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Abstract Let p̄−t(n) denote the number of t-colored overpartitions of n. In this article, we
obtain new congruences of p̄−t(n) for specific values of t, employing Newman’s results, Modular
forms, and Hecke operators.

1 Introduction

A partition of a non-negative integer n is a non-increasing sequence of positive integers whose
sum is n. The number of partition of n is denoted as p(n) and the generating function of p(n) is
defined by

∞∑
n=0

p(n)qn =
1
f1
,

where, for any positive integer t,

ft :=
∞∏
n=1

(1 − qtn), |q| < 1.

Arithmetic properties of partition functions and other generalized classes of partitions are well
studied by several mathematicians. An overpartition is a partition in which the first occurence of
a number may be overlined. Let the number of overpartition is denoted by p̄(n). The geneating
function for p̄(n) is defined by

∞∑
n=0

p̄(n)qn =
f2

f2
1
.

A partition is called t-colored partition if each part can appear as t colors. t-colored partition is
denoted as p−t(n). The generating function for p−t(n) is defined by

∞∑
n=0

p−t(n)q
n =

1
f t1
.

Let p̄−t(n) denotes the number of t-colored overpartition of n. The generating function for
p̄−t(n) is defined by

∞∑
n=0

p̄−t(n)q
n =

f t2
f2t

1
. (1.1)
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Recently M.P.Saikia [10] employed an algorithmic technique to obtain congruences modulo
powers of 2 for t-colored overpartitions. Saikia’s work is an extension of Nayaka and Naika’s
paper[6] in which they have proved some congruences of p̄−t(n) for t = 5, 7, 11 and 13.

In this article, we study several new infinite congruence for P̄−t(n), we also obtain divisibility
properties for p̄−t(n) for certain t.

2 Preliminaries

In this section we discuss some important definitions and results related to modular forms.
Let us denote the upper half plane by H and Mk(Γ) denotes the complex vector space of weight
k (positive integer) with respect to a congruence subgroup Γ.

Definition 2.1. [9, Definition 1.15], Let χ be a Dirichlet character modulo N (a positive integer).
Then a modular form f ∈Mk(Γ1(N)) has Nebentypus character χ if

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z),

for all z ∈ H and all

[
a b

c d

]
∈ Γ0(N). The space of such modular form is denoted by

Mk(Γ0(N), χ). Here Γ0(N) will be the principal congruence subgroup of level N.
The Dedekind’s eta-function (η(z)) is defined by

η(z) := q
1
24 f1 = q

1
24

∞∏
n=1

(1 − qn),

where q = e2πiz and z ∈ H. A function of the form f(z) =
∏

δ|N η(δz)rδ is called an eta-
quotient. Where N is a positive integer and rδ is an integer.

Theorem 2.2. [9, Theorem 1.64], If f(z) =
∏

δ|N η(δz)rδ is an eta-quotient such that

k =
1
2

∑
δ|N

rδ ∈ Z

∑
δ|N

δrδ ≡ 0 (mod 24) and

∑
δ|N

N

δ
rδ ≡ 0 (mod 24).

Then

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z),

for all

[
a b

c d

]
∈ Γ0(N). Here

χ(d) :=
(
(−1)k

∏
δ|N δrδ

d

)
. (2.1)

Let the eta-quotient f satisfies all the criteria of Theorem 2.2 and if f is also holomorphic at
all the cusps of Γ0(N), then f ∈ Mk(Γ0(N), χ). In order to verify the holomorphicity of f(z)
at its cusps, it is enough to check that the orders at the cusps are non-negative. The necessary
criterion for determining orders of an eta-quotient at cusps is the following.
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Theorem 2.3. [9, Theorem 1.65], Let c, d, and N are positive integers with d | N and gcd(c, d) =
1. If f(z) is an eta-quotient satisfying the conditions of Theorem 2.2 for N , then the order of
vanishing of f(z) at the cusp c

d is

N

24

∑
δ|N

gcd(d, δ)2rδ

gcd(d, Nd )dδ
.

