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Abstract In this paper, we will study (p,q,r)- Generalized trivariate Fibonacci and (p,q,r)-
Generalized trivariate Lucas polynomials and some of their basic properties. Using these prop-
erties, we will derive the explicit formulas of (p,q,r)- Generalized trivariate Fibonacci and Lu-
cas polynomials and deduce some identities involving their generating matrices and associated
determinants.

1 Introduction

Fibonacci and Lucas sequences are among the most studied and extensively generalized ob-
jects in number theory, owing to their wide range of applications in various fields of science
and technology. A broad spectrum of generalizations of these sequences from diverse per-
spectives have been considered by several authors, and a wide range of properties have been
established[1, 3, 12, 14, 15]. In this paper, we will look at a new set of generalizations involving
these sequences.

In this section, we will discuss the fundamental concepts by citing the earlier works by vari-
ous authors that will be helpful in the subsequent development of the theme of this manuscript.
To begin with, for any integer α ≥ 2,the Fibonacci (Fα) and Lucas (Lα) numbers are recur-
sively defined as Fα = Fα−1 + Fα−2, with F0 = 0,F1 = 1 and Lα = Lα−1 + Lα−2, with
L0 = 2,L1 = 1 respectively. One such generalization of the Fibonacci numbers is the Tri-
bonacci numbers (Tα) studied by M.Feinberg [6] in 1963 by defining the recursive relation as
Tα = Tα−1 + Tα−2 + Tα−3 for all α > 2 with T0 = 0, T1 = 1, T2 = 1. In [1, 2, 7, 8, 9, 10, 11],
different authors have studied the Tribonacci numbers and deduced various properties and gen-
eralizations, obtaining several identities thereof.

In another branch of extension of Fibonacci numbers, E.C. Catalan (1883) studied the Fi-
bonacci polynomials (Fα(u)) defined by the recurrence relation Fα(u) = uFα−1(u)+Fα−2(u)
for all α ≥ 2 with F0(u) = 1,F1(u) = u. Similarly, in 1970, Bicknel originally studied the Lu-
cas polynomials(Lα(u)) characterized by the recurrence relation Lα(u) = uLα−1(u)+Lα−2(u),
α ≥ 2 with L0(u) = 2,L1(u) = u. In 1973, Hoggatt and Bicknell [3] gave a new generaliza-
tion in the form of Tribonacci polynomials (tα(u)) defined recursively as tα(u) = u2tα−1(u) +
utα−2(u)+tα−3(u), for all α > 2 with t0(u) = 0, t1(u) = 1, t2(u) = u2. Some of the Tribonacci
polynomials are 0, 1, u2, u4 + u, u6 + 2u3 + 1 . . . .

Further generalization of Fibonacci and Lucas polynomials to Bivariate Fibonacci and Lu-
cas polynomials was studied by Tan and Yang [13, 12] represented by the recursive relations
Fα(u, v) = uFα−1(u, v) + vFα−2(u, v), with F0(u, v) = 1, F1(u, v) = 1 and Lα(u, v) =
uLα−1(u, v) + vLα−2(u, v), with L0(u, v) = 2, L1(u, v) = u, for all α ≥ 2 and obtained
some of their interesting properties. Kocer and Gedikce [4, 5] studied the Trivariate Fibonacci
polynomials (Hα(u, v, w)) and Trivariate Lucas polynomials (Lα(u, v, w)) given by the re-
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currence relations Hα(u, v, w) = uHα−1(u, v, w) + vHα−2(u, v, w) + wHα−3(u, v, w), α > 2
with H0(u, v, w) = 0,H1(u, v, w) = 1, H2(u, v, w) = u and Lα(u, v, w) = uLα−1(u, v, w) +
vLα−2(u, v, w) + wLα−3(u, v, w), α > 2 with L0(u, v, w) = 3,L1(u, v, w) = u,L2(u, v, w) =
u2 + 2v, respectively and derived several properties thereof. Continuing with the same line of
motivation, in this study, we will study a new set of generalizations of the Trivariate Fibonacci
and Lucas polynomials.

2 Generalised trivariate Fibonacci and Lucas polynomials

In this section, we will develop the concepts of Generalised trivariate Fibonacci and Generalised
trivariate Lucas polynomials and discuss the key findings of the manuscript encapsulated in the
form of theorems and corollaries.

