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Abstract Let a ≥ 1 and b ≥ 3 be integers. In this article, we give the explicit solutions to the
Pellian equations with integral parameters a and b:

aX2 − (ab2 + 4)Y 2 = −4 and aX2 − (ab2 − 4)Y 2 = 4.

More precisely, the solutions are expressed in terms of the Lehmer sequence and its associated
sequence.

1 Introduction

A Pellian equation (or generalized Pell equation) is a Diophantine equation in the form X2 −
DY 2 = C where D is a given positive integer, which is not a perfect square (D ̸= □), and C is
a nonzero integer (see definition in [3, §10.5]). Hence, a Diophantine equation in the form

AX2 −BY 2 = C,

where A and B are positive integers such that AB ̸= □ (is not a perfect square), is also a Pellian
equation.

B. He et al. in [4], when using the Tzanakis method to solve a three-parametric Thue equation
f(X,Y ) = µ, found the following simultaneous system of Pellian equations:

kX2 − (km2 + 4)Y 2 = −4µ, kZ2 − (kn2 − 4)Y 2 = 4µ,

in integer unknowns X, Y, Z, whose solutions lead to the determination of solutions of the
initial Thue equation according to the reduction algorithm they used. For more details on the
Tzanakis method, we refer to [4]. Here, we are interested in the resolution of the Pellian equa-
tions obtained. We therefore consider in this manuscript the quadratic Diophantine equations

aX2 − (ab2 ± 4)Y 2 = ∓4, (1.1)

with integral parameters a ≥ 1 and b ̸= 2. The solutions of the Pellian equations of the form
(1.1) have been studied only for the case where the parameter a is even (see [4, Proposition
10]). In this paper, we generalize the previous study [4, Proposition 10] to the general case
where a is a positive integer. This gives an answer for the remaining case where a is an odd
integer, since this has not been done yet. Our equations also generalize some Pellian equations
recently studied, precisely Theorems 3.6 and 3.7 in [5]. For a ≥ 1 and |b| ≥ 3, the equations
in (1.1) are Pellian, and we solve them explicitly by using the continued fraction method and
some basic well-known results on Pellian equations. For some related studies, see [5, 9, 1]. The
theory of continued fractions is a powerful tool for solving Pellian equations. In this manuscript,
the continued fraction expansion of the necessary quantities is not exactly easy, but with a little
attention to parameters parity, we achieve it.
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Notice that for the equations in (1.1), since (−x,−y), (x,−y), and (−x, y) are also solutions
if (x, y) is a solution, we will therefore only focus on finding the solutions (x, y) with positive
integers x and y.

2 Basic results on Pellian equations and continued fractions

Let D be a positive integer that is not a perfect square. The positive quadratic real number
√
D

admits a periodic continued fraction expansion in the form
√
D =

[
a0, a1, · · · , aℓ−1, 2a0

]
,

where ℓ is the period length and the ai’s are positive integers obtained by the following recursion
formula:

λ0 =
√
D, ai = ⌊λi⌋ and λi+1 =

1
λi − ai

, i = 0, 1, 2, 3, · · ·

with aℓ = 2a0 and aℓ+i = ai for all i ≥ 1. We call nth convergent of
√
D for n ≥ 1, the rational

fraction
pn
qn

= [a0, a1, · · · , an] = a0 +
1

a1 +
1

. . . ai+
1

. . . an−1+
1

an

.

Let us consider the Diophantine equation X2−DY 2 = C, where C is a nonzero integer. If x and
y are integers that satisfy the Pellian equation X2 −DY 2 = C, we say that the number x+ y

√
D

is a solution of the equation. A solution x + y
√
D is said to be positive if x and y are positive.

Similarly, the number x
√
A + y

√
B is said to be a solution of AX2 − BY 2 = C if x and y are

integers that satisfy that equation.
A solution x1 + y1

√
D of the Pell equation X2 − DY 2 = 1 is called fundamental if x1 and y1

are the smallest positive integers satisfying that equation. The continued fraction theory allow to
determine the fundamental solution to the Pell equation X2 −DY 2 = 1 or the positive solution
for a Pellian equation.

Lemma 2.1. [3, Proposition 10.22] Let D ̸= □ be a positive integer and C ̸= 0 an integer such
that |C| <

√
D. If x + y

√
D is a solution of the Pellian equation X2 −DY 2 = C, then

x

y
is a

convergent in continued fraction expansion of
√
D.