The following definitions of Hecke operators play important role in proving the main results.

Theorem 2.4. [11] Let p be a prime, f(z) =
∑∞

n=n0
r(n)qn ∈ Mk(Γ0(N), χ1) and h(z) =∑∞

n=n1
s(n)qn ∈Mk(Γ0(N), χ2), where n0 and n1 are non-negative. If either χ1 = χ2 and

r(n) ≡ s(n) (mod p) for all n ≤ kN

12

∏
d prime;d|N

(
1 +

1
d

)
,

or χ1 ̸= χ2 and

r(n) ≡ s(n) (mod p) for all n ≤ kN2

12

∏
d prime;d|N

(
1 − 1

d2

)
,

then f(z) ≡ h(z) (mod p) (i.e., r(n) ≡ s(n) (mod p) for all n) .

Definition 2.5. Let m be a positive integer and f(z) =
∑∞

n=0 r(n)q
n ∈ Mk(Γ0(N), χ). The

Hecke operator Tm acts on f(z) by

f(z) | Tm :=
∞∑
n=0

( ∑
d|gcd(n,m)

χ(d)dk−1r
(nm
d2

))
qn. (2.2)

As a special case, if m = p is a prime, then

f(z) | Tp :=
∞∑
n=0

(
r(pn) + χ(p)pk−1r

(
n

p

))
qn. (2.3)

If f is an eta quotient that satisfies the presumptions of the Theorem 2.2 and p |
∏

δ|N δrδ ,
then χ(p) = 0 so that the later term vanishes. We have the factorization property in this case,(

f.

∞∑
n=0

h(n)qpn
)

| Tp =

( ∞∑
n=0

r(pn)qn
)( ∞∑

n=0

h(n)qn
)
.

Definition 2.6. A modular form f(z) ∈ Mk(Γ0(N), χ) is called a Hecke eigenform if for every
m ≥ 2 there exist a complex number λ(m) for which

f(z) | Tm = λ(m)f(z). (2.4)

Theorem 2.7. Let n be a non-negative integer and k be a positive integer. Let χ be a quadratic
Dirichlet character of conductor 9 · 2n. There is an integer c ≥ 0 such that for every f(z) ∈
M (Γ0(9 · 2n), χ) ∩ Z[[q]] and every t ≥ 0

f(z) | Tp1 | Tp2 · · · | Tpc+t ≡ 0 (mod 2t).

Theorem 2.8. [9, Theorem 2.65] Let A denote the subset of integer weight modular forms in
Mk(Γ0(N), χ) whose Fourier coefficients are in Ok, the ring of algebraic integers in a number
field K. Suppose M ⊂ Ok is an ideal. If f(z) ∈ A has a Fourier expansion

f(z) =
∞∑
n=0

r(n)qn, (2.5)
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then there is a constant α > 0 such that

#{n ≤ X : r(n) ̸≡ 0 (mod M)} = O
(

X

(logX)α

)
. (2.6)

Which yields

lim
x→∞

#{0 < n ≤ X : r(n) ≡ 0 (mod M)}
X

= 1. (2.7)

Lemma 2.9. Newman [7] Denote
∞∏
n=1

(1 − qn)k =
∞∑
n=0

Pk(n)q
n. (2.8)

Suppose k is even and 0 < k ≤ 24.Let p be a prime such that
k(p− 1) ≡ 0 (mod 24) and δ = k(p−1)

24 , then the following identity holds.

Pk(np+ δ) = Pk(δ)Pk(n)− p
k
2 −1Pk

(
n− δ

p

)
. (2.9)

Lemma 2.10. Newman [8]. If k mentioned in identity (2.8) has any of the values 2,4,6,8,14,26
and p is a prime > 3 such that k(p+ 1) ≡ 0 (mod 24). Then

Pk(np+ ∆) = (−p)
k
2 −1

Pk

(
n

p

)
, ∆ =

k(p2 − 1)
24

.

Lemma 2.11. By Binomial theorem, it is easy to see that for any positive integers k and m,

f2m

k ≡ f2m−1

2k (mod 2m).