Definition 2.1. For integers α > 2 ,the (p, q, r)-Generalized trivariate Fibonacci polynomials
are defined by the recurrence relation as follows:

F∗
α(u, v, w) = p(u, v, w)F∗

α−1(u, v, w) + q(u, v, w)F∗
α−2(u, v, w)

+ r(u, v, w)F∗
α−3(u, v, w) (2.1)

with F∗
0(u, v, w) = 0,F∗

1(u, v, w) = 1,F∗
2(u, v, w) = p(u, v, w) where p(u, v, w), q(u, v, w),

r(u, v, w) are polynomials of u, v and w.

Definition 2.2. For integers α > 2 , the (p, q, r)-Generalized trivariate Lucas polynomials are
defined by the recurrence relation as follows:

L∗
α(u, v, w) = p(u, v, w)L∗

α−1(u, v, w) + q(u, v, w)L∗
α−2(u, v, w)

+ r(u, v, w)L∗
α−3(u, v, w) (2.2)

with L∗
0(u, v, w) = 3,L∗

1(u, v, w) = p(u, v, w),L∗
2(u, v, w) = p(u, v, w)2 + 2q(u, v, w) where

p(u, v, w), q(u, v, w), r(u, v, w) are polynomials of u, v and w.

For different values of p(u, v, w), q(u, v, w), r(u, v, w) and u, v, w, these recursive relations
give rise to different polynomials as under:

(i) For p(u, v, w) = u, q(u, v, w) = v, r(u, v, w) = w, we have F∗
α(u, v, w) = Hα(u, v, w),

Trivariate Fibonacci polynomials and L∗
α(u, v, w) = Lα(u, v, w), Trivariate Lucas poly-

nomials.

(ii) For p(u, v, w) = 1, q(u, v, w) = 1, r(u, v, w) = 1 gives F∗
α(1, 1, 1) = Tα, Tribonacci

numbers and F∗
α(u2, u, 1) = tα(u), Tribonacci polynomials.

Some of the values of the (p,q,r)-Generalized trivariate Fibonacci and Lucas polynomials are
written as below (writing p(u, v, w) = p, q(u, v, w) = q, r(u, v, w) = r).

α F∗
α(u, v, w) L∗

α(u, v, w)

0 0 3
1 1 p

2 p p2 + 2q
3 p2 + q p3 + 3pq + 3r
4 p3 + 2pq + q p4 + 4p2q + 4pr + 2q2

5 p4 + 3p2q + 2pr + q2 p5 + 5p3q + 4pq2 + 5q2r + 5qr
. . .
. . .
. . .

Table 1. (p, q, r)-Gereralised trivariate Fibonacci and Lucas Polynomials
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Further, the characteristic equation corresponding to the recursive relations (2.1) and (2.2) is
written as

µ3 − p(u, v, w)µ2 − q(u, v, w)µ− r(u, v, w) = 0 (2.3)

and the corresponding Binet’s formulas are

F∗
α(u, v, w) =

aα+1

(a− b)(a− c)
+

bα+1

(b− a)(b− c)
+

cα+1

(c− a)(c− b)
(2.4)

and
L∗

α(u, v, w) = aα + bα + cα (2.5)

where a, b, c are the roots of the characteristic equation (2.3).
Again,the generating functions of (p, q, r)-Generalized trivariate Fibonacci and Lucas poly-

nomials are written as follows:

F∗(t) =
∞∑
α=0

F∗
α(u, v, w) =

t

1 − pt− qt2 − rt3 (2.6)

and

L∗(t) =
∞∑
α=0

L∗
α(u, v, w) =

3 − 2pt− qt2

1 − pt− qt2 − rt3 . (2.7)

Again,taking p(u, v, w) = 1, q(u, v, w) = 1, r(u, v, w) = 1 in eq. (2.6) gives a generating
function for Tribonacci numbers (Tα) and taking p(u, v, w) = u2, q(u, v, w) = u, r(u, v, w) =
1, we get a generating function for Tribonacci polynomials (tα(u)).And with p(u, v, w) =
u, q(u, v, w) = v, r(u, v, w) = w, in eq.(2.6) and eq. (2.7), we get the generating functions
for trivariate Fibonacci H(u, v, w) and trivariate Lucas L(u, v, w) polynomials, respectively.

