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Abstract In this paper, we illustrate the existence of a non-trivial and non-negative solution
for a category of double-phase systems with logarithmic non-linearity. This analysis is con-
ducted within the framework of Sobolev spaces with variable exponents on complete manifolds,
employing various variational methods in our approach.

1 Introduction

In this paper, we deal with a solution (u, v) of the following system type («(x), 3(x)) — double
phase problem involving logarithmic nonlinearity:

L2000t = MV a7 ulog luv], in M,

(x),8(x)
,CZ(();)) B(X)V = /\2|u|a(x)‘V‘U(X)—2V log |UV|, in M, (1.1
u=v=0, in OM.

Where, M is a compact Riemannian manifold with a smooth boundary OM, A;, A, are pa-
rameters positives, o, g, 8 : M — (1,00) are continuous functions that satisfy the following
inequality:

1 <20~ =2mino(x) <20(x) <207 =2maxo(x) < a” = min a(x)
xeM XeM xeM (1.2)

<alx) <o’ =maxa(x) < 7 < BT < .
XeM

(x)

The main operator 'CZ(x) B(x)

is the so-called double-phase operator given by

£ ju = —div (|Vu|a(x)*2Vu + a(x)|Vu\ﬁ(x)*2Vu) , forallu e VI/OI"B(X)(M).

Problem (1) is said double phase type because of the presence of two different elliptic growths
p and q. The study of double-phase problems and related functionals originates from the sem-
inal paper by Zhikov [41] where he introduced for the first time in literature the related energy
functional to (1) defined by

uH/ (IVul? + p(x)|Vul?) dx. (1.3)
u

This kind of functional has been used to describe models for strongly anisotropic materials in
the context of homogenization and elasticity. Certainly, the geometry of composites consisting
of two different materials with varying power-hardening exponents p and q is determined by the
weight coefficient a(.). The functional (1.3) is a mathematical prototype of a functional whose
integrands alter their ellipticity in accordance with the locations where a(.) vanishes or does not.



380 M. Knifda, A. Abergi and A. Ouaziz

In this direction, the functional (1.3) has several mathematical applications in the study of duality
theory and Lavrentiev gap phenomenon, see [29, 30, 41] for more details. On the other hand,
Mingione et al. provide famous results in the regularity theory of local minimizers of functional
(1.3), see for example [12, 13, 20, 21] for more details.

A second interesting phenomenon is the appearance of a logarithmic nonlinearity term. Indeed,
considering the following parabolic equation:

u, = Vu+|u2loglul, u:R"x(0,00) =R, g¢n>2

which it shows up in a lot of physical applications, such as theory of superfluidity, nuclear
physics, diffusion phenomena, and transport. See [42] for more details.

A third fascinating aspect of our problem is the presence of a(x)— Laplacian operators. In-
deed, this operator arises in many applications, such as population dynamics, phase transition
phenomena, continuum mechanics, the typical outcome of stochastically stabilization of Lévy
processes, image processing, electro-rheological fluids,and thermo-rheological fluids [7, 11, 10,
14, 16, 18, 26, 28, 36, 38]. For this, there are many associated results from the study of our
problem. Starting from [27], several authors studied existence and multiplicity results for the
following equation:

div (|VuP~*Vu + a(x)|Vul!"*Vu) = f(x,u), in U,
u=0, in JU,

where &/ C RY is a bounded domain with Lipschitz boundary, and f is the Carathéodory func-
tion, which satisfies some conditions. Executed similar processing by Gasifiski-Papageorgiou
in [24] via Nehari’s manifold method; see also Arora, et al. in [8]. Along the same lines, see
[3,5,17, 32,33, 34, 35, 37, 39, 40] and the references therein.

