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Abstract In this paper, we introduce alternative generalizations for traditional Fibonacci
and Lucas octonions and provide their generating functions, Binet’s formulae, Catalan and
d’Ocagne’s identities for these types of octonions. We also prove summation formulae and some
other identities.

1 Introduction

Fibonacci and Lucas numbers [7] are examples of integer sequences that have interesting prop-
erties. Studying these sequences helps mathematicians understand patterns and structures in
numbers. The ratio of consecutive Fibonacci or Lucas numbers converges to the golden ratio
[15], which is approximately equal to 1.6180339887. This ratio has fascinated mathematicians,
artists and architects for centuries due to its aesthetic appeal and its occurrence in natural
phenomena. Cayley introduced octonion algebra [4] in 1845, its applications have expanded
rapidly. Octonions are encountered in numerous problem domains, including quantum mechan-
ics, elasticity theory and various other fields of modern science, leading to extensive research
and study. In ([2], [3], [13], [14]), various octonion numbers linked with Fibonacci and Lu-
cas sequences and their extensions have been extensively explored. Some algebraic and analytic
properties of these quaternions and octonions were given in ([5], [10], [17]). In all studies, coef-
ficients of these octonions have been selected from consecutive terms of these numbers. However,
in [6], Dasdemir and Bilgici defined the unrestricted Fibonacci and Lucas quaternion with arbi-
trary terms. Inspired by this, we introduce unrestricted Fibonacci and Lucas octonions and give
Binet formula, generating functions, d’Ocagne’s identity, Catalan identity and Cassini’s identity
for unrestricted Fibonacci and Lucas octonions.

The octonion is an eight dimension normed division algebra with basis {1, e1, e2, e3, e4, e5,
e6, e7}, where e1, e2, ...., e7 are anti-commutative and e2

i = 1. An octonion x can be written as
an eight tuple of real numbers and is written as

x = x0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7,

where x0, x1, ..... ,x7 are any real numbers. The conjugate of x is

x∗ = x0 − x1e1 − x2e2 − x3e3 − x4e4 − x5e5 − x6e6 − x7e7,

and the norm of x is

N(x) = xx∗ = x2
0 + x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6 + x2

7.

The complete multiplication table of octonions is given as follows:
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* 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 -1 e4 e7 −e2 e6 −e5 −e3

e2 e2 −e4 -1 e5 e1 −e3 e7 −e6

e3 e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

Also, every x ∈ O can be simply written as x = Re(x)+ Im(x), where Re(x) = x0 and Im(x) =
∑

7
i=1 xiei are the real and imaginary parts of x, respectively. The inverse of non-zero octonion

x ∈O is

x−1 =
x∗

N(x)

For all x, y ∈O,
N(x · y) = N(x) ·N(y)

(xy)−1 = y−1x−1.

Fibonacci numbers ([8], [12]) are recursively defined as F0 = 0, F1 = 1 and

Fn = Fn−1 +Fn−2.

The Lucas numbers are recursively defined as L0 = 2, L1 = 1 and

Ln = Ln−1 +Ln−2.

Binet’s formulae for the Fibonacci and Lucas numbers are

Fn =
αn −β n

α −β
, (1.1)

Ln = α
n +β

n, (1.2)

respectively, where α and β are positive and negative roots of x2 − x−1 = 0, respectively. i.e.

α =
1+

√
5

2
and β =

1−
√

5
2

.

Horadam defined Fibonacci quaternions ([11], [9]) as

Qn := Fn + iFn+1 + jFn+2 + kFn+3,

where Fn is the n-th term of the Fibonacci sequence. Iyer gave a similar definition for Lucas
quaternions by the relation

Tn := Ln + iLn+1 + jLn+2 + kLn+3,

and provided many properties of Lucas quaternions, where Ln is the nth Lucas number. Halici
gave Binet’s formulae ([1], [16]) for the Fibonacci and Lucas quaternions as follows:

Qn =
αα −ββ

α −β
,

Tn = αα +ββ ,

where α = 1+ iα + jα2 + kα3 and β = 1+ iβ + jβ 2 + kβ 3. For n ≥ 0, Akkus and Kecilioglu
[3] defined the nth Fibonacci and Lucas octonions as:



394 Jitender Bhati and Shiv Datt Kumar

Qn =
7

∑
s=0

Fn+ses and Tn =
7

∑
s=0

Ln+ses

respectively, where Fn and Ln are nth Fibonacci and Lucas numbers, respectively, and {e0, e1, e2,
e3, e4, e5, e6, e7} is the standard octonion basis.