For further discussions, for the sake of convenience, we will write p = p(u, v, w), q =
q(u, v, w), r = r(u, v, w) and proceed as under:

Now, we will define the generating matrices of (p,q,r)-Generalized trivariate Fibonacci and
(p,q,r)-Generalized trivariate Lucas polynomials. As in [2, 7], the generating matrix for (p,q,r)-
Generalized trivariate Fibonacci polynomials is given by

H =

p 1 0
q 0 1
r 0 0

 .

Using mathematical Induction, we can easily deduce

Hα =

 F∗
α+1 F∗

α F∗
α−1

qF∗
α + rF∗

α−1 qF∗
α−1 + rF ∗

α−2 qF∗
α−2 + rF∗

α−3

rF∗
α rF∗

α−1 rF∗
α−2


where F∗

α = F∗
α(u, v, w).

Similarly, the (p,q,r)-Generalized trivariate Lucas polynomials are generated with the help
of the following matrices

H =

p 1 0
q 0 1
r 0 0

 ,

and

M0 =

L∗
2 L∗

1 L∗
0

L∗
1 L∗

0 L∗
−1

L∗
0 L∗

−1 L∗
−2

 =

p
2 + 2q p 3
p 3 − q

r

3 − q
r

q2−2pr
r2
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That is,

M1 = M0H =

L∗
2 L∗

1 L∗
0

L∗
1 L∗

0 L∗
−1

L∗
0 L∗

−1 L∗
−2


p 1 0
q 0 1
r 0 0



=

p3 + 3pq + 3r p2 + 2q p

p2 + 2q p 3
p 3 − q

r



=

L∗
3 L∗

2 L∗
1

L∗
2 L∗

1 L∗
0

L∗
1 L∗

0 L∗
−1

 .

Proceeding inductively, we can easily see that

Mα = Mα−1H =

L∗
α+2 L∗

α+1 L∗
α

L∗
α+1 L∗

α L∗
α−1

L∗
α L∗

α−1 L∗
α−2


where L∗

α = L∗
α(u, v, w).

Now, we will proceed to discuss the main results of this paper as follows:

Theorem 2.3. For any integer α ≥ 0,

L3
α(u, v, w)− 3Lα(u, v, w)L2α(u, v, w) = 6rα − 2L3α(u, v, w).

Proof. Using 2.5, we have

L∗3
α(u, v, w) = a3α + b3α + c3α + 3(aα + bα + cα)(aαbα + bαcα + cαaα)− 3aαbαcα (2.8)

Since a, b, c are roots of the equation 2.3, one can easily see that

L∗
3α(u, v, w) = a3α + b3α + c3α

L∗2
α(u, v, w)− L∗

2α(u, v, w)

2
= (aαbα + bαcα + cαaα)

3aαbαcα = 3rα

Therefore, 2.8 reduces to

L∗3
α(u, v, w) = L∗

3α(u, v, w) + 3L∗
α(u, v, w)

(
L∗2

α(u, v, w)− L∗
2α(u, v, w)

2

)
− 3rα

Consequently,

L3
α(u, v, w)− 3Lα(u, v, w)L2α(u, v, w) = 6rα − 2L3α(u, v, w)

This theorem establishes the connection between the even and odd indexed (p,q,r)-Generalized
trivariate Lucas polynomials.

Theorem 2.4. For any integer α ≥ 0,

L∗
α(u, v, w) = pF∗

α(u, v, w) + 2qF∗
α−1(u, v, w) + 3rF∗

α−2(u, v, w). (2.9)

Proof. Using the generating functions for (p,q,r)-Generalized trivariate Lucas polynomials given
by eq. (2.7) ,the theorem 2.4 can easily be established.
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This theorem establishes the connection between the (p,q,r)-Generalized trivariate Fibonacci
and (p,q,r)-Generalized trivariate Lucas polynomials. Next, we will compute the partial sums
of (p,q,r)-Generalized trivariate Fibonacci and (p,q,r)-Generalized trivariate Lucas polynomials
with different indices.

Theorem 2.5. For any integer α ≥ 0,

α∑
s=0

F∗
s(u, v, w) =

F∗
α+2(u, v, w) + (1 − p)F∗

α+1(u, v, w) + rF∗
α(u, v, w)− 1

p+ q + r − 1
(2.10)

and
α∑

s=0

L∗
s(u, v, w)

=
L∗

α+2(u, v, w) + (p− 1)L∗
α+1(u, v, w) + rL∗

α(u, v, w)− (3 − 2p− q)

p+ q + r − 1
(2.11)

provided p+ q + r ̸= 1.

