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Abstract This paper establishes the Donoho-Stark and local-type uncertainty principles in
the framework of the continuous index Whittaker wavelet transform. Additionally, it is shown
that the associated transform space forms a reproducing kernel Hilbert space. These results
provide a deeper understanding of uncertainty principles in the context of harmonic analysis.

1 Introduction

Wavelet transforms decompose signals into localized wavelets in both time and frequency do-
mains, facilitating analysis of diverse signals [15, 5]. However, the uncertainty principle, in-
troduced by Donoho and Stark in 1989, dictates a trade-off: precise frequency measurement
compromises temporal precision and vice versa [6]. This principle guides parameter selection in
practical applications, like signal processing and pattern recognition, to ensure accurate feature
representation. Despite these challenges, wavelet analysis has found success in signal and im-
age processing, data compression, and numerical analysis [26, 7, 3, 11]. Local-type uncertainty
principles are crucial in Whittaker wavelet analysis, offering a framework to understand wavelet
localization and trade-offs between time and frequency resolution [7]. These principles help de-
sign wavelets with specific localization properties by optimizing wavelet performance through
parameter selection for various applications [23, 17, 6].

In 1927, Werner Heisenberg introduced the concept of uncertainty, which has become a cor-
nerstone of quantum mechanics. In the realm of mathematics, an uncertainty principle is defined
as an inequality that places constraints on the simultaneous concentration of a function and its
Fourier transform. Depending on the mathematical perspective applied to the abstract notion
of concentration and the choice of signal representation, various types of uncertainty principles
can be formulated. The field has seen extensive development since Heisenberg’s pioneering
work, with a rich body of literature available on this subject, as evidenced by references such as
[5, 6, 10, 12, 23, 17]. Recent studies have significantly advanced uncertainty principles for vari-
ous wavelet and integral transforms, reinforcing their theoretical foundations. The results in [27]
establish Benedicks–Amrein–Berthier uncertainty principles for quaternion wavelet transforms,
while [28] extends these principles to Clifford-valued linear canonical wavelet transforms. The
work in [29] develops wavelet transforms associated with the quadratic-phase Hankel transform,
and [30] explores the quaternion quadratic-phase Fourier transform. These developments closely
align with the present study, underscoring its relevance to contemporary research in harmonic
analysis.

The qualitative uncertainty principle belongs to a category of uncertainty principles that char-
acterizes the behavior of a signal, denoted as f , and its Fourier transform, represented as F(f),
under specific conditions. The Donoho-Stark uncertainty principle, for instance, exemplifies this
concept by defining constraints on the simultaneous concentration of both f and F(f).

The Whittaker transform, an integral transform of the index type, was introduced by Wimp
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in 1964, as documented in [24]. Its definition is as follows

F (τ) =

∫ ∞

0
Wµ,iτ (x)f(x)x

−2dx, τ > 0,

where i is the imaginary unit, µ < 1
2 is a parameter and Wµ,iτ is the Whittaker function. As a

specific instance of an integral transform using the Meijer-G function in the kernel, this trans-
formation initially appears in [24]. In [22], its Lp hypothesis was thoroughly researched. It can
be simplified to the well-known Kontorovich-Lebedev transform [9, 8] for µ = 0, one of the
most popular index transformations with a wide variety of applications. Numerous authors have
looked into the index integral transform with kernel Whittaker function (see [14, 15, 1, 2, 4, 19,
18, 22, 21, 20, 24]).

Recently, Prasad et al. [15] defined the continuous index Whittaker wavelet transform and
investigated its properties using the index Whittaker transform convolution theory.

In this paper, our focus lies in investigating uncertainty principles that pertain to the index
Whittaker wavelet transform [15, 13]. Dades et al. [5] conducted a study on uncertainty princi-
ples within the context of the Kontorovich-Lebedev wavelet transform. Given the multitude of
integral transforms in existence, it is impractical to comprehensively cover all of them within a
single expository and survey article.

The structure of this article is as follows: In Section 2, we provide important preliminaries
related to the index Whittaker transform and the index Whittaker wavelet transform. In Section
3, it is shown that Wϕb,c

(La2(R+, dµ)) is a reproducing kernel Hilbert space in La2(R+, dµ). In
the section 4, we establish Donoho-Stark and Local-type uncertainty principles. Finally, Section
5 presents the concluding remarks and discusses the scope for extending the present study to
various other integral transforms.