Lemma 2.2. [5, Lemma 2.2] Let ℓ be the period length of the continued fraction expansion of√
D.

(i) If ℓ is even, then the fundamental solution to the Pell equation X2 −DY 2 = 1 is given by
x1 + y1

√
D = pℓ−1 + qℓ−1

√
D and the equation X2 −DY 2 = −1 has no integer solutions.

(ii) If ℓ is odd, then the fundamental solution of the Pell equation X2 − DY 2 = 1 is given
by x1 + y1

√
D = p2ℓ−1 + q2ℓ−1

√
D, and the fundamental solution to the equation X2 −

DY 2 = −1 is given by x1 + y1
√
D = pℓ−1 + qℓ−1

√
D.

For the Pellian equation X2 −DY 2 = C (with |C| ̸= 1), a solution u1 + v1
√
D is said to be

fundamental (for a class K) if |u1| and v1 are the smallest positive integers for which u1 and v1
satisfy the equation. For the class of solution’s notion, we refer the reader to [8, pages 204-211].

Proposition 2.3. Let A,B be positive integers with AB ̸= □ and let u
√
A+ v

√
B be a positive

solution of the Pellian equation AX2−BY 2 = 4. If u > v2−2, then u
√
A+v

√
B is the smallest

positive (or the fundamental) solution of that equation.

Proof. If v = 1, the proposition is obviously true. Assume that v ≥ 2 and let us suppose that
there is a positive solution x

√
A + y

√
B to the Pellian equation AX2 − BY 2 = 4 such that

1 ≤ y < v. So, we have u2
0 − ABv2 = 4A = x2

0 − ABy2, where u0 = Au and x0 = Ax.

This leads to AB =
u2

0 − 4A
v2 =

x2
0 − 4A
y2 and then u2

0y
2 − 4Ay2 = x2

0v
2 − 4Av2, x2

0v
2 − u2

0y
2 =
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4A(v2 − y2) > 4A and
(
x0v − u0y

2

)(
x0v + u0y

2

)
= A(v2 − y2) > A. So, we have k1 =

x0v+u0y
2 , and k2 =

x0v−u0y
2 , both positive integers, and we get

u0 =
k1 − k2

y
≤ k1k2 −A

y
=

A(v2 − y2 − 1)
y

≤ A(v2 − y2 − 1) ≤ A(v2 − 2).

Therefore, we obtain u ≤ v2 − 2, which is a contradiction.

We end this section with a result originally from Ljunggren and an extension cited by P. Yuan
and [6, 10]), which we will also use later in this paper.

Lemma 2.4. [7] Let A,B be odd positive integers with AB ̸= □ such that the Pellian equation
AX2 − BY 2 = 4 has solutions in odd positive integers. If (X0, Y0) is the smallest solution in
odd positive integers, then all positive integer solution Xn

√
A+ Yn

√
B of the Pellian equation

AX2 −BY 2 = 4 are give by

Xn

√
A+ Yn

√
B = 2

(
X0

√
A+ Y0

√
B√

2

)n

, n ≥ 1,

where n is a positive integer in case A = 1 and an odd positive integer otherwise.

Lemma 2.5. [6, 10] Let X0
√
A+ Y0

√
B be the smallest positive integer solution of the Pellian

equation AX2 − BY 2 = δ, δ ∈ {1, 2, 4}. Then all positive integer solution Xn

√
A+ Yn

√
B of

this equation are give by

Xn

√
A+ Yn

√
B√

δ
=

(
X0

√
A+ Y0

√
B√

δ

)n

, n ≥ 1,

with n odd if min{A,B} > 1 or (A, δ) ̸= (1, 1), (1, 4).

3 Solutions of the Pellian equations aX2 − (ab2 ± 4)Y 2 = ∓4

The equation aX2 − (ab2 + 4)Y 2 = −4 is a Pellian equation for all a ≥ 1 and b ̸= 0 integers or
for b = 0 and all integer 1 ≤ a ̸= □. But the equation aX2−(ab2−4)Y 2 = 4 is only for ab2 ≥ 5.
Indeed, for the integers with ab2 − 4 ≤ 0, the Diophantine equation aX2 − (ab2 − 4)Y 2 = 4 is
not a Pellian equation. In particular, for ab2 − 4 = 0 we necessarily have (a, b) = (1,±2), or
(a, b) = (4,±1), which lead to the solutions (x, y) = (±2, t), or (x, y) = (±1, t), for all integers
t, respectively.