Proof. We shall prove eq. (2.10) and eq.(2.11 ) by using the method of mathematical induction.
For eq.(2.10), we proceed as follows:
For α = 1, we have to show

1∑
s=0

F∗
s(u, v, w) =

F∗
3(u, v, w) + (1 − p)F∗

2(u, v, w) + rF∗
1(u, v, w)− 1

p+ q + r − 1
.

Equivalently,

F∗
0(u, v, w) + F∗

1(u, v, w)

=
F∗

3(u, v, w) + (1 − p)F∗
2(u, v, w) + rF∗

1(u, v, w)− 1
p+ q + r − 1

.

R.H.S =
F∗

3(u, v, w) + (1 − p)F∗
2(u, v, w) + rF∗

1(u, v, w)− 1
p+ q + r − 1

=
p2 + q + (1 − p)p+ r − 1

p+ q + r − 1
=

p+ q + r − 1
p+ q + r − 1

= 1 = 0 + 1

= F∗
0(u, v, w) + F∗

1(u, v, w)

= L.H.S.

Hence, the result is true for α = 1.
Suppose that the result is true for α = k. That is,

k∑
s=0

F∗
s(u, v, w) =

F∗
k+2(u, v, w) + (1 − p)F∗

k+1(u, v, w) + rF∗
k(u, v, w)− 1

p+ q + r − 1
.

Next,we will prove the result for α = k + 1, that is,

k+1∑
s=0

F∗
s(u, v, w)

=
F∗

k+3(u, v, w) + (1 − p)F∗
k+2(u, v, w) + rF∗

k+1(u, v, w)− 1
p+ q + r − 1

.
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Now,

k+1∑
s=0

F∗
s(u, v, w)

=
k∑

s=0

F∗
s(u, v, w) + F∗

k+1(u, v, w)

=
F∗

k+2(u, v, w) + (1 − p)F∗
k+1(u, v, w) + rF∗

k(u, v, w)− 1
p+ q + r − 1

+ F∗
k+1(u, v, w)

=
F∗

k+2(u, v, w) + (1 − p)F∗
k+1(u, v, w) + rF∗

k(u, v, w)− 1 + (p+ q + r − 1)F∗
k+1(u, v, w)

p+ q + r − 1

=
F∗

k+2(u, v, w) + F∗
k+1(u, v, w) + F∗

k+3(u, v, w)− pF∗
k+2(u, v, w) + rFk+2(u, v, w)− 1

p+ q + r − 1

=
F∗

k+3(u, v, w) + (1 − p)F∗
k+2(u, v, w) + rF∗

k+1(u, v, w)− 1
p+ q + r − 1

.

∴
k+1∑
s=0

F∗
s(u, v, w) =

F∗
3(u, v, w) + (1 − p)F∗

2(u, v, w) + rF∗
1(u, v, w)− 1

p+ q + r − 1
.

Hence, eq. (2.10) holds for all positive α. Similarly, we can establish that eq.(2.11) also holds
true.This establishes the theorem.

Theorem 2.6. For any integer α ≥ 0,

α∑
k=0

F∗
2k(u, v, w)

=
F∗

2α+2(u, v, w) + r2F∗
2α−2(u, v, w) + (r2 − q2 + 2rp)F∗

2α(u, v, w)− (p+ r)

[(p+ q)2 − (1 − q)2]

and

α∑
k=0

F∗
2k−1(u, v, w)

=
F∗

2α+3(u, v, w) + (1 − 2q − p2)F∗
2α+1(u, v, w) + r2F∗

2α−1(u, v, w)− (1 − q)

[(p+ q)2 − (1 − q)2]

Proof. From the recurrence relation (2.1), we have

pF∗
α(u, v, w) + rF∗

α−2(u, v, w) = F∗
α+1(u, v, w)− qF∗

α−1(u, v, w) (2.12)

Writing the equation (2.12) for different values of α we have

pF∗
0(u, v, w) + rF∗

−2(u, v, w) = F∗
1(u, v, w)− qF∗

−1(u, v, w)

pF∗
2(u, v, w) + rF∗

0(u, v, w) = F∗
3(u, v, w)− qF∗

1(u, v, w)

pF∗
4(u, v, w) + rF∗

2(u, v, w) = F∗
5(u, v, w)− qF∗

3(u, v, w)