Furthermore, other researchers have explored two-phase problems within the space of Sobolev
with variable exponents. For instance, Aberqi-Bennouna-Benslimane-Ragusa [3] delved into the
double-phase problem with variable exponents on complete manifolds, uncovering new quali-
tative properties of the framework. Additionally, Aberqi-Benslimane-Knifda [5] demonstrated
the existence of at least two non-negative and non-trivial solutions to the double-phase problem.
In a similar context, Gasinsk-Winkert [23] and Choudhuri-Repovs-Saudi [19] show cased the
existence of solutions to a double-phase issue with a specified nonlinear boundary condition.
Our motivation was, on the one hand, the Biswas-Bahrouni-Fiscella [15] work to study the exis-
tence and the multiplicity of solutions for fractional problems («(.), az(.))-Laplacian with the
non-local Robin boundary condition and involving non-linearities of logarithmic type, and the
work Aberqi-Benslimane-Elmassoudi and Ragusa [2] gives the existing results of the following
problem:

A“E?u + V(z)[uf2u = Aa(x)[u""?ulog|u| ine,

(63

u=20 on Oe.

where ¢ C M is an open bounded set with a smooth boundary s and 1 < r < a < f < a* =
Na

N-a

On the other hand, we are also motivated by the work of Marino and Winker [31] which proved

the existence of at least one weak solution of a quasi-linear elliptical system driven by a double-

phase carrier. In addition, the work of Aberqi-Benslimane-Knifda [1] in which they studied the

system, applied to the double phase operator of the following form:

ai(x — - 28 — .
A gt + Vi)l 20 = A ful 092w B v a0 2u i M,

(S) Azz(g?ﬁ(x)v + Va(z) [v[PR =2y = A |[v[FR) -2y 4 5(3)1?(;() [uf®|v|7®=2y in M,

u=v=_0 on OM.
More recently, Guarnotta-Livera-Winkert [25] studied quasi-linear elliptic systems driven by

double-phase operators with variable exponents involving fully coupled right sides and nonlinear
boundary conditions. The following theorem gives the main result of this article.
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Theorem 1.1. (See [6]) Let (M, g) satisfy the property By (0, w). there exists a positive con-
stant K, such that if 0 < A\; + Ay < K, the system (1) has at least one non-trivial solution.

The rest of the document is organized as follows: Some features of the Sobolev-Orlicz space
on complete manifolds with variable exponents are given in Section 2. In Section 3, we present
our key findings.

2 Preliminaries

This section provides a few key concepts and characteristics of the variable exponent Sobolev-
Orlicz space on full manifolds. For a thorough explanation of the theory of complete manifolds’
Sobolev-Orlicz spaces, see [3, 6, 9, 22].

Let P(M) the set of measurable functions from M into (1, c0).

Definition 1. (See [22]) Let r in P(M), k € N, define

crY(m) = {u € C™(M)suchthat¥j;0 < j < k,|D’u| € L”<”>(M)}
where, | D¥u| is the norm of K-th derivative of W, defined in local coordinates by
|DFuf? = gt - g™ Ik (DFu) gy (DMW)

The Sobolev spaces Lz(w) (M) is the completion of C,Z(‘) (M) with respect to the norm [|. | , () (M).
k
equipped with the norm

k
ll rien, (M) =Y D0l i, (M),
7=0

Definition 2. (See [22]) Let (M, g) be a smooth Riemannian manifold, and ¢ : [s,t] — M isa

1
curve of class C'. The length of ( is : o(¢) = f: (g(%, %)) " dt let (, 2) € M2, we define the

distance between = and y by
dg(z,z) =inf{o(¢) : [s,t] — M, {(s) = zand((t) = z}.

Definition 3. (See [22]) We say that function a € P(M), is log-Hélder continuous if there exists
a positive constant Q such that:

a(x) - a(z)] < ——2

<2 @) eMxM
log(e + )

P2 ( M) indicates the set of log-Hélder continuous variable exponents. The following propo-
sition concerns the relationship between P'°¢( M) and Po¢(RV):

Proposition 1. (See [22]) Let t € P'°¢(M), and (Bz(t),+) be a chart such that,
1
5513' < gij < 2055
like bilinear forms, where §;; is the delta Kronecker symbol. Then ¢ o ¢p~! € Plog(y)(B z(t)))

Definition 4. (See [9]) We say that (M, g) has property B, (4, w), if the Ricci tensor of g noted
by Re(g) verifies Rc(g) > d(n — 1) for some «, and for all z € M, there exists some w > 0
such that | By ()|, > w where B () are the balls of radius 1 centred at some point z in terms of
the volume of smaller concentric balls.