3.1 Solutions of the Pellian equation aX2 − (ab2 + 4)Y 2 = −4

Let us assume that a ≥ 1 and |b| ≥ 2 are integers. Here, in this subsection, we give the
explicit solutions for the Pellian equation

aX2 − (ab2 + 4)Y 2 = −4, (3.1)

with integral parameters a and b.
Putting U = aX, we obtain the equivalent equation

U2 − (a2b2 + 4a)Y 2 = −4a.

Theorem 3.1. For all integers a ≥ 1 and b ≥ 2,
√
a2b2 + 4a is a quadratic real number, and we

have the following continued fractions:

(i) If b ≡ 0 (mod 2), then
√

a2b2 + 4a =

[
ab;

b

2
, 2ab

]
.
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(ii) If b ≡ 1 (mod 2) and a ≡ 0 (mod 2), then

√
a2b2 + 4a =

[
ab;

b− 1
2

, 1, 1,
ab− 2

2
, 1, 1,

b− 1
2

, 2ab

]
.

(iii) If b ≡ 1 (mod 2) and a ≡ 1 (mod 2), then

√
a2b2 + 4a =

[
ab;

b− 1
2

, 1, 1,
ab− 1

2
, 2b,

ab− 1
2

, 1, 1,
b− 1

2
, 2ab

]
.

Proof. Let a ≥ 1 and b ≥ 2 be integers. We have a2b2 < a2b2 + 4a < (ab + 1)2. Therefore,
a2b2 + 4a ̸= □ (is not a perfect square). Thus

√
a2b2 + 4a is a quadratic real number. The

continued fraction expansion of the quadratic real number
√
a2b2 + 4a is a simple calculation

exercise, paying attention to the parities of the parameters b and a.

Remark 3.2. For b ≤ −2, we have the same result of continued fraction by taking |b| in the
continued fraction formula. In the case b ≤ −2 and odd, we can write b = 2 · b1 − 1 < 0, where
b1 is a negative integer.

Theorem 3.3. Let a ≥ 1 and b ≥ 2 be integers. All positive integer solutions Xn
√
a+Yn

√
ab2 + 4

of the Pellian equation (3.1) are given by

Xn

√
a+ Yn

√
ab2 + 4 = 2

(
b
√
a+

√
ab2 + 4

2

)2n+1

, for n ≥ 0.

Proof. With the continued fraction expansions from Theorem 3.1, the equivalent Diophantine
equation

U2 − (a2b2 + 4a)Y 2 = C (3.2)

with |C| <
√
a2b2 + 4a is solvable.

Put

α =
b
√
a+

√
ab2 + 4

2
and α̃ =

b
√
a−

√
ab2 + 4

2
,

both algebraic integers. Since αα̃ = −1, we find (from Proposition 2.3) the smallest positive so-
lution (X1, Y1) = (b, 1) of Equation (3.1), and 2

√
aα = ab+

√
a2b2 + 4a yields the fundamental

solutions (±ab, 1) of Equation (3.2) with C = −4a. Hence, from Lemma 2.5 and writing (3.1)
as ab2 + 4)Y 2 − aX2 = 4, we obtain all positive solutions of the Pellian equation are:

Yn

√
ab2 + 4 +Xn

√
a = 2α2n+1, for integers n ≥ 0.

3.2 Solutions of the Pellian equation aX2 − (ab2 − 4)Y 2 = 4

In this subsection, let us assume that a ≥ 1 and b ≥ 3 are integers. We have to give explicit
solutions for the Pellian equation

aX2 − (ab2 − 4)Y 2 = 4, (3.3)

with integral parameters a and b.
Now, let us put U = aX. We get the equivalent equation

U2 − (a2b2 − 4a)Y 2 = 4a.

Theorem 3.4. For all integers a ≥ 1 and b ≥ 3,
√
a2b2 − 4a is a quadratic real number, and its

continued fraction expansion is:
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(i) when b ≡ 0 (mod 2), √
16a2 − 4a =

[
4a− 1; 2, 8a− 2

]
, (b = 4);

√
a2b2 − 4a =

[
ab− 1; 1,

b− 4
2

, 1, 2ab− 2

]
, (b > 4).