...

pF∗
2α(u, v, w) + rF∗

2α−2(u, v, w) = F∗
2α+1(u, v, w)− qF∗

2α−1(u, v, w)

Adding these equations, we have
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1 + (p+ r)
α∑

k=0

F∗
2k−2(u, v, w) + pF∗

2k(u, v, w)

= F∗
2α+1(u, v, w) + (1 − q)

α∑
k=0

F∗
2k−1(u, v, w)

After simplification, we have

(p+ r)
α∑

k=0

F∗
2k(u, v, w)

= F∗
2α+1(u, v, w) + rF∗

2α(u, v, w)− 1 + (1 − q)
α∑

k=0

F∗
2k−1(u, v, w) (2.13)

Again, using the eq.(2.12) and proceeding as above, we can write

(p+ r)
α∑

k=0

F∗
2k−1(u, v, w)

= F∗
2α(u, v, w) + rF∗

2α−1(u, v, w) + (1 − q)
α∑

k=0

F∗
2k−2(u, v, w)

After simplification, we can write

(p+ r)
α∑

k=0

F∗
2k−1(u, v, w)

= qF∗
2α(u, v, w) + rF∗

2α−1(u, v, w) + (1 − q)
α∑

k=0

F∗
2k(u, v, w) (2.14)

Using eq. (2.13) in eq.(2.14), we get

α∑
k=0

F∗
2k(u, v, w)

=
F∗

2α+2(u, v, w) + r2F∗
2α−2(u, v, w) + (r2 − q2 + 2rp)F∗

2α(u, v, w)− (p+ r)

[(p+ q)2 − (1 − q)2]

Similarly, using eq.(2.14) in eq.(2.13), we have

α∑
k=0

F∗
2k−1(u, v, w)

=
F∗

2α+3(u, v, w) + (1 − 2q − p2)F∗
2α+1(u, v, w) + r2F∗

2α−1(u, v, w)− (1 − q)

[(p+ q)2 − (1 − q)2]

Thus the theorem is established.

Theorem 2.7.
α∑

k=0

L∗
2k(u, v, w)

=

L∗
2α+2(u, v, w) + r2L∗

2α−2(u, v, w)

+(r2 − q2 + 2rp)L∗
2α(u, v, w)− [(3r + p)(p+ r) + 2q(1 − q)]

[(p+ q)2 − (1 − q)2]
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α∑
k=0

L∗
2k−1(u, v, w)

=

L∗
2α+3(u, v, w) + (1 − 2q − p2)L∗

2α+1(u, v, w)

+r2F∗
2α−1(u, v, w)− [(q + 1)p+ (3 − q)r]

[(p+ q)2 − (1 − q)2]

Proof. Proceeding as above in Theorem 2.6, the desired results can be established.

Now, we will establish the explicit formulas for the (p,q,r)-Generalized trivariate Fibonacci
and (p,q,r)-Generalized trivariate Lucas polynomials.

Theorem 2.8. The (p, q, r)-Generalized trivariate Fibonacci and Lucas polynomials can be ex-
plicitly represented as

F∗
α(u, v, w) =

⌊α−1
2 ⌋∑

t=0

t∑
s=0

(
t

s

)(
α− t− s− 1

t

)
pα−2t−s−1qt−srs (2.15)

L∗
α(u, v, w) =

⌊α
2 ⌋∑

t=0

t∑
s=0

α

α− t− s

(
t

s

)(
α− t− s

t

)
pα−2t−sqt−srs (2.16)

such that (ji) = 0 for i > j .

Proof. We will prove this result by using the principle of mathematical induction. Firstly, for the
sake of simplicity, we will write

GF∗(α, t) =
t∑

s=0

(
t

s

)(
α− s

t

)
pα−t−sqt−srs (2.17)

and

GL∗(α, t) =
t∑

s=0

α+ t

α− s

(
t

s

)(
α− s

t

)
pα−t−sqt−srs. (2.18)

Then, it can be easily seen that,

GF∗(α+ 1, t) = pGF∗(α, t) + qGF∗(α, t− 1) + rGF∗(α− 1, t− 1) (2.19)

and

GL∗(α+ 1, t) = pGL∗(α, t) + qGL∗(α, t− 1) + rGL∗(α− 1, t− 1) (2.20)

For α = 1, 2, 3, 4 , the result (2.15) is true. Suppose the result is true for α = k. That is,