Proposition 2. (See [3]) Suppose the complete compact Riemannian n-manifold (M, g) pos-
sesses the property B, (8, w) for some (4, g), then there exist positive constants o = §o(n, 6, w)
and A = A(n,d,w),s0,if R < dp,z € M,1 <r(.)<n,andifw € L7107(6>(BR(1:)), we have the
following estimate

1zl Ls) < AsT[Dz[[ -0

s() 1
where 0 <1+ .
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Proposition 3. (See [3]) Let u € L’“<'>(M), vE L’”/U(M). Then, we have

[ vl (@) < Q) o ng IV

L7"(~)(M)7

where Q(r~,r") is a positive constant and ( 7+ ,( ;= 1.

Definition 5. (See [3]) We define the Lebesgue space with variable exponent L? (x) (M) as the
set of all measurable function u : M — R by pg(u) = [, |u(z)|’ ®)du,(x) and we define the
Sobolev space on (M, g) by

Wl,ﬁ(x)(M) - {u c Lﬁ(x)(M) : Dk(u) c LB(X)(M),k =12, ,n}

endowed by the norm

k
[ul| = ||u||W1~ﬁ<x>(M> = Hu||LLB<x)(M) + Z D uHLlﬁw(M

1,B(x)
and we define WI’B(X>(M) =(C> (M)W ™
Proposition 4. (See [6]) Letu € L")(M), {u,} € L")(M), j € N, then we have

@) [ully@) < L(resp. = 1,> 1) <= ppy < l(resp. = 1,> 1)
i T rt
(D) [[ully@) < 1= llullie) < pre) < ullfm,
7,+ T
(iii) fJully@) > 1= lullie) < pr) < lullfe
(Gv)) hm Juj —ull,(z) =0 <= lim p,(;)(u; —u) =0, and
‘ un 1 un 1
min {pr(@(u) ) (@7 <l < maz { o) (0773 oy (@)

Theorem 2.1. (See [3, 6]) Assume that M is a compact Riemannian manifold with a smooth

boundary or without a boundary, and that 3(x), a(x),o(x) € L®(M) N C’(M) If
B(x) < n,a(x) <20(x) < B* = nn_ﬁ(ﬁx()x)’

then
WA (M) < L(M), andW P (M) — L7 (M),

is a continuous and compact embedding.

Lemma 1. Let (u,v) € W. Then we have

) g (Wbl 5 0P) iy () < cx(hr A ma 100 Pl T

a2,

(i) [y ol () < camas 0137 IV

MM ™ (M)

Proof. Similar to the proof ([4]; lemma 15), we will omit it.
The weighted variable exponent Lebesgue space Lf ((:)) (M) is defined as follows:

Lf((:)) (M) = {u : M — R is measurable /
M

a(x)|u* ™ du, (z) < oo}

endowed by

ullsx),a00 = inf{?? >0 1/ = PMa(x)dvy () < 1}-
MmN

Moreover, the welghted modular on L? (( ; (M) is the mapping pg(x) a(x) : Lf <<x)) (M) — R defined

like py(y) = [ aX)|u(@)[PMdvy(z).

m)

180 (Aq ||V|| lﬁ(X)(M):| .

loll®

[l
1,
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Proposition 5. (See [5] ) Let u and {u,,} C Lf (X; (M), then we have the following results:

X
@) ”uH,@(x),a(x) < 1(7“63]). =1,> 1) — pB(x),:(x) < l(resp. =1,> 1),
(i) [[ull s.a00 < 1= ||qu(x),a(x) S P(x).a(x) S ||UHZ(+X),@<X)7
(i) [ullat) > 1= 100500 0 < Porat0 < 10500 0w
(iv) lim_{|un|g(x).a(0 = 0 <= 1M pg(.ax)(Un) =0,
W) imlunlgpe),a00 = 00 <= M pgiq a0x) (un) = 0.
It should be note that non-negative weighted function a(.) : M — R satisfies the following

condition:
a(.) : M — R} such that a(.) € Ls® (M) with

na(x) colx) < -2 2.1)

na(x) = A(x)(n — a(x)) a(x) = B(x)

In fact, because a(.) : M — R, then, there exists ap > 0, and for all z € M, we have that
a(x) > ao.

