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Abstract This research studies a new iterative algorithm for approximating fixed points of generalized 5 — ~y-contractive
mappings of integral type. It investigates the existence of fixed points for these mappings in C AT'(0) spaces. We prove a
A-convergence theorem under appropriate conditions. The obtained result extends some recent results stated by many others.
Also, an example for clarity of obtained results is given.

1 Introduction

In [1], the authors studied generalized 8 — ~y-contractive type mappings of integral type. Also, they investigated the existence
and uniqueness of fixed points for such mappings in complete metric spaces. Also, some authors considered an implicit
relation to generalize iterative fixed point results in the literature in the context of metric spaces (see [17, 15, 16, 12, 13, 14,
18, 19]). In [2], Abkar and coauthors introduced a new iterative algorithm for approximating fixed points of 3 — ~y-contractive
type in C AT'(0) spaces.

In this research, by applying 8 — ~y-contractive mappings and entering a new iterative algorithm in C AT'(0) spaces,
we obtain some new results in this field. Also, by inserting some conditions, we prove a A-convergence theorem for our
algorithm. For this purpose, let (I, d) be a complete C'AT'(0) space, C C IT (bounded and closed convex) and T : C — C
be a given mapping.

Notation:

1- Denote by NCCS "nonempty closed convex subset".
2- Denote by CCS "closed convex subset".

3- Denote by BS "bounded sequence".

4- Denote by FP "fixed point".

5- Denote by GS "geodesic space".

6- Denote by MS "metric space".

Definition 1.1. The Mann iteration from {g;, } stated as:

Sl € C’

Sn+l = (1 - )\n)gn + A'n,—r(gn)7 n> 17
where {An}5°, C (0,1).
Definition 1.2. [5] The Ishikawa iteration process is stated

s1 €C,
Sn+l = (1 - )\n)@n + )\nT(Cn)y (L.D)
<n = (1 - ﬁn)%‘n +19nT(§n) n>1,

where {An}0° |, {¥n}52, C (0,1).

n=1’
Definition 1.3. [3] Suppose IT be a Banach space and C C IT, also, N : C — C. N is mean nonexpansive if foreach ¢, € C,
| Ne=N¢l=alls=¢ll+bllc—NC|
a,b>0, a+b<1.

Definition 1.4. [3] The iteration process is defined by:

s €C,

Tn = (I = An)sn @ AnN(sn),
Cn=N((1 —9n)Tn ® InN(m)),
Sn+l = N(Cn),

where NV is a mean nonexpansive and { A }2° |, {9 }22 | C (0, 1).

Definition 1.5. For a MS (I1, d), a geodesic joining ¢ € IIto ¢ € ITis a mapping £ : [0, d(s, ¢)] — II with
0. £(0) =,

1

9. £(d(<,¢)) = ¢,

9. d(€(p1),E(02)) =] @1 = @2 | for @1, 2 € [0, d(s, )] -
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Definition 1.6. A metric space (I, d) is geodesic if every two points in II are joined by a geodesic. (IT,d) is said to be
uniquely geodesic, if, for ¢, ¢ € TI, there is exactly one geodesic joining s and ¢ for ¢, ¢ € II, which we denote by [g, ¢]. The
point £(t) in [, €] is also denoted by (1 — ¢)s @ ¢C.

Definition 1.7. Let (I, d) be a geodesic MS. A geodesic triangle consists of three-point p11, 112, u3 € II and three geodesics
(1, 2], 12, i3] _
[u3, 1] Denote A([p1, 1], [p2, 3], [143, p1]). For such a triangle, there is a comparison triangle A(fiT, iz, 13) C R%:

il d(p, p2) = d(@r, 102),
i). d(po, p3) = d(fi2, 13)»

Definition 1.8. A GS (I, d), is a CAT'(0) space if for any geodesic triangle A C IT and p,v € A the equality d(u, v) =
d(fz, V), for i, € Ais true and IT is a C AT, (0), for p > 2, if for any A in II, there exists a comparison triangle A in £,
such that the comparison axiom hold, i.e., for ¢, { € A and all comparison points <, € A, the following inequality is true.
d(s,¢) < |15 = ClI-
Definition 1.9. A GS (I, d) is called hyperbolic ([8, 9] if, for g, C, T eIl
1 1 1 1
d , < —d
(37® 55 57® 7 20 54U ©)-
In [10] the authors established (CN) inequality in C' AT'(0) that is defined by:

1 1 1
A5 @ 3, < d(s, 1)+ 5 d(G ) — Jdls, O

Definition 1.10. Let (I, d) beaMS and T : IT — II. T is an 8 — y—contractive of integral type if there exist 8 : IT x IT —
[0, +00) and v € ¥ such that for ¢, ¢ € II,

d(Ts,TC) d(s,¢)
B(s, C)/O fi(p)dp < 7(/ h(p)dep), (1.2)

0

with i € F' where,
F={h:R" — R : £ is Lebesgue integrable, fi(cp) < ch(p)}.