2 Preliminaries

This section provides an overview of the fundamental characteristics of the continuous index
Whittaker wavelet transform and explores the theoretical framework of the index Whittaker
transform as examined in the work by [15, 13].

The index Whittaker transform of a suitable function f is defined on R+ as

F (τ) = (Ψaf)(τ) =

∫ ∞

0
xa+iτΨ(a+ iτ, 1 + 2iτ ;x)f(x)dµ, τ ∈ R+, (2.1)

where, dµ = ma(x)dx and ma(x) = x−2a−1e−x, the measure defined on R+ is given as

dµ = ma(x)dx, a > 0, (2.2)

and the integral representations of xa+iτΨ(a+ iτ, 1 + 2iτ ;x) is given as

xa+iτΨ(a+ iτ, 1 + 2iτ ;x) =
xa+

1
2

2

∫ ∞

1
e−

x
2 (t−1)

(
t− 1
t+ 1

) a
2 −

1
4

P
1
2 −a
− 1

2+iτ
(t)dt,

where P
1
2 −a
− 1

2+iτ
(t) represents the associated Legendre function of the first kind and for its com-

prehensive review one can refer [9, 8].
This readily leads to the subsequent inequality [15, 13]

|xa+iτΨ(a+ iτ, 1 + 2iτ ;x)| ≤ 1. (2.3)

The space Lap(R+, dµ) comprises all real-valued, measurable functions f on R+ that satisfy
the following condition

∥f∥La
p(R+,dµ) =


[∫∞

0 |f(x)|pdµ(x)
] 1

p

<∞, for 1 ≤ p <∞

ess sup
x∈R+

|f(x)| <∞, for p = ∞.
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For convenience Lap- norm is denoted by ∥ · ∥p,µ.
Also the inversion formula for (2.1) is given as

(Ψ−1
a F )(x) =

∫ ∞

0
xa+iτΨ(a+ iτ, 1 + 2iτ ;x)F (τ)ρa(τ)dτ, (2.4)

where ρa(τ) is given by π−2τ sinh(2πτ)|Γ(a+ iτ)|2.
The Whittaker translation operator of order a is given as

(T y
a f)(x) =

∫ ∞

0
f(ξ)qa(x, y, ξ)dµ(ξ), x, y ∈ R+, (2.5)

where qa(x, y, ξ) is a symmetric function defined as

qa(x, y, ξ) = 2− 3
2+aπ− 1

2 (xyξ)a exp
(
x+ y + ξ − (xy + xξ + yξ)2

8xyξ

)
× D1−2a

(
xy + xξ + yξ

(2xyξ) 1
2

)
. (2.6)

Also one has [19] ∫ ∞

0
qa(x, y, ξ)dµ(ξ) = 1, (2.7)

for x, y ∈ R+.
The Whittaker convolution operator related to (2.1) is given as

(f ∗
a
g)(x) =

∫ ∞

0
(T x
a f)(ξ)g(ξ)dµ(ξ)

=

∫ ∞

0

∫ ∞

0
qa(x, y, ξ)f(y)g(ξ) dµ(y) dµ(ξ). (2.8)

The index Whittaker transform of translation and convolution operators are as follows

(Ψa(T y
a f))(τ) = ya+iτΨ(a+ iτ, 1 + 2iτ ; y)(Ψaf)(τ) (2.9)

(Ψa(f ∗
a
g))(τ) = (Ψaf)(τ)(Ψag)(τ). (2.10)

The Parseval formula for (2.1) is given as∫ ∞

0
f(x)g(x) dµ(x) =

∫ ∞

0
(Ψaf)(τ)(Ψag)(τ) ρa(τ)dτ. (2.11)

Let c ∈ R+. The dilation operator Dc of a measurable function ϕ, is defined by [15]

(Dcϕ)(x) = ϕ(cx). (2.12)

A function ϕ ∈ La2(R+, dµ) is called admissible Whittaker wavelet if

Cϕ =

∫ ∞

0

|(Ψaϕ)(τ)|2

|τ |
dτ <∞. (2.13)

For such ϕ, the continuous Whittaker wavelet transform (Wϕf)(b, c) is defined on La2(R+, dµ)
as

(Wϕf)(b, c) =

∫ ∞

0
f(x)ϕb,c(x)dµ(x), (b, c) ∈ R2

+, (2.14)

where ϕb,c(x) = T b
a (Dcϕ) (x).