Theorem 2.2. (See [3]) Assume that 3(x) € C(M) N L (M) and M are compact Riemannian
manifolds with smooth boundaries or without boundaries. Suppose that the (2.1) assumption is
checked. The embedding

WA (M) s L5 (M)

is compact.

3 Proof of the main results

Let D(M) the space of C2° functions with compact support in M, and denote by W (M) =
Wol'ﬁ(x)(/\/l) X Wol'ﬁ(X)(M), endowed with norm || (u, v)|| = [Ju]| + V]|

3.1 Nehari manifold for (1)

The weak solution of system (1) is defined as follows:

Definition 6. We say that the couple (u,v) € W is a weak solution of the system (1) if,
/M (|Vu\‘¥(1)_2Vqu(x) + |VV|Q(I)_2VVVQD) dvg(x)
+ /M a(z) <|Vu|ﬂ(w)’2.Vu, Ve(z) + |Vv]P@=2.vy, ch(x)) dvy (x)
- /M (M7 172 () + alul " V702 vip() ) Tog fuv]dog (1)

For all, (w,¢) € D(M) x D(M).

The energy function &y, : W(M) — R of is defined as follows:

5)\]7,\2(11,V)
1 - N a(x) o -
— a(z) a(z) B(z) B(z)
_/M & (17u + 9y )dvg(x)+/M o (197 + 195 duy () 5.,
AL+ A i} MAN, o
+/M ;(X)zz |uv|"( )dvg(x)—/M la(x)2|uv\ ()log(|uv\)dvg(x).

By a direct calculation, we have &y, », € C!'(W, R). Consider the Nehari manifold

N = {v) e WM)\ (0,0 : (€, 5w v), (u,v)) =0}
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(u,v) € N, if and only if :
/M (170 4|93 dy (x)

+/ a(x) (|Vu|ﬁ(””) + |Vu|6(””)) dvg(x) —2(\1 + )\2)/ luv|® log([uv|)dv, (x) = 0.
M M (33)

Lemma 2. For every (A1, \2) € R?\ {(0,0)}, there exists a constant K, such that 0 < \;+ X\, <
K the functionnal &), », is bounded and coercive on N Aj‘f A

Proof. Let (u,v) € W(M) such that ||(u,v)|| > 1, by proposition 5 we have:
1 1
S 1 alx) alx) 1 B(x) B(x)
eMAxmv)_,a+/a1(Vu| ) g (6) + g [ al) (19617 + 9076 ) dy (x)

A+ X - AL+ -
+ e / luv]"® du, (x) — s / luv]”™ log |uv|dvg (x).
M M

Since
yé(x)
log(Jy(x)]) < 3).exp(1)’ forall 6 > 0and ae. x € M, 3.4
thus,
1 (T al(x 1 T x
Enin (U,V) > 07/ (IVa]* 4 [9v]°)) duy () + /3+/M a(x) (1907 + [Vul ") du, (x)
A+ XA (x
e o el / lvu|*® dugy (x).

With §(x) = a(x) — o(x). By theorem 2.2, Poincarée inequality, and lemma 1, we have:

c o agp o~ 03()\1 + /\2) a”
5,\1,/\2(U»V) > aj“(uyV)H + WH(U,V)H - mll(u,v)\l

c ag c3(M1 +X) o
T e e w1

Choosing 0 < \; + X\, < Ky (u—i + 52+ka+“((’c+l)u+) .”+<av(;"+)'e, then &, , is coercive. Addi-

tionally, we have:

SAI,)\Z (u7 V)

20t —a”
< a(a) a(a)
_( e )/M (IVu]*) + [9]°6) duy (x)

20 — ﬂ7 z z A+ A\ o(x
+ (W) /M a(x) (\Vu|5( ) + |Vu|B( )) dvg(x) + o /M [uv]| ( )dvg(x).