Definition 1.11. A sequence ¢, in < is said to A-converge to ¢ € II if < is the unique asymptotic center of u,, for every
subsequence uy, of 5. In this case, we write A-limy, oo ¢ = < and call ¢ the A-limit of ¢y,.

Lemma 1.12. [6] Assume that (I1, d) is a CAT(0), then we have

d((1—t)s®eC,T) d(s,T) d(¢,)
/ oo < (1=0) [ oo [ o),

forallv € (0,1 and s, ¢, T € IL

Lemma 1.13. [11] Let (I, d), be a uniformly convex hyperbolic space with modulus v. Forr > 0, € (0,2], A € [0, 1] and
a,s, ¢ €1l

fo h(@ <,
Jote® ﬁ( )dw <,
f() (s> C d‘P > nr,

(1=X)s®X¢,a)
= / h(p)de < (1 —=2X(1 — X)v(r,n))r. (1.3)

Lemma 1.14. Let (I1,d) be a CAT(0) space and {pn} C [a,b] with0 < a < b < 1and0 < a(l —b) < % If {sn} and
{¢n} C I such that for some v > 0 we have

1. limsup,,_, o ") n(p)de < R;
2. timsup,,_, o [ h(p)dp < Ry

3. timsup,, o [l 7en)n®enns) poygo — R
Then

d(sn,Cn)
lim h(p)de = 0.

n—oo Jq

Proof. If r = 0 then the proof is clear. For r > 0, if it is not the case that fod(g’““) h(¢)de — 0asn — oo, then there are
subsequences {sy, } and {¢y, }, with the following
d(snCn)
inf h(p)de > 0. (1.4

n—oo 0

Choose n € (0, 1] with the following

(sn>Cn)
/ he)de >n(r+1)>0, neN. (1.5)
0
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Since 0 < a(l —b) < % and 0 < v(r,n) < 1,0 < 2a(1 — b)v(r,n) < 1. So,0 < 1 —2a(1 — b)v(r,n) < 1. Choose
R € (r,r + 1) with

(1 =2a(1 =b)v(r,n))R <. (1.6)
Since
d(cn,<) d(Cn>s)
lim sup h(p)dy < r, limsup Mep)de <r, r<R. (L.7)
n—oo JO n—oo J0O
There exist {¢n } and {(n } such that
d(sn,s) d(Cn <)
[ e s [T e < R (18)
0 0

d(sn,Cn)
/ hg)di > nR.
0

Then by Lemmas 1.13 and 1.6,

d((1—¢n)sn@Pnln,s)
/ hp)dp < (1 = 2on(1 — on)o(R )R (1.9)

0
< (1 - 20’(1 - b)’U(?", n))R <,
when n — oo, we get
d((1—=on)snPenln,s)
lim h(p)de <, (1.10)
n—o0 0

which contradicts the hypothesis. O

Proposition 1.15. [6] Let {<,, } be a BS in a C AT (0) space (I1,d) and C C I be a CCS which contains {sy }. Then,
(i) A—=limp oo Sn =6 = 6n — 6,
(ii) if {sn} is regular, then g, = ¢ = A —limp 500 Sn = 6.

Lemma 1.16. [4] In a C AT (0) space we have:

(i) Every BS in a complete C AT (0) has a A—convergent subsequence.

(ii) If {sn} isa BSina CCS C of a complete C AT (0) space (I, d), then the asymptotic center of {sn } is in C.

(iii) If {sn} is a BS in a complete CAT(0) space (I1,d) with A({sn}) = {p}, {vn} is a subsequence of {sn} with
A({vn}) = v, and fod“"’u) de converges, then p = v.
Theorem 1.17. [7] Let (I1, d) be a complete MS and T : I1 — Il be an 3 — ~-contractive with:

(i) T is B—admissible;

(ii) J o € I with B(sp, Tsp) > 1;

(iii) if {sn} is a sequence in s with B(sn, Tsp+1) > 1 and ¢n — < € I1, implies B(sn,s) > 1, n € N. Then, T has a fixed
point theory. Further, let us give a fixed point theory result concerning 3 — y—contractive in C AT(0) space.