3 Divisibility of p̄−2α(n)

Theorem 3.1. Let k and α ≥ 2 be positive integers with k ≥ 2α, we have

lim
X→∞

#{0 < n ≤ X : p̄−2α(n) ≡ 0 (mod 2k)}
X

= 1.

Proof of Theorem 3.1. From (1.1), generating function of B̄p(n) is given by

∞∑
n=0

p̄−2α(n)qn =
f2α

2

f2α+1

1

. (3.1)

Let define

Gα(z) =
η(3.2α+3z)2

η(3.2α+4z)
.

Using binomial theorem, we have

Gα
2k

(z) =
η(3.2α+3z)2k+1

η(3.2α+4z)2k ≡ 1 (mod 2k+1).

Define Hα,k(z) by

Hα,k(z) :=
η(48z)2α

η(24z)2α+1 Gα
2k

(z). (3.2)

Employing modulo 2k+1 in the above identity, we obtain

Hα,k(z) ≡
η(48z)2α

η(24z)2α+1 . (3.3)
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From identities (3.1) and (3.3), we obtain

Hα,k(z) ≡
∞∑
n=0

p̄−2α(n)q24n (mod 2k+1). (3.4)

From (3.2), we have

Hα,k(z) :=
η(48z)2α

η(3.2α+3z)2k+1

η(24z)2α+1η(3.2α+4z)2k . (3.5)

From the Theorem 2.2, for α ≥ 2 and k ≥ 2α, Hα,k(z) is an eta-quotient with level N = 9.2α+4

and a positive integer weight 2k−2α

2 . The cusps of Γ0(9.2α+4) are represented by c
d , where

d | 9.2α+4 and gcd(c, d) = 1. Using Theorem 2.3, we say that Hα,k(z) is holomorphic at a cusp
c
d if and only if

gcd(d, 48)2 · 2α

48
+

gcd(d, 3.2α+3)2 · 2k+1

3.2α+3 − gcd(d, 24)2 · 2α+1

24

− gcd(d, 3.2α+4)2 · 2k

3.2α+4 ≥ 0.

If and only if

M = P · 22α−k + 4Q−R · 22α−k+2 − 1 ≥ 0, (3.6)

where P =
gcd(d, 48)2

gcd(d, 3.2α+4)2 , Q =
gcd(d, 3.2α+3)2

gcd(d, 3.2α+4)2 , R =
gcd(d, 24)2

gcd(d, 3.2α+4)2 , respectively.

The table given below shows all the possible values of M . Now we find that for the given condi-
tion k ≥ 2α, α ≥ 0 for all d | 9.2α+4.

d | 9.2α+4 P Q R M

2a3b, a = 0, 1, 2, 3 b = 0, 1, 2 1 1 1 3(1 − 22α−k) ≥ 0
243b, b = 0, 1, 2 1 1 1

4 3

2a3b, 4 < a < α+ 4, b = 0, 1, 2
1

22a−8 1
1

22a−6 3

2α+43b, b = 0, 1, 2
1

22α
1
4

1
22α+2 0

Hence Hα,k(z) is holomorphic at a every cusp c
d . The character associated with Hα,k(z) is

χ(•) =

(
(−1)

2k−2α
2 22k(α+2)−2α+1

. 32k−2α

•

)
. Theorem 2.2 gives that Hα,k(z) ∈ M 2k−2α

2

(
Γ0(9.2α+4), χ

)
for all k ≥ 2α where α ≥ 2. And the Fourier coefficient of Hα,k(z) are all integers. By Theorem
2.8, the Fourier coefficient of Hα,k(z) are almost always divisible by 2k. From (3.4), p̄−2α(n) is
almost always divisible by 2k. This completes the proof of Theorem 3.1.

Theorem 3.2. For a non-negative integer n, there is an integer r ≥ 0 such that for every t ≥ 1
and distinct primes p1, · · · pr+t coprime to 6, we have for n coprime to p1, · · · pr+t,

p̄−2α

(p1 · · · pr+t · n
24

)
≡ 0 (mod 2t).