Define the measure ν on R2
+ by

dν(b, c) = σ(c)ma(c)dc ma(b)db,
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and Lap(R2
+, dν), 1 ≤ p ≤ ∞, the Lebesgue space on R2

+ with respect to the measure ν with the
Lap- norm denoted by ∥ · ∥p,ν .
The transformation Wϕ can also be written

(Wϕf)(b, c) = (f ∗
a
ϕ(c.))(b). (2.15)

From [15], we have

(Wϕf)(b, c) = Ψ
−1
a ((Ψaf)(τ)(Ψaϕ)(c, τ))(b), (2.16)

where (Ψaϕ)(c, τ) is defined in [15].
Also one has

(Ψa(Wϕf)(·, c))(τ) = (Ψaf)(τ)(Ψaϕ)(c, τ). (2.17)

The continuous index Whittaker wavelet transform satisfies the following properties (see [15])
(A) (Plancherel relation) Let ϕ, ψ ∈ La2(R+, dµ) be Whittaker wavelet such that (Ψaϕ)(c, τ) =
(Ψaϕ(cτ) and (Ψaψ)(c, τ) = (Ψaψ)(cτ) respectively, and σ(c) = c2aec be a weight function so
that

Cϕ,ψ =

∫ ∞

0
(Ψaϕ)(cτ)(Ψaψ)(cτ)σ(c)dµ(c) <∞ (2.18)

no longer depends on τ .
Then ∫ ∞

0

∫ ∞

0
(Wϕf)(b, c)(Wψg)(b, c)dν(b, c)

= Cϕ,ψ ⟨f, g⟩µ . (2.19)

(B) (Parseval relation) ∫ ∞

0

∫ ∞

0
|(Wϕf)(b, c)|2dν(b, c) = Cϕ∥f∥2

2,µ. (2.20)

3 New Results

Lemma 3.1. Let ϕ is an admissible Whittaker wavelet. For every function f ∈ La2(R+, dµ), we
have ∫ ∞

0
|Ψa((Wϕf)(b, c))|2 ρa(τ)dτ =

∫ ∞

0
|(Wϕf)(b, c)|2 dµ(b). (3.1)

Proof. Using (2.11), (2.15) and (2.17), we get∫ ∞

0
|(Wϕf)(b, c)|2 dµ(b) =

∫ ∞

0

∣∣∣(f ∗
a
ϕ(c.))(b)

∣∣∣2 dµ(b)
=

∫ ∞

0
|(Ψaf)(τ)|2|(Ψaϕ)(aτ)|2ρa(τ)dτ

=

∫ ∞

0
|Ψa((Wϕf)(b, c))|2 ρa(τ)dτ.

Remark 3.2. For every ϕ ∈ La2(R+, dµ) and (b, c) ∈ R2
+, the function ϕb,c belongs toLa2(R+, dµ)

and one has [13]

∥ϕb,c∥2,µ ≤ ∥ϕ(c·)∥2,µ. (3.2)
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Theorem 3.3 (Lieb inequality). Let ϕb,c and ψb,c are two admissible Whittaker wavelet. For
1 ≤ p ≤ ∞ and f, g ∈ La2(R+, dµ), the function

(b′, c′) −→ Wϕb,c
(f)(b′, c′)Wψb,c

(g)(b′, c′)

belong to Lap(R+, dµ) and

∥Wϕb,c
(f)Wψb,c

(g)∥p,ν ≤
(√

Cϕb,c
Cψb,c

) 1
p

∥f∥2,µ∥g∥2,µ (∥ϕ(c·)∥2,µ∥ψ(c·)∥2,µ)
1− 1

p .