Theorem 1.18. Let (I1, d) be a complete C AT (0) space and C be a NCCS of I1. Let T : C — C be a 3 — y—contractive of
integral type with B(s, () > 1, and let {sn } C II be an approximate FP sequence (i.e., limp— oo fod(g" »Ton) h(p)de = 0)
and {sn} — w. Then T (w) = w.
Proof. Since {sy } is an approximate FP sequence, we define:

d(T™6n,s)

®(s) = limsup h(p)d(p), m > 1. (1.11)

n—oo Jo
We have ®(T¢) < @(s) for ¢ € C. Since, if m = 1, considering (s, ¢) > 1 and (1.11), we get
d(Tsn,Ts)
®(T¢) = limsup A(e)d(p)

n—oo J0

d(Ten,Ts)
< lim sup B(sn, <)/0 fi(p)d(p)

n—r oo

) d(sn <)
<timsupy([ " Hp)d(e)
n—oo 0
= P(q).
With continuing we have ®(T™¢) < ®(c) holds for any positive integer m. We get
lim &(T™w) < d(w). (1.12)
m—oo

If {T™w} contains no norm-convergent subsequence, there exists 79 > 0 with

AT w, TMw)
/ h()de >m, n#m, (1.13)
0

for the above 7y, we obtain 6 > 0 with;
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2
(®(w) + 0) < d(w)* + Z—O. (1.14)
From the property of ® and (1.12), there exist N, M & N such that for any m > M;
d(T"’LW7§TL)
/ h(g)dp < ®(w) + 0, n>N. (1.15)
0

The (CN) inequality, (1.13) and (1.14) give the following:

TMweT™ 2
d($&n)

fi(p)dy
0
1 rd(T™w,cn)? 1 rd(T™w,cn)?
<3 / fi(p)dep + 3 / fi(p)dep
0 0
1 FAT™wdT™w)?
- Z/ fi(p)dep
0
1 1
< (@) +0)? + S(@w) +0)* = Jng
< P(w)?,

holds for any m;,my > M. Let T = w, then 7 € C and 7 # w, hence ®(w) = infccc P(s), that is

contradiction. So { T™w} contains norm-convergent subsequence, denoted by { T™¢w}. We may assume that T™iw — w/’,
then

d(“’/ﬁn) (T™iw,cn)
lim sup h(p)dp = limsup lim h(p)de
n—oo JO n—oo M= Jo
= lim &(T™Miw) < d(w).

n—oo

Since ®(w) = inf,cc P(x), therefore w = w’. Thus T™iw — w. Utilizing the definition of 8 — y—contractive type
mapping with 3(s, ¢) > 1, we obtain

A(TMiw, Tw) A(TMiw, Tw)
i e)dp < BT w,w) [ hp)dp
0 0

my

d(TMi~1w,w)
<a(f hg)d)

A(T™i—1w,w)
< /0 h(ep)de.

Taking the limit of both sides, then [*T*) i(p)dp < 1) Ti(p)dep. So we get w = Tw. o

Applying Theorem 1.18 and Proposition 1.15 we obtain:

Theorem 1.19. Let C be a NCCS of a complete C AT (0) space (I, d) and T : C — C be a B — y—contractive type. If
{sn} C C with
d(sn,T(sn))
lim h(p)dep =0,

n—oo fq

and A — limp 00 Sn. = p, then T (p) = p.

Theorem 1.20. Let (I1, d) be a complete C AT (0) space and C be a NCCS of (I1,d). Let T : C — C be a 8 —~y—contractive
of integral type with B(s,C) > 1 forall <,C € I Let {An}32, {vn}20 1 n 3, {0n )52 {en}52, € (0,1), also
{Mn} Cle,dlwith0 <c<d<land0<c(l—d)< % Then {cn }2° | given by

s1 €C,

Tn = (1 = An)on © AnT(sn),

Cn=(1—vn— ptn)sn BnT(sn) D pnT (Tn),

Sn+l = (1 —Un — Qn)T(§n) @ﬁnT(Tn) D QnT(Cn)a

(1.16)

is A—convergent to p € Fiz(T).