F∗
k(u, v, w) =

⌊ k−1
2 ⌋∑

t=0

t∑
s=0

(
t

s

)(
k − t− s− 1

t

)
pk−2t−s−1qt−srs. (2.21)

With the help of eq. (2.17), eq. (2.21) can be rewritten as

F∗
k(u, v, w) =

⌊α−1
2 ⌋∑

t=0

GF∗(α− t− 1, t)

=

⌊ k−1
2 ⌋∑

t=0

t∑
s=0

(
t

s

)(
k − t− s− 1

t

)
pk−2t−s−1qt−srs. (2.22)
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Next, we will show that the result is true for α = k + 1, that is, we have to show

F∗
k+1(u, v, w) =

⌊ k
2 ⌋∑

t=0

t∑
s=0

(
t

s

)(
k − t− s

t

)
pk−2t−sqt−srs.

Using eq.2.19 and eq.2.22, we proceed as follows:

L.H.S = F∗
k+1(u, v, w)

= pF∗
k(u, v, w) + qF∗

k−1(u, v, w) + rF∗
k−2(u, v, w)

= p[

⌊ k−1
2 ⌋∑

t=0

t∑
s=0

GF∗(k − t− 1, t) + q[

⌊ k−2
2 ⌋∑

t=0

t∑
s=0

GF∗(k − t− 2, t)

+ r[

⌊ k−3
2 ⌋∑

t=0

t∑
s=0

GF∗(k − t− 3, t)]

= GF∗(k, 0) +GF∗(k − 1, 1) +GF∗(k − 2, 2)

+GF∗(k − 3, 3) + ......+GF∗(
k + 1

2
,
k − 1

2
) +GF∗(

k

2
,
k

2
)

=

⌊ k
2 ⌋∑

t=0

GF∗(k − t, t)

=

⌊ k
2 ⌋∑

t=0

t∑
s=0

(
t

s

)(
k − t− s

t

)
pk−2t−sqt−srs

= R.H.S.

∴ F∗
k+1(u, v, w) =

⌊ k
2 ⌋∑

t=0

t∑
s=0

(
t

s

)(
k − t− s

t

)
pk−2t−sqt−srs.

Thus, by induction,the result in eq.(2.15) holds for all α.Similarly we can obtain eq.(2.16) for
(p,q,r) -Generalized trivariate Lucus polynomials.

Now, with the establishment of explicit formulae for the (p,q,r) -Generalized trivariate Fi-
bonacci and (p,q,r) -Generalized trivariate Lucus polynomials, we are in a position to deduce
some results involving partial derivatives and Jacobians of the (p,q,r) -Generalized trivariate
Fibonacci and (p,q,r) -Generalized trivariate Lucus polynomials.

Theorem 2.9. Let F∗
α(u, v, w) and L∗

α(u, v, w) be (p,q,r)-Generalized trivariate Fibonacci
and Lucas Polynomials respectively. Then

∂(p,L∗
α(u, v, w), r)

∂(u, v, w)
= αF∗

α−1(u, v, w)
∂(p, q, r)

∂(u, v, w)

where the jacobian, ∂(f1,f2,f3)
∂(u,v,w) =

∣∣∣∣∣∣∣
∂f1
∂u

∂f1
∂v

∂f1
∂w

∂f2
∂u

∂f2
∂v

∂f2
∂w

∂f3
∂u

∂f3
∂v

∂f3
∂w

∣∣∣∣∣∣∣ for the functions f1, f2, f3 of three variablesu, v, w.

Proof. From Theorem 2.8, eq.(2.16), we have,

L∗
α(u, v, w) =

⌊α
2 ⌋∑

t=0

t∑
s=0

α

α− t− s

(
t

s

)(
α− t− s

t

)
pα−2t−sqt−srs. (2.23)
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Differentiating eq. (2.23) w.r.t u, partially ,we have

∂L∗
α(u, v, w)