Proof of Theorem 3.2. From identity (3.4), we have

Hα,k(z) ≡
∞∑
n=0

p̄−2α(n)q24n (mod 2k+1).

This implies

Hα,k(z) :=
∞∑
n=0

B(n)qn ≡
∞∑
n=0

p̄−2α

( n
24

)
qn (mod 2k+1). (3.7)



36 Anusree. Anand, P. Murugan and S. N. Fathima

We have Hα,k(z) ∈ M 2k−2α
2

(
Γ0(9.2α+4), χ

)
. Using Theorem 2.7, there is an integer r ≥ 0 such

that for any t ≥ 1

Hα,k(z) | Tp1 | Tp2 · · · | Tpr+t ≡ 0 (mod 2t),

where, p1, p2, · · · pr+t are coprime to 6.
From the definition of Hecke operators, if p1, p2, · · · pr+t are distinct primes and are coprime to
n, we have

B (p1 · · · pr+t · n) ≡ 0 (mod 2t). (3.8)

From identities (3.7) and (3.8), we complete the proof of Theorem 3.2.

4 Congruence for p̄−(4ℓ+2)(n)

Theorem 4.1. For a positive integer ℓ, and primes pi’s such that for 1 ≤ i ≤ k + 1, pi ≡ 3
(mod 4) , we have

p̄−(4ℓ+2)
(
4p2

1p
2
2 · · · p2

kp
2
k+1n+ p2

1p
2
2 · · · p2

kpk+1(pk+1 + 4s)
)
≡ 0 (mod 16),

where k, n are non-negative integers and s is an integer satisfying s ̸≡ 0 (mod pk+1).

Proof. From (1.1), we have

∞∑
n=0

p̄−{4ℓ+2}(n)q
n =

f4ℓ+2
2

f8ℓ+4
1

≡
f2

2

f4
1

(mod 8). (4.1)

We have the 2-dissection of ϕ(q)2 [4, (1.10.1)],

1
f4

1
=

f14
4

f14
2 f4

8
+ 4q

f2
4 f

4
8

f10
2

. (4.2)

Employing identity (4.2) in identity (4.1) and extracting coefficient of q2n+1, we get

∞∑
n=0

p̄−{4ℓ+2}(2n+ 1)qn ≡ 4
f2

2 f
4
4

f8
1

(mod 8).

Using binomial theorem in the above identity, we get

∞∑
n=0

p̄−{4ℓ+2}(2n+ 1)qn ≡ 4f6
2 (mod 8). (4.3)

Therefore
∞∑
n=0

p̄−{4ℓ+2}(4n+ 1)qn ≡ 4f6
1 (mod 8). (4.4)

Which implies,

∞∑
n=0

p̄−{4ℓ+2}(4n+ 1)q4n+1 ≡ 4 η(4z)6 (mod 8). (4.5)

Using Theorem 2.2, we get η(4z)6 ∈ M3
(
Γ0(16),

(−1
d

))
. Therefore η(4z)6 has the Fourier series

expansion

η(4z)6 = q − 6q5 + 9q9 + 10q13 − 30q17 + · · · =
∞∑
n=1

a(n)qn.
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For n ̸≡ 1 (mod 4),a(n) = 0, we have

p̄−{4ℓ+2}(4n+ 1) ≡ 4a(4n+ 1) (mod 8), ∀ n ≥ 0. (4.6)

From [5] it is clear that η(4z)6 is a Hecke eigonform. From the definitions 2.5 and 2.6, we have

η(4z)6 | Tp :=
∞∑
n=1

(
a(pn) +

(
−1
p

)
a

(
n

p

))
qn = λ(p)a(n). (4.7)

Note that a(1) = 1. Set n = 1 in the above identity, we readily obtain a(p) = λ(p). Since
a(p) = 0 for all p ̸≡ 1 (mod 4), we have λ(p) = 0. Thus,

a(pn) +

(
−1
p

)
a

(
n

p

)
= 0. (4.8)