Proof. From Theorem 1.17, we have Fiz(T) # 0. We consider three steps.
Stepl. We show that f0d<<"’p) h(p)de exists for p € Fiz(T), where {s,} is given by (1.16). Let p € Fiz(T). By
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Lemma 1.12 and considering {\, }°, C (0, 1) we get

d(Tn,p) d((1=2An)sn),p) d(An T(sn),p)
/ h(p)de = / hp)de © / h(p)dep
0 0 0
d(sn,p) d(T (sn)sp)
<= [T o+ [ Hp)d
d(sn,p) d(T(sn),p)
<(1- /\n)/ h(p)dep + /\nﬂ(%,p)/ h(p)de
0 0

d(sn,p) d(sn,p) d(sn,p)
<=2 [ o x| oo < [T bl

From {9, }>° ; C (0, 1) we have

d(Cn»p) d((1=vn—pn)sn,p) d(vn T (sn),p) d(pn T (Tn),p)
/ li(p)dp = / (p)de @ (p)dp EB/ i(p)dp
0 0 0 0
p)

d(Sn,p) d(T(sn),
<O =va=p) [ M) vn [ hp)d
d(T(Tn),p)
+ un/o fi(p)dep
d(sn,p) d(T(sn);p)
<O —vn—pm) [ Bode+ vB(sn) [ hg)do

d(T(Tn),p)
T tinB(Tn, p) /0 h(p)dip

d(sn,p)

d(sn,p) d("'nv )
<O =va=p) [ ot v ([ Hee) + i [ Bl

d(sn,p) d(sn,p) d(Tn,p)
< =va—pmn) [ H@e v [ B+ [T )

d(sn,p) d(sn,p) d(sn,p)
< (1= vn — pin) /O hp)dip + vn /O hp)dip + in /O ()i

d(sn,p)
< /0 h(p)ds,

forn € N. So

d(Sp+1,p) d(1=9n—0n) T (sn),p) d(9n T (Tn),p)
/0 fi(p)dp = /O fi(p)dp & /0 fi(p)dy

d(onT(Cn),p)
of H(p)di
0
d(T(sn),p) d(T(Tn),p)
<-tn-gu) [ e)dp+ 0 [ hg)do
0 0

d(T(Cn),p)
+ on / h(p)dep
0

d(T(sn),p) d(T(Tn),p)
< (1= Dn — gn)Blsn, p) /0 H()dp + OB, p) /0 (p)dp
d(T(Cn)aP)
+ QnB(Cnvp)/O h((p)d(p
d(Sn,p) d(Tn,p)
<=dn—en([ " Hee) +ur( [ 1)

d((n »P)
+ onn /0 (p)di)

d(sn,p) d(Tn,p) d(Cn,p)
< (1 —9n—on) /0 (p)dyp + On /0 fi(p)dep + on /0 fi(p)dy

d(sn,p) d(sn,p) d(sn,p)
<O=vu—en) [ beue s 0 [T Hodo 00 [T Mo

d(sn,p)
< / h(p)dep.
0

(1.17)

(1.18)
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Therefore, we get fod(<"+l’p) Ip)de < fod(cn’p) h(p)dp, n > 1. Hence {d(sn,p)} is a decreasing. The sequence is

bounded below, thus
limn— 0o f0d<<"’p) h(p)dyp exists. Hence, {sp } is bounded.

Step 2. We prove that lim, — o0 fod“"’—r(g")) h(p)de = 0. Without loss of generality, we can write:

) d(T(sn),p) ) d(T(sn),p)
Therefore, lim sup h(p)de < limsup B(sn, p) /0 h(p)de

n— o0 0 n—o00

) d(sn,p) d(Sn,p)
<timsupy ([ i) < [T e = R

n—00

According to (1.17), we get

. d(Tn,p) . d((1=An)sn,p) d(An T (sn),p)
lim sup h(p)dy = lim sup(/O hp)dy @ /0 h(p)de

n—oo J( n— o0
d(sn.p) d(T(sn),p)
< (1 = Ap) limsup h(p)de + A lim sup I(p)de

n— 00 0 n— oo 0

. dlsn.p) _ d(T (sn).p)
< (1 = Ap) limsup h(p)de + An limsup B(sn, p) / h(p)de
0

n— 00 0 n—oo

d(sn,p) d(sn,p)
< (1= An) limsup )+ Atimsupy( [ he)d)
0

n— 00 0 n— oo

d(sn,p)
< lim sup h(p)de = R.