As20~ < a~ <~ and by lemma 1 we have:
()\1 + A2)

Exn(u,v) < 2 (u, )|
O

The Nehari manifold V', is intimately related to the behavior of the function of the form:
<p(u7v)(t) — &, (tu, tv) define by:

P(u,v) (t) = 5)\1 o (tu7 tV)

::/;E;(;OquI +vwa“waxw'%[Qabﬁff)OV“W“)+IVW“@)d”*”

(A1 + Ag)t2 ™) wvl"® du. (x) — (M + Xt wvl?® loe(luvdo
o [ P i, )~ [ O o g ),
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Gla(® = [0 (190l (932 )y () + [ a1 (19l + 98P oy ()
M M

—4(/\1—|—)\2)log(t)/ 27"y |7® gy, (x) — 4()\1+/\2)/ 270~ uy|7™ log [uv|du, (x),
M

M
and
(P;lu,v)(t)
= /M(a(x) — 1)t20072 (190)) 4 9] duy (x)
+/ a(x — 1)A0- (|Vu|ﬂ —0—|VV|ﬁ(Z>)dvg(x)
M

~ 40 ) log(1 /M<z«r<> 127 2fuv| o, (x)

—4()\1+/\2)/ 27092y} doy (x) — 2()\1+/\2)/ (20(x) = D)E70-2|uy|7®) Tog [uv|du, (x).
M M

It is simple to examine that (tu,tv) € N, <= <p; y(t) = 0 for any (u,v) € W(M) and

t > 0. We will divide NV} M "into three subsets which represent the local minima, local maxima,
and points of inflection of ﬁberlng maps, that is to say,

N;\VI{;; = {(u U) € N)\l A szlu,v)(l) > 0},
N = {(w o) € N, 1 (1) = 0}

Naw = {(“’“) €NV, byl < 0}~

With

"

Sp(u,v)(l)

[ (@ = 1) (190 4 19917 ) oy )
M
a(x X) — ulf®) v|2@)) du, (x
+ [ a)(Bc) = 1) (197 + 19917 a3
=40+ 2a) [ uvI” O, (9 =200 + %) [ (20(06) = 1)fuv|” g v ().

Lemma 3. Let (ug, vo) ¢ Ni\l/j’gz. If (u, vo) is a local minimizer of £y, x, on N}/, |, then (ug, vo)
is a critical point of &y, »,.

Proof. We define the function ¢y, », : W(M) — R as follows:
o) = [ (19 ]9 oy () + [ al) (1l + (90 doy ()
M M
—2(M\ + )\2)/ luv|”™ log [uv|dvgy (x).
M

we observe that (ug, vo) is a solution to the optimization problem to minimize &y, », subject to
.0, (u,v) =0, and (ug, vo) is a local minimizer of £y, 5, on N/{‘f/\], we have

®xn (U0, Vo) = <5,,\,,A2 (o, Vo), (o, V0)> .

Then, there exists a Lagrange multiplier ;4 € R, such that,éf//\“Az (uo, Vo) = py, »,(uo, Vo)
namely,
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<5;\|,/\2(u0’ Vo), (uo, Vo)> = <¢/A1,A2(Uo7 Vo), (uo, V0)> :

Furthermore, <q§;]7 x, (U0, Vo), (ug,V0)> # 0 since (ug, vo) ¢ N, K’f\)z which implies ; = 0 and,

actually, that (ug, vo) is a critical point of &y, »,.
]

Lemma 4. For each (A, \2) € R\ {(0,0)}, then there exists a constant K; > 0 such that for
anny 0 < A\; + A\ < K| we have:

M0 M,— _ M+
N, UNY s, = OandNy Ty # 0.

Proof. 1t is absurdly assumed that N/{\ﬁ’f\)z U N/{\f/\; # 0. For all (A1,\2) € R\ {(0,0)}, let
(u,v) € N)Z\\ﬁ’i UNK’{Z. Thus, we get

/ ax) (B(x) — a(x)) (1907 + [Va]*@) du, (x)
M
200 +2) [ (alx) = 2000) uvl" logfuvl)de (x
M
<400+ M) / jav|7® v, (x).
M
Thus
ag (B~ — a+)/ (1707 + [Vul ) duy (x) < 4(n +>\2)/ Juv]* ™) du, (x).
M M
By theorem 2.2, Poincarée inequality, and lemma 1, we have
ap (B~ —at - +
W =) < des(hn+ Al I

Where ¢ being the constant of Poincarée inequality, and c3 being constant of lemma 1.
hence:

4003()\1 + )\2)] B ,12(,+

ap (B~ —at) ’

and, when (A; + \2) — 0, we have (u,v) = (0,0), contradiction. Now, according to lemma 2,
the set Nf;; # 0.