Proof. (i) Utilizing the Cauchy-Schwarz inequality and the Plancherel theorem within the con-
text of continuous index Whittaker wavelet transforms Wϕb,c

(f) and Wψb,c
(g), for every f, g ∈

La2(R+, dµ), ∫ ∞

0

∫ ∞

0
|Wϕb,c

(f)(b′, c′)Wψb,c
(g)(b′, c′)|dν(b′, c′)

≤ ∥Wϕb,c
(f)∥2,ν∥Wψb,c

(g)∥2,ν

=
√
Cϕb,c

Cψb,c
∥f∥2,µ∥g∥2,µ,

which implies that Wϕb,c
(f)Wψb,c

(g) belongs to La1(R+, dν) and

∥Wϕb,c
(f)Wψb,c

(g)∥1,ν ≤
(√

Cϕb,c
Cψb,c

)
∥f∥2,µ∥g∥2,µ.

(ii) For every (b′, c′) ∈ R2
+, we have

|Wϕb,c
(f)(b′, c′)Wψb,c

(g)(b′, c′)| ≤ ∥f∥2,µ∥ϕb,c∥2,µ∥g∥2,µ∥ψb,c∥2,µ

= ∥f∥2,µ∥ϕ(c·)∥2,µ∥g∥2,µ∥ψ(c·)∥2,µ,

which implies that Wϕb,c
(f)Wψb,c

(g) belongs to La∞(R+, dν) and

∥Wϕb,c
(f)Wψb,c

(g)∥∞,ν ≤ ∥f∥2,µ∥g∥2,µ∥ϕ(c·)∥2,µ∥ψ(c·)∥2,µ.

(iii) For 1 ≤ p <∞, we have(∫ ∞

0

∫ ∞

0
|Wϕb,c

(f)(b′, c′)Wψb,c
(g)(b′, c′)|pdν(b′, c′)

) 1
p

=

(∫ ∞

0

∫ ∞

0
|Wϕb,c

(f)(b′, c′)Wψb,c
(g)(b′, c′)|p−1+1dν(b′, c′)

) 1
p

≤ ∥Wϕb,c
(f)Wψb,c

(g)∥
p−1
p

∞,ν∥Wϕb,c
(f)Wψb,c

(g)∥
1
p

1,ν

≤ (∥f∥2,µ∥g∥2,µ∥ϕ(c·)∥2,µ∥ψ(c·)∥2,µ)
p−1
p

(√
Cϕb,c

Cψb,c
∥f∥2,µ∥g∥2,µ

) 1
p

=
(√

Cϕb,c
Cψb,c

) 1
p

∥f∥2,µ∥g∥2,µ (∥ϕ(c·)∥2,µ∥ψ(c·)∥2,µ)
1− 1

p .

Theorem 3.4. Let ϕb,c is an admissible Whittaker wavelet. For every f ∈ La2(R+, dµ), the
function Wϕb,c

(f) belongs to Lap(R+, dν), with 2 ≤ p ≤ ∞ and we have

∥Wϕb,c
(f)∥p,ν ≤ C

1
p

ϕb,c
∥f∥2,µ∥ϕ(c·)∥

1− 2
p

2,µ . (3.3)

Proof. For p = 2, the Plancherel theorem for the continuous index Whittaker wavelet transform
(2.20) yields

∥Wϕb,c
(f)∥2,ν ≤ C

1
2
ϕb,c

∥f∥2,µ.
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On the other hand, for p = ∞, from (2.14) and the relation (3.2), we have

|Wϕb,c
(f)(b′, c′)| ≤ ∥ϕb,c∥2,µ∥f∥2,µ = ∥ϕ(c·)∥2,µ∥f∥2,µ.

So,

∥Wϕb,c
(f)∥∞,ν ≤ ∥f∥2,µ∥ϕ(c·)∥2,µ. (3.4)

We get the result from the Riesz-Thorin theorem [25].

