...,pk−1,pk

and αk ≥ 2. By the same technique as in the proof of Lemma 2.1, we note
that

Wp1,p2,...,pk
(x) = Wp1,p2,...,pk−1(

x

p2
k

) +Wp1,p2,...,pk−1,pk
(
x

p3
k

). (2.22)

and

Wp1,p2,...,pk−1 = Wp1,p2,...,pk
∪Wp1,,p2,...,pk−1,pk

. (2.23)

In view of (2.22) and (2.23), we have

Wp1,p2,...,pk
(x) = Wp1,p2,...,pk−1(

x

p2
k

) +Wp1,p2,...,pk−1(
x

p3
k

)−Wp1,p2,...,pk
(
x

p3
k

). (2.24)

By the same reason in the proof of Lemma 2.1, the limit limx→∞
Wp1,p2,...,pk (x)

x1/2 exists. From the
hypothesis and (2.24), we have, as x → ∞,

akx
1/2 = ak−1

x1/2

pk
+ ak−1

x1/2

p
3/2
k

− ak
x1/2

p
3/2
k

ak = ak−1

(p1/2
k + 1

p
3/2
k + 1

)
. (2.25)
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From (2.22) and (2.23), we also have

Wp1,p2,...,pk−1(x)−Wp1,p2,...,pk−1,pk
(x) = Wp1,p2,...,pk−1(

x

pk2
) +Wp1,p2,...,pk−1,pk

(
x

p3
k

), (2.26)

and as x → ∞,

ak−1x
1/2 − bkx

1/2 = ak−1
x1/2

p2
+ bk

x1/2

p
3/2
2

bk = ak−1

(p3/2
k − p

1/2
k

p
3/2
k + 1

)
. (2.27)

In view of (2.25) and (2.27), we have

bk
ak

= pk −√
pk. (2.28)

The following lemma is a consequence of Lemma 2.2.

Lemma 2.3. Let S be a finite set of prime numbers. Let GS be the set of all square-full numbers
which are divisible by all the prime numbers in S. Then,

lim
x→∞

GS(x)

x1/2 =
∏
p∈S

1 + p1/2

1 + p3/2
ζ(3/2)
ζ(3)

.

3 Proof of Theorem 1.1

Proof. Let q1, ..., qr be distinct prime numbers in the set T . For 1 ≤ i ≤ r, we denote by GS∪{qi}
the set of all square-full numbers which are divisible by all the prime numbers in S∪{qi}. Thus,
we have

GS−T = GS −
(
∪r
i=1 GS∪{qi}

)
. (3.1)

In view of Lemma 2.3 and (3.1), the limit limx→∞
GS−T (x)

x1/2 exists.
Using the inclusion-exclusion principle with (3.1) and (2.25), the last assertion in Theorem

1.1 follows.
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