For p ∤ n, from identity (4.8), we obtain

a
(
p2n+ pr

)
= 0. (4.9)

Again for p | n, from identity (4.8), we obtain

a
(
p2n
)
= −

(
−1
p

)
a(n). (4.10)

On replacing n by 4n− pr + 1 in (4.9), we obtain

a
(
4p2n+ p2 + pr

(
1 − p2)) = 0. (4.11)

Using (4.6) in (4.11), we obtain

p̄−{4ℓ+2}
(
4p2n+ p2 + pr

(
1 − p2)) ≡ 0 (mod 8). (4.12)

Again applying (4.6) in (4.10) with n replaced by 4n+ 1, we obtain

p̄−{4ℓ+2}
(
4p2n+ p2) ≡ −

(
−1
p

)
p̄−{4ℓ+2} (4n+ 1) (mod 8). (4.13)

Since gcd
(

1−p2

4 , p
)
= 1, if r runs over a residue system excluding the multiples of p, then so

does (1−p2)r
4 . Thus for s ̸≡ 0 (mod p), we can rewrite (4.12) as

p̄−{4ℓ+2}
(
4p2n+ p2 + 4ps

)
≡ 0 (mod 8). (4.14)

Suppose pi ≥ 5 and pi ̸≡ 1 (mod 4),then

p̄−{4ℓ+2}
(
4p2

1p
2
2 · · · p2

kn+ p2
1p

2
2 · · · p2

k

)
(4.15)

= p̄−{4ℓ+2}

(
4p2

1

(
p2

2 · · · p2
kn+

p2
2 · · · p2

k − 1
4

)
+ p2

1

)
≡ −

(
−1
p1

)
p̄−{4ℓ+2}

(
4
(
p2

2 · · · p2
kn+

p2
2 · · · p2

k − 1
4

)
+ 1
)

(mod 8)

= −
(
−1
p1

)
p̄−{4ℓ+2}

(
4p2

2 · · · p2
kn+ p2

2 · · · p2
k

)
...

≡ (−1)k
(
−1
p1

)
· · ·
(
−1
pk

)
p̄−{4ℓ+2} (4n+ 1) (mod 8). (4.16)

Consider s ̸≡ 0 (mod pk+1), then identities (4.14) and (4.15) implies

p̄−{4ℓ+2}
(
4p2

1p
2
2 · · · p2

kp
2
k+1n+ p2

1p
2
2 · · · p2

kpk+1(pk+1 + 4s)
)
≡ 0 (mod 16). (4.17)

This completes the proof of Theorem 4.1.
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5 Congruence for p−4(n)

Theorem 5.1. Let σ(n) =
∑
d/n

d, then

p−4(2n+ 1) ≡ 8 σ(2n+ 1) (mod 128). (5.1)

For any integer n ≥ 0 and r ≥ 0,

p−4

(
2 · 32r+2 · n+ 32r+1

)
qn ≡ 0 (mod 32). (5.2)

p−4

(
2 · 32r+2 · n+ 5 · 32r+1

)
qn ≡ 0 (mod 32). (5.3)

Proof of Theorem 5.1. Setting t = 4 in (1.1), we obtain

∞∑
n=0

p̄−4(n)q
n =

f4
2

(f4
1 )

2
. (5.4)

Applying dissection identity (4.2) in (5.4), we obtain
∞∑
n=0

p̄−4(2n+ 1)qn = 8
f16

2

f20
1
. (5.5)

Employing binomial theorem, we obtain
∞∑
n=0

p̄−4(2n+ 1)qn ≡ 8ψ4(q) (mod 128). (5.6)

Let tm denote the number of representations of n as sum of m triangular numbers, then

ψm(q) =
∞∑
n=0

tm(n)qn. (5.7)

For m = 4, we obtain
∞∑
n=0

p̄−4(2n+ 1)qn ≡ 8
∞∑
n=0

t4(n)q
n (mod 128). (5.8)

From [1, p 72,(3.6.6)], for each positive integer n, we have

t4(n) = σ(2n+ 1), where σ(n) =
∑
d/n

d. (5.9)