Il v < [

O

4 Existence of weak solution.

Lemma 5. In the space W (M), if the sequence {(u,, v, )} is bounded and hence weakly con-
verges to (u,v), then we have:

lim / \Vnun\"(x)10g|unvn|dvg(x):/ luv|® log [uv|duy(x). 4.1)
M M

n—+o0o

Proof. We are aware that v, > 0, there exists a constant ¢((x),n(x)) such that:

log(w) < e(v(x),n(x)) (wV(X) + w’”(")) for every w > 0.
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Thus, we get that

/ \unvn|(’<x) log |u, vy, |dvg(X)

M

< [ el (190, + vl 1) dy ()
M

< /M c(v(x),n(x)) [|Vnun|a(x)+’Y(x) + |Vnun|0(x)_n(x)} dvg(x)

< /M c(a(x) — o(x), n(x)) [|vnun|a<*> + |vnun|a(x>—n<x>} dvy(x),

for some 7(x) € (1,20(x) — 1). As {(up, v,)} is bounded, we obtain (u,,v,) — (u,v) a.e. M,
and so:

U,V | 7% log [, v [dug (x) — [uv]”® Tog(Juv]), a.e.inMasn — +oo.

Then, we obtain the needed outcome because of Lebesgue’s theorem. O

Lemma 6. For every A\; + X, € (0,min(K>, K3)) , with two positive constants K, K3 such that
we obtain

+ _
1) B, = 1nf<u7v)€Ni»11:j\rz g/\h)\z (u, V) < 0.
2) There exists (u*,vt) € J\/f\\{;’z such that &y, 5, (ut,vt) = M; -

Proof. Let (u,v) € N, ;‘]/I ; Then, we have that

1"

Pl (1) > 0.

Thus,

(B —a) /M a(x) (|Vu|ﬁ(w> + |Vu|ﬂ(w>) dvg(x) +2(A1 + X)) (e —207) /M luv]™ Tog(|uv|)dvy (x)

>4(\ + )\2)/ luv|7® dvgy (x),
M
and

/ (|Vu|a<f> + \Vu|a<w>) dvg(x) + [ a(x) (|Vu|ﬁ(“"> + |Vu|5(“")) dvg(x)
M M

—2(M + )\2)/ luv|7™ log(Juv|)dv, (x) = 0.
M
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Combining the definition of &y, 5, with the above, we get

5>\1’/\2 (u7 V)

_ /M a(lx) (176l + [9¥]) dug (x) + /M ;8 (1707 + [V37) doy (x)

A+ AL+ A2
—i—/ luv|7® du, (x —/ luv|”™ log(Juv])dv, (x
™ X g ) M O'(X) ( g( )

< /M a(lx) (|Vu\0‘(”‘) + |VV|O‘(”U)) dvg(x) + /M g((g (\Vu|ﬂ<m) + ‘VV|’8(I>> dvg(x)

+4(BT—a”) /M :((;‘))2 (V0@ + [VV17)) duy (x)

2 o gl vl () + 80 + Aa)a™ 207) [t uvi”® gl ()
M O M0 (x)

1 1 4(6+ — Oé_) a(z) a(z)
= L‘ T T T o /M (\Vu| + Vvl ) dvg(x)
2 8(8'—a7) 8(8"—207) I "
| 2 M B2 L) [ vl (o ()
(6~ —a)(e®> —a"f7) (@) (@)
< ol o\
< E e T B [ (19 49017 iy )
T —207)(168~ — 0o~
+ G2 20 (05 [ toguvl)ivg ().
p-o M
By (3.4) and Poincarée inequality, we obtain that there exists a positive constant ¢ such that:
(b~ —a)(0®” —a"f7) o Cz(ﬁ+ —207)(168~ —07) o
< .
5)\17A2(u7v) = a,ﬂ,O_Z, H( )H 7027(6["' —O’+)6Xp(l) (/\1 +)\2)H(U,V)H