∂u
=

⌊α
2 ⌋∑

t=0

t∑
s=0

α

α− t− s

(
t

s

)(
α− t− s

t

)
(α− 2t− s)pα−2t−s−1puq

t−srs

+

⌊α
2 ⌋∑

t=0

t∑
s=0

α

α− t− s

(
t

s

)(
α− t− s

t

)
pα−2t−s(t− s)quq

t−s−1rs

+

⌊α
2 ⌋∑

t=0

t∑
s=0

α

α− t− s

(
t

s

)(
α− t− s

t

)
pα−2t−sqt−srusr

s

= αpu

⌊α−1
2 ⌋∑

t=0

t∑
s=0

(
t

s

)(
α− t− s− 1

t

)
pα−2t−s−1qt−srs

+ αqu

⌊α−2
2 ⌋∑

t=0

t∑
s=0

(
t

s

)(
α− t− s− 2

t

)
pα−2t−s−2qt−srs

+ αru

⌊α−3
2 ⌋∑

t=0

t∑
s=0

(
t

s

)(
α− t− s− 3

t

)
pα−2t−s−3qt−srs

= αpuF∗
α(u, v, w) + αquF∗

α−1(u, v, w) + αruF∗
α−2(u, v, w).

Therefore,

∂L∗
α(u, v, w)

∂u
= αpuF∗

α(u, v, w) + αquF∗
α−1(u, v, w) + αruF∗

α−2(u, v, w). (2.24)

Similarly,

∂L∗
α(u, v, w)

∂v
= αpvF∗

α(u, v, w) + αqvF∗
α−1(u, v, w) + αrvF∗

α−2(u, v, w). (2.25)

∂L∗
α(u, v, w)

∂w
= αpwF∗

α(u, v, w) + αqvF∗
α−1(u, v, w) + αrwF∗

α−2(u, v, w). (2.26)

Multiplying eq.(2.25) by rw and eq. (2.26) by rv and subtracting we have,[
rw

∂L∗
α(u, v, w)

∂v
− rv

∂L∗
α(u, v, w)

∂w

]
= α [pvrw − pwrv]F∗

α(u, v, w) + α [qvrw − qwrv]F∗
α−1(u, v, w) (2.27)

Similarly, multiplying eq.(2.24) by rw and eq. (2.26) by ru and subtracting we have,[
rw

∂L∗
α(u, v, w)

∂u
− ru

∂L∗
α(u, v, w)

∂w

]
= α [purw − pwru]F∗

α(u, v, w) + α [qurw − qwru]F∗
α−1(u, v, w) (2.28)

Again, multiplying eq.(2.24) by rv and eq. (2.25) by ru and subtracting we have,[
rv

∂L∗
α(u, v, w)

∂u
− ru

∂L∗
α(u, v, w)

∂v

]
= α [purv − pvru]F∗

α(u, v, w) + α [qurv − qvru]F∗
α−1(u, v, w) (2.29)

Now, using eqs.(2.27),(2.28) and (2.29), we have

∂(p,L∗
α(u, u, w), r)

∂(u, v, w)
= αF∗

α−1(u, v, w)
∂(p, q, r)

∂(u, v, w)

This completes the proof.
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Theorem 2.10. Let F∗
α(u, v, w) and L∗

α(u, v, w) be (p, q, r)-Generalized trivariate Fibonacci
and Lucas Polynomials respectively.Then

p
∂L∗

α(u, v, w)

∂p
+ q

∂L∗
α(u, v, w)

∂q
+ r

∂L∗
α(u, v, w)

∂r
= αF∗

α(u, v, w).

Proof. From Theorem 2.8, eq. (2.16) we have,

L∗
α(u, v, w) =

⌊α
2 ⌋∑

t=0

t∑
s=0

α

α− t− s

(
t

s

)(
α− t− s

t

)
pα−2t−sqt−srs.

Differentiating this equation w.r.t. p, q and r partially and adding , we get the desired result.

At the end, we will now look at the identities relating to the generating matrices and determi-
nants of the (p,q,r) -Generalized trivariate Fibonacci and (p,q,r) -Generalized trivariate Lucus
polynomials.

Theorem 2.11. For any positive integers α, β

F∗
α+β(u, v, w) = F∗

β+1(u, v, w)F∗
α(u, v, w) + F∗

β(u, v, w)F∗
α+1(u, v, w)

+ rF∗
β−1(u, v, w)F∗

α−1(u, v, w)− pF∗
β(u, v, w)F∗

α(u, v, w).

For β = α

F∗
2α(u, v, w) = rF∗2

α+1(u, v, w)− pF∗2
α(u, v, w) + 2F∗

α+1(u, v, w)F∗
α(u, v, w).

For β = α+ 1

F∗
2α+1(u, v, w) = F∗2

α+1(u, v, w) + qF∗2
α(u, v, w) + 2rF∗

α(u, v, w)F∗
α−1(u, v, w).