From identities (5.8) and (5.9), we obtain identity (5.1) of Theorem 5.1.
From [2, p 40, Entry 25], we have

ψ(q) =
f6f

2
9

f3f18
+ q

f2
18
f9
. (5.10)

Substituting (5.10) in (5.6), we obtain
∞∑
n=0

p̄−4(2n+ 1)qn ≡ 8
f4

6 f
8
9

f4
3 f

4
18

+ 16q2 f
2
6 f

2
9 f

2
18

f2
3

+ 8q4 f
8
18

f4
9

(mod 32). (5.11)

Extracting coefficients of q3n+1 from (5.11), we obtain
∞∑
n=0

p̄−4(6n+ 3)qn ≡ 8q
f8

6

f4
3

(mod 32).
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Again from above identity extracting coefficients of q3n+i, where i = 0, 1, 2, we obtain

∞∑
n=0

p̄−4(18n+ 3)qn ≡ 0 (mod 32), (5.12)

∞∑
n=0

p̄−4(18n+ 9)qn ≡ 8q
f8

2

f4
1

(mod 32), (5.13)

∞∑
n=0

p̄−4(18n+ 15)qn ≡ 0 (mod 32). (5.14)

Using induction on r, we obtain identities (5.2) and (5.3) of Theorem 5.1.

Theorem 5.2. Let p be a prime such that p ≡ 1 (mod 4) and
if p−4(p) ≡ 0 (mod 1024), then for all r, n ≥ 0

p−4

(
2 · p4r · n+ p4r

)
≡ (p)10r · p−4

(
2 · n+ 1

)
(mod 128). (5.15)

Let p ≥ 3 be a prime such that (p+ 1) ≡ 0 (mod 6), then for all r, n ≥ 0

p−4

(
6 · p2r · n+ p2r

)
≡ (−p)r · p−4

(
6 · n+ 1

)
(mod 32). (5.16)

Proof. Extracting coefficient of q3n from identity (5.11), and the employing binomial theorem,
we obtain

∞∑
n=0

p̄−4(6n+ 1)qn ≡ 8f4
1 (mod 32). (5.17)

Define
∞∑
n=0

a(n) = f4
1 .

We have

p̄−4(6n+ 1) = 8a(n) (mod 32). (5.18)

From Newman’s Lemma 2.10, we have

a

(
np+

p2 − 1
6

)
= (−p) · a

(
n

p

)
. (5.19)

Changing n to np in identity (5.19), we obtain

a

(
p2n+

p2 − 1
6

)
= (−p) · a(n). (5.20)

Changing n to p2n+ p2−1
6 in (5.18), we obtain

p̄−4(6p2n+ p2) ≡ 8(−p) · a(n) (mod 32). (5.21)

Using mathematical induction on r we will obtain identity (5.16) of Theorem 5.2.

Applying binomial theorem in (5.5), we obtain

∞∑
n=0

p̄−4(2n+ 1)qn ≡ 8f12
1 (mod 128). (5.22)
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Define
∞∑
n=0

C(n)qn ≡ f12
1 (mod 128). (5.23)

Clearly,

p̄−4(2n+ 1) ≡ 8 · C(n) (mod 128). (5.24)

From (2.9), we have

C

(
np+

p− 1
2

)
= C

(
p− 1

2

)
C(n)− p5C

(
n− p−1

2
p

)
.

Change n to pn+ p−1
2 in above identity

C

(
p2n+

p2 − 1
2

)
= C

(
p− 1

2

)
C

(
pn+

p− 1
2

)
− p5C(n). (5.25)

Also change n to pn+ p−1
2 in identity (5.25), we obtain

C

(
p3n+

p3 − 1
2

)
= C

(
p− 1

2

)
C

(
p2n+

p2 − 1
2

)
− p5C

(
pn+

p− 1
2

)
. (5.26)

Changing n to pn+ p−1
2 in (5.26) and substituting (5.25) and (5.26),we obtain

C

(
p4n+

p4 − 1
2

)
= C

(
p− 1

2

)(
C2
(
p− 1

2

)
− 2p5

)
C

(
pn+

p− 1
2

)
− p5

(
C2
(
p− 1

2

)
− p5

)
C(n).