Let p,r and s be arbitrary integers. Dasdemir and Bilgici [6] defined the nth unrestricted
Fibonacci and Lucas quaternions by the following relations

F
(p,r,s)
n := Fn + iFn+p + jFn+r + kFn+s

and
L

(p,r,s)
n := Ln + iLn+p + jLn+r + kLn+s,

respectively. Let n be an integer. Then Binet’s formulae of the unrestricted Fibonacci and Lucas
quaternions are

F
(p,r,s)
n =

v
α αn−

v
β β n

α −β
,

L
(p,r,s)
n =

v
α αn+

v
β β n

α −β
,

where
v
α= 1+ iαp + jαr + kαs and

v
β= 1+ iβp + jβr + kβs.

In Section 2, we introduce unrestricted Fibonacci and Lucas octonions and give Binet for-
mula. The generating functions, d’Ocagne’s identity, Catalan identity and Cassini’s identity for
unrestricted Fibonacci and Lucas octonions are given in Section 3. Finally, in Section 4, we give
some properties for unrestricted Fibonacci and Lucas octonions.

2 Unrestricted Fibonacci and Lucas octonions

Now we introduce nth unrestricted Fibonacci and Lucas octonions.

Definition 2.1. Let r̄ = (r1, r2, r3, r4, r5, r6, r7) be a 7−tuple of arbitrary integers. Then nth

unrestricted Fibonacci and Lucas octonions are given by the relations

F r̄
n = Fn +Fn+r1e1 +Fn+r2e2 +Fn+r3e3 +Fn+r4e4 +Fn+r5e5 +Fn+r6e6 +Fn+r7e7, (2.1)

L r̄
n = Ln +Ln+r1e1 +Ln+r2e2 +Ln+r3e3 +Ln+r4e4 +Ln+r5e5 +Ln+r6e6 +Ln+r7e7, (2.2)

respectively.

According to our definition 2.1, we have the following special cases:

• If r1 = r2 = .....= r7 =−n, then Fibonacci numbers are obtained as:

F r̄
n = Fn.

• If r1 = 1 and r2 = r3 = .....= r7 =−n, then complex Fibonacci numbers are obtained as:

F
(1,−n,−n,−n,−n,−n,−n)
n = Fn +Fn+1e1.

• If r1 = 1, r2 = 2, r3 = 3 and r4 = r5 = r6 = r7 =−n, then well-known Fibonacci quaternions
are obtained as:

F
(1,2,3,−n,−n,−n,−n)
n = Fn +Fn+1e1 +Fn+2e2 +Fn+3e3.

• If r1 = p, r2 = r, r4 = s and r3 = r5 = r6 = r7 =−n, then unrestricted Fibonacci quaternions
are obtained as:
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F
(1,2,3,−n,−n,−n,−n)
n = Fn +Fn+pe1 +Fn+re2 +Fn+se4.

• If r1 = 1, r2 = 2, r3, r4 = 4, r5 = 5, r6 = 6, r7 = 7, then well-known Fibonacci octonions
are obtained as:

F
(1,2,3,4,5,6,7)
n =

7

∑
i=0

Fn+iei.

From equations 2.1, 2.2 and using recurrence relations of Fibonacci and Lucas numbers, we
obtain the following results

F r̄
n = F r̄

n−1 +F r̄
n−2, (2.3)

L r̄
n = Lr̄

n−1 +Lr̄
n−2. (2.4)

Next, we present Binet’s formula for unrestricted Fibonacci and Lucas octonions.

Theorem 2.2. Let n ≥ 0 be an integer and r be a 7-tuple of integers. Then the Binet’s formula
for the unrestricted Fibonacci and Lucas octonions are:

F r̄
n =

v
α αn−

v
β β n

α −β
, (2.5)

L r̄
n =

v
α α

n+
v
β β

n, (2.6)

where
v
α= 1+αr1e1 +αr2e2 +αr3e3 +αr4e4 +αr5e5 +αr6e6 +αr7e7,

v
β= 1+β r1e1 +β r2e2 +β r3e3 +β r4e4 +β r5e5 +β r6e6 +β r7e7.