Theorem 3.5 (Reproducing Kernel). Let ϕb,c is an admissible Whittaker wavelet. The space
Wϕb,c

(La2(R+, dµ)) constitutes a reproducing kernel Hilbert space with kernel function given by

Rϕb,c
(b′, c′, b, c) =

1
Cϕb,c

⟨ϕb,c, ϕb′,c′⟩2,µ . (3.5)

The kernel exhibits point-wise bounded, that is

∥Rϕb,c
(b′, c′, b, c)∥2

2,R+×R+
≤

∥ϕ(c′·)∥2
2,µ

Cϕb,c

, ∀(b′, c′), (b, c) ∈ R2
+. (3.6)

Proof. Let Rϕb,c
(b′, c′, b, c) be the kernel defined on R4

+ by

Rϕb,c
(b′, c′, b, c) =

1
Cϕb,c

Wϕb,c
(ϕb′,c′). (3.7)

From the relation (3.2) and Plancherel relation (2.20), we deduce that for every (b, c) ∈ R2
+, the

function

Rϕb,c
(b′, c′, ·, ·),

belong to La2(R+, dν).
From (2.14) and (2.19), we have

Wϕb,c
(f)(b′, c′) = ⟨f, ϕb′,c′⟩2,µ

=
1

Cϕb,c

〈
Wϕb,c

(f),Wϕb,c
(ϕb′,c′)

〉
2,ν

=
〈
Wϕb,c

(f),Rϕb,c
(b′, c′, b, c)

〉
2,ν .

This shows that Rϕb,c
serves as a reproducing kernel for the Hilbert space Wϕb,c

(La2(R+, dµ)).
Now by the relations (3.2), (3.7) and (2.14) we deduce that for all (b′, c′), (b, c) ∈ R2

+

∥Rϕb,c
(b′, c′, b, c)∥2

2,R2
+

=
1

C2
ϕb,c

∥Wϕb,c
(ϕb′,c′)∥2

2,R2
+

=
1

Cϕb,c

∥ϕb′,c′∥2
2,µ

≤ 1
Cϕb,c

∥ϕ(c′·)∥2
2,µ.

4 Approximation concentration

In this section, we commence by presenting a Donoho-Stark type uncertainty principle, as docu-
mented in [6], in the context of the continuous index Whittaker wavelet transform. Additionally,
we conduct an analysis of the concentration of the index Whittaker wavelet transform within a
subset of R2

+ with finite measure.
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Lemma 4.1. Let ϕb,c is an admissible Whittaker wavelet and ∥ϕb,c∥2,µ = 1. Suppose that
∥f∥2,µ = 1, then for Σ ⊂ R2

+ and δ > 0 such that∫ ∫
Σ

|Wϕb,c
(f)(b, c)|2dν(b, c) ≥ 1 − δ,

we have,

ν(Σ) ≥ 1 − δ.

Proof. From the relation (3.4) we deduce that

∥Wϕb,c
(f)∥∞,ν ≤ 1.

Thus

1 − δ ≤
∫ ∫

Σ

|Wϕb,c
(f)(b′, c′)|2dν(b′, c′) ≤ ∥Wϕb,c

(f)∥2
∞,νν(Σ) ≤ ν(Σ),

which completes the proof.

Theorem 4.2. Let ϕb,c is an admissible Whittaker wavelet and ∥ϕb,c∥2,µ = 1 and Σ ⊂ R2
+ such

that

Cϕb,c
> ν(Σ),

then, for every function f in La2(R+, dµ)

∥XΣCWϕb,c
(f)∥2,ν ≥

√
1 − ν(Σ)

Cϕb,c

√
Cϕb,c

∥f∥2,µ.

Proof. Using the relation (3.4), we have for every function f in La2(R+, dµ),

∥Wϕb,c
(f)∥2

2,ν = ∥XΣWϕb,c
(f)∥2

2,ν + ∥XΣCWϕb,c
(f)∥2

2,ν

≤ ν(Σ)∥Wϕb,c
(f)∥2

∞,ν + ∥XΣCWϕb,c
(f)∥2

2,ν

≤ ν(Σ)∥ϕ(c·)∥2
2,µ∥f∥2

2,µ + ∥XΣCWϕb,c
(f)∥2

2,ν

and the result follows from the fact that ν(Σ) < Cϕb,c
and Parseval’s formula for the continuous

index Whittaker wavelet transform (2.20).

Now, we consider the following orthogonal projections, that occur frequently in this context.
(A) Pϕ ; the orthogonal projection from La2(R2

+) onto Wϕb,c
(La2(R+, dµ)), we denote by ImPϕ

its range.
(B) PΣ the orthogonal projection on La2(R2

+) defined by

PΣG = XΣG, G ∈ La2(R2
+),

where Σ ⊂ R2
+. ImPΣ denotes its range.