(ii) when b ≡ 1 (mod 2) and a ≡ 0 (mod 2),

√
9a2 − 4a =

[
3a− 1; 3,

3a− 2
2

, 3, 6a− 2

]
, (b = 3);

√
a2b2 − 4a =

[
ab− 1; 1,

b− 3
2

, 2,
ab− 2

2
, 2,

b− 3
2

, 1, 2ab− 2

]
,

(iii) when b ≡ 1 (mod 2) and a ≡ 1 (mod 2),√
a2b2 − 4a =

√
5 =

[
2; 4

]
, (a, b) = (1, 3);

√
9a2 − 4a =

[
3a− 1; 3,

3a− 3
2

, 1, 4, 1,
3a− 3

2
, 3, 6a− 2

]
, (b = 3, a ≥ 3);

√
a2b2 − 4a =

[
ab− 1; 1,

b− 3
2

, 2,
ab− 3

2
, 1, 2b− 2, 1,

ab− 3
2

, 2,
b− 3

2
, 1, 2ab− 2

]
, (b ≥ 5).

Proof. For integers a ≥ 1 and b ≥ 3, we have (ab−1)2 < a2b2−4a < a2b2. Therefore, a2b2−4a
is not a perfect square for all integers a ≥ 1 and b ≥ 3. The continued fraction expansion of the
quadratic real number

√
a2b2 − 4a is a computational exercise with respect to the parity of the

parameters a and b.

Theorem 3.5. Let a ≥ 1 be an odd integer and b ≥ 3 be an integer. We have:

(i) All positive integer solutions of the Pellian equation (3.3) with a = 1 are given by

Xn + Yn

√
b2 − 4 = 2

(
b+

√
b2 − 4
2

)n

, for n ≥ 1;

(ii) All positive integer solutions of the Pellian equation (3.3) with a ≥ 3 are given by

Xn

√
a+ Yn

√
ab2 − 4 = 2

(
b
√
a+

√
ab2 − 4

2

)2n+1

, for n ≥ 0.

Proof. Let a ≥ 1 be an odd integer and b ≥ 3 an integer. With the continued fraction expansions
from Theorem 3.4, we obtain all solutions of the Diophantine equation

U2 − (a2b2 − 4a)Y 2 = C (3.4)

with |C| <
√
a2b2 − 4a.

Put

β =
b
√
a+

√
ab2 − 4

2
and β̃ =

b
√
a−

√
ab2 − 4

2
,

both algebraic integers. Since ββ̃ = 1, we find (from Proposition 2.3) the smallest positive
solution (X, Y ) = (b, 1) of Equation (3.3), and 2

√
aβ = ab+

√
a2b2 − 4a yields the fundamental

solutions (±ab, 1) of Equation (3.4) with C = 4a. One can remark that for a = 1, the equation
(3.4) with C = 4a and the equation (3.3) are the same equation and β becomes the smallest
positive solution for Equation (3.4) with C = 1. Hence, using Lemma 2.5, all positive solutions
of (3.3)
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(i) with a = 1 are given by:

Xn + Yn

√
b2 − 4 = 2

(
b+

√
b2 − 4
2

)n

, for n ≥ 1;

(ii) with a ≥ 2 are given by:

Xn

√
a+ Yn

√
ab2 − 4 = 2

(
b
√
a+

√
ab2 − 4

2

)2n+1

, for n ≥ 0.

3.3 Lehmer sequences properties of the solutions

Let us give the definition of the Lehmer sequence with parameters and its companion Lehmer
sequence (see also [2, §2]).

Definition 3.6. Let p > 0 and q be relatively prime integers such that p− 4q > 0. Let γ and γ̃ be
the roots of the polynomial X2 −√

pX + q.

• We call the Lehmer sequence with parameters (p, q) the sequence Ln(p, q)n≥0 defined by

Ln(p, q) :=


γn − γ̃n

γ − γ̃
, if n is odd;

γn − γ̃n

γ2 − γ̃2 , if n is even.

• We call the companion Lehmer sequence with parameters (p, q), the sequence Vn(p, q)n≥0
defined by

Vn(p, q) :=


γn + γ̃n

γ + γ̃
, if n is odd;

γn + γ̃n, if n is even.

The polynomial X2 − √
pX + q is called the characteristic polynomial of the Lehmer se-

quences. These coefficients are not all integers unless p is a perfect square. So the recurrence
relation of this sequence is really not of order two unless p is a perfect square. Note that, for
n ≥ 0, we have

L2n+1(p, q) = V2n+1(p− 4q,−q).