Proof. From equation 1.1 and equation 2.1

F r̄
n = Fn +Fn+r1e1 +Fn+r2e2 +Fn+r3e3 +Fn+r4e4 +Fn+r5e5 +Fn+r6e6 +Fn+r7e7

= αn−β n

α−β
+ α

n+r1−β
n+r1

α−β
e1 +

α
n+r2−β

n+r2

α−β
e2 +

α
n+r3−β

n+r3

α−β
e3 +

α
n+r4−β

n+r4

α−β
e4

+α
n+r5−β

n+r5

α−β
e5 +

α
n+r6−β

n+r6

α−β
e6 +

α
n+r7−β

n+r7

α−β
e7

= αn

α−β
{1+αr1e1 +αr2e2 +αr3e3 +αr4e4 +αr5e5 +αr6e6 +αr7e7}

+ β n

α−β
{1+β r1e1 +β r2e2 +β r3e3 +β r4e4 +β r5e5 +β r6e6 +β r7e7}

= αn v
α−β n

v
β

α−β
.

Similarly from equation 1.2 and equation 2.2

L r̄
n = Ln +Ln+r1e1 +Ln+r2e2 +Ln+r3e3 +Ln+r4e4 +Ln+r5e5 +Ln+r6e6 +Ln+r7e7

= (αn +β n)+(αn+r1 +β n+r1)e1 +(αn+r2 +β n+r2)e2 +(αn+r3 +β n+r3)e3

+(αn+r4 +β n+r4)e4 +(αn+r5 +β n+r5)e5 +(αn+r6 +β n+r6)e6 +(αn+r7 −β n+r7)e7

= αn v
α +β n

v
β .

The multiplication of
v
α and

v
β play pivotal roles in the proof of the subsequent results. First we

find the multiplication of
v
α and

v
β .
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v
α ·

v
β= (1+αr1e1 +αr2e2 +αr3e3 +αr4e4 +αr5e5 +αr6e6 +αr7e7)

·(1+β r1e1 +β r2e2 +β r3e3 +β r4e4 +β r5e5 +β r6e6 +β r7e7)

=
v
α +

v
β −1− (αβ )r1 − (αβ )r2 − (αβ )r3 − (αβ )r4 − (αβ )r5 − (αβ )r6 − (αβ )r7

+e1(α
r2β r4 +αr3β r7 −αr4β r2 +αr5β r6 −αr6β r5 −αr7β r3)

+e2(α
r3β r5 −αr1β r4 +αr4β r1 −αr5β r3 +αr6β r7 −αr7β r6)

+e3(α
r4β r6 −αr1β r7 −αr2β r5 +αr5β r2 −αr6β r4 +αr7β r1)

+e4(α
r1β r2 −αr2β r1 −αr3β r6 +αr6β r3 +αr5β r7 −αr7β r5)

+e5(α
r2β r3 −αr1β r6 −αr3β r1 +αr6β r1 −αr4β r7 +αr7β r4)

+e6(α
r1β r5 −αr2β r7 +αr7β r2 −αr5β r1 +αr3β r4 −αr4β r3)

+e7(α
r1β r3 +αr2β r6 −αr3β r1 −αr6β r2 +αr4β r5 −αr5β r4).

Also as α = 1+
√

5
2 and β = 1−

√
5

2 which implies that

α
n
β

m = (−1)m
α

n−m = (−1)n
β

m−n (2.7)