— — — H— 2 +
where c is point care constant and c3 of lemma 1, put K, = e"p“)i(fi ,z;_)gi,ﬁléﬁ_‘)ff ) =LA

we conclude that uﬁl 2, < 0.Now, we prove (2). As £y, is bounded, there exists a minimizing
sequence ({uy,,vp})n € N ;‘]/I /\t such that:

im & A, (un,vy) = inf & (0, v).
n—+00 (u, V)G.N')If]f X

By lemma 2, the sequence (u,,, v,,) is bounded in W (M); then up to a sub-sequence still denoted
(u,,, vy,), then exists (u™, v*) € W(M) such that:

(Up, Vp) = (0™, vT), € W(M).
And by the comapct embedding we have:
u,, — u* strongly in L*® (M), L2 (M) as n — oo,

v, — vTstrongly in LM (M), L22M(M) as n — oo,

u, > uandv, — v aein M asn — oo.

So
[ ) = gm0,

and by lemma 5, we have:

/|uv|"(x)log(|uv|)dvg(x): lim / UV | 7% log [, v [dug (X).
M

n—+oo M
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Hence, need to demonstrate

+ ot
Pax),600 (W V) = WM pag) p(x) (Un, Vi),

with p0), 800 (W V) = Parx),800 (W) + Pa(x),px) (V). By contradiction, let

pa<x)7ﬁ(x>(u+,v+) < lim Po(x), ()(un,vn),

n—-+o0o
8>\1 A2 (u7 V)

1 - . a(x) .
= —_— a(x) o(z) (@) (@)
= /M a( ) (‘Vunl + |VVn‘ ) d’l}g(x) + /M ,B(X) (|Vun|6 + |vvn|,@ ) d’Ug(X)

AL+ X - AL+ X o(
+/ —yz [UnVal Xd”g( )_/M U Vi |7 log‘unvn‘dvg( X)

M 0(x) o(x)
> L (|Vu o) 4 |y |“)dv (x)+i/ (|Vu 5@) 1 |vy |ﬂ<f))dv (x)
= CY+ n n g 6+ M n n g

AL+ A
- L_z/ |unvn|0(x) log(|unVa|)dug(x)
g M

1 A] + )\2 o(x
> ﬂjpa(x),ﬁ(x) (unvvn) - T /M |unvn| ( >10g ‘unvn|dvg(x)7

moving to the limit as n — 400 we get:

1
lim inf &y, x,(Un, Vi) > == pax),pe0 (@, V) — M/ lut v 7™ log [utvT|dug, (x)
Bt g M

n—+oo

ca(A1+N2)

jll(u+?v+)||a - O_+<a+70_+>exp( )H( + +)||a
1 g+ utvh) e
77~ oo gy 107N

+ +— + . . . .
and A+ < K3 = %ﬂﬁexp(”; we obtain lim,,_, ;o Inf €, », (U, Vi) = uj})/\z > 0, which

is a contradiction. Then, po(x) g(x) (ut,vt) = lim,HJrOO Pa(x),8(x) (Uns Vn ), and lim, 4 oo inf Ex, 5, (Up, Vi) =
Ex ., (ut, vh). Finally, to prove that (ut,v*) € J\/Al x,» if only if

(5= a) [ (19 9w duy (0
M
L2+ M) (e —20—)/ V7O Tog(jutyv* ) du, (x)
M
> 4(\ +)\2)/ vt 7@ dyg ().
M
Indeed, suppose that:
(5 =a) [ alx) (19u' 7+ [V 1P duy ()
M
200 + M) (e — 207) / w7 log(jut v |)dv, (2)
M
4\ 4 \2) / vt 7@ dy, ().
M
Then:
(B* = a™)ao / (Va7 4 |97 ) dug (x) < 4001 + o) / w70 doy ().
M M

And we get a contradiction in the same way as previously(u™, v*) € N, ;\f; as a result.
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Conclusion: Prof of Theorem 1.1

For every A\; + X\, € (0, K, = minj—;,__3(Kj)), there exists (u™,v") € Ni\l/[; such that,

Exy Ut vh) = inf &, (u,v).
(u,v)ENi\f:j{z

In addition, it is easy to show that (ju™|, [vt]) € N;\]/[;; and &y, , (Jut|,[vT]) = Ex,a, (U, vh).
Hence, our system (1) admits at least one nonnegative solution (u™,v*) € W(M).

O
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