With the notations from the definition above, we have the following properties for solutions to
the Diophantine equations (3.1) and (3.3):

Theorem 3.7. Let a ≥ 1 and b ≥ 2 be integers. All solutions (Xn, Yn) in positive integers of the
Pellian equation (3.1) are expressed in terms of the Lehmer sequence and its associated sequence
as follows:

(Xn, Yn) =
(
b V2n+1(ab

2,−1), L2n+1(ab
2,−1)

)
, for n ≥ 0;

=
(
b L2n+1(ab

2 + 4, 1), L2n+1(ab
2,−1)

)
, for n ≥ 0.

Moreover, the sequences {Xn}n≥0 and {Yn}n≥0 satisfy the two-order linear recurrence

Sn+2 = (ab2 + 2)Sn+1 − Sn.
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Proof. From Theorem 3.3, we have :

Xn =
α2n+1 + α̃2n+1

√
a

= b

(
α2n+1 + α̃2n+1

b
√
a

)
, for n ≥ 0, ( since b ̸= 0).

Thus, we get Xn = b V2n+1(ab
2,−1) = b L2n+1(ab

2 + 4, 1). Also, we have

Yn =
α2n+1 − α̃2n+1

√
ab2 + 4

= L2n+1(ab
2,−1).

It is well known that the Lehmer sequence {Ln(p, q)}n≥0 and {Vn(p, q)}n≥0 satisfy the fourth
order recurrence

ℓn+4 = (p− 2q)ℓn+2 − q2ℓn,

with initial values L0(p, q) = 0, L1(p, q) = L2(p, q) = 1, L3(p, q) = p− q and
V0(p, q) = 2, V1(p, q) = 1, V2(p, q) = p − 2q, V3(p, q) = p − 3q respectively. Therefore, the
sequences {Xn}n≥0 and {Yn}n≥0 satisfy the two-order linear recurrence:

Sn+2 = (ab2 + 2)Sn+1 − Sn.

Indeed, as the sequences {Xn}n≥0 and {Yn}n≥0 are expressed by {Ln(p, q)}n≥0 and {Vn(p, q)}n≥0
of odd index, in the fourth order recurrence ℓn+4 = (p− 2q)ℓn+2 − q2ℓn, an index is odd if and
only if n is odd. So, by setting n = 2k + 1, we have

ℓ2k+5 = (p− 2q)ℓ2k+3 − q2ℓ2k+1

ℓ2(k+2)+1 = (p− 2q)ℓ2(k+1)+1 − q2ℓ2k+1

Sk+2 = (p− 2q)Sk+1 − q2Sk, since Sn = cst · ℓ2n+1.

Theorem 3.8. Let a ≥ 1 and b ≥ 3 be integers. All solutions (Xn, Yn) in positive integers of the
Pellian equation (3.3) are given by:

(i) when a = 1,

Xn =

(
b+

√
b2 − 4
2

)n

+

(
b−

√
b2 − 4
2

)n

,

Yn =
1√

b2 − 4

[(
b+

√
b2 − 4
2

)n

+

(
b−

√
b2 − 4
2

)n]
, for n ≥ 1.

(ii) when a ≥ 2,

(Xn, Yn) =
(
b V2n+1(ab

2, 1), L2n+1(ab
2, 1)

)
, for n ≥ 0;

=
(
b L2n+1(ab

2 − 4,−1), L2n+1(ab
2, 1)

)
, for n ≥ 0.

Moreover, the sequences {Xn}n≥0 and {Yn}n≥0 satisfy the two-order linear recurrence

S′
n+2 = (ab2 − 2)S′

n+1 − S′
n.

Proof. In a similar way as in the proof of Theorem 3.7, using Theorem 3.5.

4 Conclusion remarks

After the study of explicit solutions to the Pellian equations (3.1) and (3.3) above, one can con-
sider the Pellian equations

aX2 − (ab2 ± 4)Y 2 = ±2tc, (4.1)
with integral positive parameters a, b, c, t where c is odd and could ask whether a study of explicit
solutions would be favorable for the Pellian equations (4.1), which generalize those studied
in this paper. Indeed, the resolution of the Pellian equations of the form (4.1) would favor
the resolution of some families of quartic Thue equations (using the Tzanakis method). This
important remark will be the subject of a future project.
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