If p−4(p) ≡ 0 (mod 1024), then C
(

p−1
2

)
≡ 0 (mod 128), therefore

C

(
p4n+

p4 − 1
2

)
≡ p10C(n) (mod 128).

Again changing n to p4n+ p4−1
2 in (5.24) and simplifying, we obtain

p̄−4
(
2 · p4n+ p4) ≡ p10p̄−4

(
2n+ 1

)
(mod 128).

Using Mathematical induction on r, we complete the proof of identity (5.15) of Theorem 5.2
.

Theorem 5.3. For any integer n, ℓ ≥ 0, we have

p−(5ℓ+4)(5n+ 2) ≡ p−(5ℓ+4)(5n+ 3) ≡ 0 (mod 5).

Proof. From (1.1), we have
∞∑
n=0

p̄−(5ℓ+4)(n)q
n =

f5ℓ+4
2

f10ℓ+8
1

=
f

5(ℓ+1)
2

f
10(ℓ+1)
1

.
f2

1
f2

≡
f ℓ+1

10

f2ℓ
5
.
f2

1
f2

(mod 5). (5.27)

f2
1
f2

= φ(q25) + 2qf
(
q15, q35)+ 2q4f

(
q5, q45) . (5.28)

Applying (5.28) in (5.27) and extracting coefficients of q5n+2 and q5n+3, we complete the proof
of Theorem 5.3
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Theorem 5.4. For any positive integers r and n, we have

p−4(5
rn) ≡ p−4(5n) (mod 5).

Proof. Again From (1.1), we have

∞∑
n=0

p̄−4(n)q
n =

f4
2

f8
1
. (5.29)

Consider the following functions

Q1(z) =
η(2z)4

η(z)8 η(2z)
60E30

4 ≡ η(2z)4

η(z)8 η(2z)
60 (mod 5).

and

Q2(z) =
η(2z)4

η(z)8 η(2z)
300.

whereE4(z) is the weight 4 normalized Eisenstein series defined asE4(z) = 1+240
∑∞

n=1 σ(n)q
n.

E4(z) is a modular form on Γ0(1) with trivial character and E4(z) ≡ 1 (mod 5). By theorem
2.3 and 2.4, we have Q1(z) and Q2(z) are modular form in the space M148 (Γ0(2), χ5) and
M148 (Γ0(2), χ6) respectively. The characters associated are χ5(•) =

(
264

•

)
and χ6(•) =

(
2304

•

)
respectively. Using (5.29), we obtain

Q1(z) =
∞∑
n=0

p̄−4(n)q
n+5f60

2 (mod 5)

and

Q2(z) ≡
∞∑
n=0

p̄−4(n)q
n+25f300

2 .

Applying the Hecke operator T5 on Q1(z), we obtain

Q1(z) | T5 =
∞∑
n=0

p̄−4(5n)qn+5f12
2 (mod 5).

Also applying T5 operator twice in Q2(z), we obtain

Q2(z) | T 2
5 ≡

∞∑
n=0

p̄−4(25n)qn+1f12
2 (mod 5).

We have Q1(z) | T5 ∈ M148 (Γ0(2), χ5) and Q2(z) | T 2
5 ∈ M148 (Γ0(2), χ6). Since both of the

above modular forms are having same weight, same level, but different character, the Strum’s
bound for such spaces is 37. With the help of Mathematica, we confirm that all co-efficient of
Q1(z) | T5 and Q2(z) | T 2

5 up to Strum’s bound are congruent modulo 5. Using Theorem2.4, we
have

Q1(z) | T5 ≡ Q2(z) | T 2
5 (mod 5).

Hence

p̄−4(25n) ≡ p̄−4(5n) (mod 5),

which is r = 2 case of Theorem 5.4. Using mathematical induction on r, we complete the proof
of Theorem 5.4.
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