We put ∥PΣPϕ∥ = sup
{
∥PΣPϕ(G)∥2,ν , G ∈ La2(R2

+); ∥G∥2,ν = 1
}

Theorem 4.3. Let ϕ is a unit norm Whittaker wavelet. For any subset Σ ⊂ R2
+ of finite measure

ν(Σ) <∞, then PΣPϕ is a Hilbert-Schmidt operator, and the following estimation holds

∥PΣPϕ∥2 ≤ ν(Σ)

Cϕ
.

Proof. Since Pϕ serves as a projection onto a reproducing kernel Hilbert space, then according
to Saitoh [16] for every function G ∈ La2(R2

+), the orthogonal projection Pϕ is characterized by
the following representation

Pϕ(G) =

∫ ∞

0

∫ ∞

0
G(b′, c′)Rϕb,c

(b′, c′, b, c)dν(b′, c′),
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where Rϕb,c
is defined by (3.5). Hence,

PΣPϕ(G)(b, c) =

∫ ∞

0

∫ ∞

0
G(b′, c′)XΣ(b, c)Rϕb,c

(b′, c′, b, c)dν(b′, c′).

Next, by applying the relation (3.5), Parseval’s relation for the continuous index Whittaker
wavelet transform as presented in (2.20), and leveraging Fubini’s theorem, we obtain

∥PΣPϕ∥2
HS

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
|XΣ(b, c)|2|Rϕb,c

(b′, c′, b, c)|2dν(b′, c′)dν(b, c)

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
|XΣ(b, c)|2

∣∣∣∣ 1
Cϕb,c

Wϕb,c
(ϕb′,c′)

∣∣∣∣2 dν(b′, c′)dν(b, c)
=

1
Cϕb,c

∫ ∫
Σ

(∫ ∞

0

∫ ∞

0

1
Cϕb,c

∣∣Wϕb,c
(ϕb′,c′)

∣∣2 dν(b′, c′)) dν(b, c)
≤

∥ϕ(c′·)∥2
2,µ

Cϕb,c

ν(Σ)

=
ν(Σ)

Cϕ
.

Thus, PΣPϕ is an integral operator with Hilbert-Schmidt kernel. The result follows from the fact
that ∥PΣPϕ∥ ≤ ∥PΣPϕ∥HS .

Theorem 4.4. Let ϕb,c is a admissible Whittaker wavelet and Σ ⊂ R2
+. If ∥PΣPϕ∥ ≤ 1, then for

every f ∈ La2(R+, dµ), we have√
Cϕb,c

∥f∥2,µ ≤ 1√
1 − ∥PΣPϕb,c

∥2
∥XΣCWϕb,c

(f)∥2,ν .

Proof. For every f in La2(R+, dµ), we have

∥Wϕb,c
(f)∥2

2,ν = ∥XΣWϕb,c
(f)∥2

2,ν + ∥XΣCWϕb,c
(f)∥2

2,ν .

Now,

XΣWϕb,c
(f) = PΣPϕb,c

(
Wϕb,c

(f)
)
,

and then from the relation (2.20),

∥XΣWϕb,c
(f)∥2

2,ν ≤ ∥PΣPϕb,c
∥2∥Wϕb,c

(f)∥2
2,ν = Cϕb,c

∥f∥2
2,µ∥PΣPϕb,c

∥2.

Thus,

∥XΣCWϕb,c
(f)∥2

2,ν ≥
(
1 − ∥PΣPϕb,c

∥2) Cϕb,c
∥f∥2

2,µ.

5 Conclusions

This study establishes the Donoho-Stark and local-type uncertainty principles within the frame-
work of the continuous index Whittaker wavelet transform, providing a functional-analytic ap-
proach to uncertainty constraints. The identification of the associated function space as a re-
producing kernel Hilbert space reinforces the structural foundation of this transform. These
results contribute to the broader framework of abstract harmonic analysis and functional analy-
sis. Moreover, the techniques developed here can be extended to other classes of index integral
transforms, further enriching their theoretical significance in mathematical analysis.
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