Proof. By using the identity Hα+β = HαHβ and matrix equality,the desired result can be es-
tablished.

Theorem 2.12. For any positive integer α,∣∣∣∣∣∣∣
F∗

α+2 F∗
α+1 F∗

α

F∗
α+1 F∗

α F∗
α−1

F∗
α F∗

α−1 F∗
α−2

∣∣∣∣∣∣∣ = −rα−1

where F∗
α = F∗

α(u, v, w).

Proof. Evidently det (H)=r and hence det (Hα)= rα. With the help of elementary determinantal
operations, the desired result can be established.

This establishes the determinant properties of (p,q,r)-Generalized trivariate Fibonacci poly-
nomials. Taking p = q = r = 1 with u = v = w = 1, we obtain the determinant property of
Tribonacci numbers, and by taking p = u2, q = u, r = 1, the determinant property of Tribonacci
polynomials is obtained.

Next, we will attempt to establish the determinant properties of (p,q,r)-Generalized trivariate
Lucas polynomials.

Theorem 2.13. For any positive integer α

Mα = M0H
α,

where H1 = H.
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Proof. The result can be easily established using the principle of mathematical induction. For
α = 1, clearly

M1 = M0H
1 = M0H

As,

M0H =

p
2 + 2q p 3
p 3 − q

r

3 − q
r

q2−2pr
r2


p 1 0
q 0 1
r 0 0



=

p3 + 3pq + 3r p2 + 2q p

p2 + 2q p 3
p 3 − q

r



=

L∗
3 L∗

2 L∗
1

L∗
2 L∗

1 L∗
0

L∗
1 L∗

0 L∗
−1

 = M1

Suppose the result is true for α = k,that is,

Mk = M0H
k

Next, we shall prove that the result is true for n = k + 1, that is,

Mk+1 = M0H
k+1

Now,

M0H
k+1 = M0H

kH = MkH =

L∗
k+2 L∗

k+1 L∗
k

L∗
k+1 L∗

k L∗
k−1

L∗
k L∗

k−1 L∗
k−2


p 1 0
q 0 1
r 0 0



=

pL∗
k+2 + qL∗

k+1 + rL∗
k L∗

k+1 L∗
k

pL∗
k+2 + qL∗

k+1 + rL∗
k L∗

k L∗
k−1

pL∗
k + qL∗

k−1 + rL∗
k−2 L∗

k−1 L∗
k−2



=

L∗
k+3 L∗

k+2 L∗
k+1

L∗
k+2 L∗

k+1 L∗
k

L∗
k+1 L∗

k L∗
k−1

 = Mk+1

Hence the result is true for all positive integers α.

Theorem 2.14. For any positive integer α, β

L∗
α+β(u, v, w) = L∗

α+1(u, v, w)Fβ(u, v, w) + Fβ+1(u, v, w)L∗
α(u, v, w)

+ rL∗
α−1(u, v, w)Fβ−1(u, v, w)− pL∗

α(u, v, w)Fβ(u, v, w)

For α = β
L∗

2α = L∗
α+1Fα + Fα+1L∗

α + rL∗
α−1Fα−1 − pL∗

αFα

For β = α+ 1

L∗
2α+1 = L∗

α+1Fα+1 + Fα+2L∗
α + rL∗

α−1Fα − pL∗
αFα+1

Proof. Using theorem 2.10, we can easily see that

Mα+β = Mα·Hβ (2.30)

Using the definition of Mα and Hβ in 2.30, we can establish the desired result.
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3 Conclusion

In this paper , we considered the sequences of (p,q,r)-Generalized trivariate Fibonacci and
(p,q,r)-Generalized trivariate Lucas polynomials and derived some identities, including their
explicit formulae. By using the basic recursive formulas through elementary algebraic com-
putations, we introduced some matrix and determinantal properties of these polynomials. This
work is expected to inspire prospective researchers to work out similar generalizations for other
orthogonal polynomials too.These outcomes undoubtedly supplement and augment the existing
repository of research literature on trivariate Fibonacci and Lucas polynomials and analogous
orthogonal polynomials.This research is expected to deepen our understanding of the combina-
torial and analytic properties associated with the trivariate Fibonacci and Lucas polynomials, in
addition to assisting in the investigation of certain general summation problems arising in both
applied and pure mathematics involving these polynomials.
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