n— oo 0

On the other hand, using (1.18) we can write;

d(snt15P)
R = limsup (p)de

n—oo JO

. (1= 9 —en) T (sn).p) A(On T (70),p)
= lim sup( / h(p)de ® /0 h(p)dep

n—oo 0

d(enT(Cn),p)
® /0 H(p)di

< (1 —Yn — on)limsup h(p)de
n—oo Jo
d(T(mn),p)
+ ¥y, lim sup h(p)de
n—oo Jo
d(T(¢n)sp)
+ on lim sup h(p)de
n—oo 0
) d(T(sn):p)
< (1 = 9n — 0n)B(sn, p) limsup h(p)de

n—oo J0

(1.19)
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‘ AT (1))

+ 97 B(Tn, p) lim sup (p)de
n— o0 0
‘ AT (Cn),p)

+ 0nB(¢ns p) lim sup fi(p)de
n—oo 0

) d(sn,p)
< (1 = 9n — on)y(lim sup (p)dep)

n— o0 0

d(Tn,p)
+ Pny(lim sup li(p)dep)

n—oo 0

. d(Cn,p)
+ ony(lim sup fi(p)dep)

n— oo 0

d(sn,p)
< (1 —9n — on)limsup h(p)dy
n— 00 0

d(Tn,p) d(sn,p)
+ 9y, lim sup h(p)de + on lim sup h(p)de

n—oo JO n—oo J0O

d(sn,p) d(Tn,p)
< (1 — Yp) lim sup Ti(p)dp + Ur lim sup li(p)dep

n—oo J0 n—oo JO
d(Tn,p)
< (1 —9n)R+ 9y limsup h(p)de,

n—o00 0
which implies that

R = lim sup h(p)de. (1.20)

n—oo J(

Therefore,

R = lim sup h(p)de

n—oo J(

. d((1=An)sn) ) d(An T(sn).p)
= lim sup(/ h(p)de @ / h(p)dep. (1.21)
0 0

n—oo

Utilizing the Lemma 1.14 with (1.19), (1.20) and (1.21), we get

d(sn,T(sn))
lim Hi(p)dg = 0. (1.22)

n—oo Jo

Therefore, we are done.
Step 3. Define

walen) = |J  Alwa}) C Fiz(T). (1.23)
{Vn}g{gn}

The sequence {sy, } is A—convergent to a FP of T and that wa(sp) consists of exactly one point. If v € wa(sp), from the
definition of wa (sp) that there exists a subsequence {vy, } of {¢n } with A({vy,}) = {v}. By condition (¢) in Lemma 1.16,
there exists a subsequence {vy, } of {¢n } with

Afngmmpn:pec.

From Theorem 1.19 that p € Fixz(T). Considering the sequence { fod("""p ) de} is convergent, from (¢¢) in Lemma 1.16
that v = p. Thus wa(sn) € Fiz(T). In the end, we show that wa(sn) consists of exactly one point. Let {vy,} be a
subsequence of {sp } with A({vn}) = {v} andlet A({sn}) = {s}. Sov = p € Fiz(T). Since {fod(gn’p) dp} converges,
from condition (44%) in Lemma 1.16, we get ¢ = p € Fix(T), that is, wa(sn) = <. This completes the proof. O

Example 1.21. Let IT = [0, 1] with d(s, ¢) = |s¢ — ¢|. Define N : IT — IT1by N(s) = 1 if ¢ is rational, and N(s) = 0 if ¢ is
irrational.

1 € 0,1 i tional;
N(s) = <€0.1] 18 ramona (1.24)
0 <€l0,1] is irrational.
Define 8 : II x IT — [0, 1] by
s—¢
B(s,¢) = %

Obviously, N is an 3 — y—contractive of integral type with y(¢) = % for all ¢ > 0, but not mean nonexpansive; if IV is
mean nonexpansive, then

d(Ns,N(Q) d(s,¢) d(s,N¢)
i N <a [ Ndo+b [ Nipido, ¥ e, (1.25)
0 0 0

where a and b are two nonnegative real numbers such that a + b < 1. Now, let ¢ = 0 and ¢ € [0, 1] is irrational, so due
to the above inequality we can write: 1 < a(, but since a < 1 and 0 < ¢ < 1, this is a contradiction.
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