and αβ =−1, ∀ n, m ∈ Z. Hence

v
α ·

v
β=

v
α +

v
β −1− (−1)r1 − (−1)r2 − (−1)r3 − (−1)r4 − (−1)r5 − (−1)r6 − (−1)r7

+
√

5e1{(−1)r4Fr2−r4 +(−1)r7Fr3−r7 +(−1)r6Fr5−r6}

+
√

5e2{(−1)r5Fr3−r5 +(−1)r1Fr4−r1 +(−1)r7Fr6−r7}

+
√

5e3{(−1)r6Fr4−r6 +(−1)r2Fr5−r2 +(−1)r1Fr7−r1}

+
√

5e4{(−1)r2Fr1−r2 +(−1)r3Fr6−r3 +(−1)r7Fr5−r7}

+
√

5e5{(−1)r3Fr2−r3 +(−1)r1Fr6−r1 +(−1)r4Fr7−r4}

+
√

5e6{(−1)r5Fr1−r5 +(−1)r2Fr7−r1 +(−1)r4Fr3−r4}

+
√

5e7{(−1)r3Fr1−r3 +(−1)r6Fr2−r6 +(−1)r5Fr4−r5}

= B+
√

5C, where B and C are given by

B =
v
α +

v
β −1− (−1)r1 − (−1)r2 − (−1)r3 − (−1)r4 − (−1)r5 − (−1)r6 − (−1)r7

C =
√

5e1{(−1)r4Fr2−r4 +(−1)r7Fr3−r7 +(−1)r6Fr5−r6}

+
√

5e2{(−1)r5Fr3−r5 +(−1)r1Fr4−r1 +(−1)r7Fr6−r7}

+
√

5e3{(−1)r6Fr4−r6 +(−1)r2Fr5−r2 +(−1)r1Fr7−r1}

+
√

5e4{(−1)r2Fr1−r2 +(−1)r3Fr6−r3 +(−1)r7Fr5−r7}

+
√

5e5{(−1)r3Fr2−r3 +(−1)r1Fr6−r1 +(−1)r4Fr7−r4}

+
√

5e6{(−1)r5Fr1−r5 +(−1)r2Fr7−r1 +(−1)r4Fr3−r4}

+
√

5e7{(−1)r3Fr1−r3 +(−1)r6Fr2−r6 +(−1)r5Fr4−r5}.

Similarly the complete multiplication table is given by

·
v
α

v
β

v
α 2

v
α −N(

v
α) B+

√
5C

v
β B−

√
5C 2

v
β −N(

v
β )

Table 1



Unrestricted Fibonacci and Lucas Octonions 397

Generating functions are a vital area of research, particularly for solving linear homogeneous
recurrence relations with constant coefficients. In our study, we delve into both ordinary generat-
ing functions and exponential generating functions in connection with our generalized octonions.
To facilitate this exploration, we introduce the following functions:

GL x =
∞

∑
n=0

L r̄
n xn,

GF x =
∞

∑
n=0

F r̄
n xn,

EL x =
∞

∑
n=0

L r̄
n

xn

n!
,

EF x =
∞

∑
n=0

L r̄
n

xn

n!
.

Theorem 2.3. The ordinary generating functions for the unrestricted Lucas and Fibonacci octo-
nions are

GL x =
L r̄

0 +L r̄
−1

1−x−x2 and GF x =
F r̄

0+F r̄
−1

1−x−x2

Proof. The ordinary generating function for unrestricted Lucas octonions is

GL x =
∞

∑
n=0

L r̄
n xn = L r̄

0 +L r̄
1 x+L r̄

2 x2 +L r̄
3 x3 +L r̄

4 x4 + ......

=
(1−x−x2)(L r̄

0 +L r̄
1 x+L r̄

2 x2+L r̄
3 x3+L r̄

4 x4+......)

1−x−x2

= 1
1−x−x2 {L r̄

0 +L r̄
1 x+L r̄

2 x2 +L r̄
3 x3 +L r̄

4 x4 + ......

−L r̄
0 x−L r̄

1 x2 −L r̄
2 x3 −L r̄

3 x4 −L r
4 x5 + ......

−L r̄
0 x2 −L r̄

1 x3 +L r̄
2 x4 +L r̄

3 x5 + ......}.

Now using the relation L r̄
n = L r̄

n−1 +L r̄
n−2, we get

GL x = L r
0 r̄+L r̄

1 x−L r̄
0 x

1−x−x2 =
L r̄

0 +L r̄
−1

1−x−x2 .

Similar result holds for unrestricted Fibonacci octonions.

Theorem 2.4. The exponential generating functions for the unrestricted Lucas and Fibonacci
octonions are

EL x =
v
α eαx+

v
β eβx and EF x =

v
αeαx−

v
βeβx

α−β

Proof. The exponential generating function for unrestricted Lucas octonions is

EL x =
∞

∑
n=0

L r̄
n

xn

n!
= L r̄

0 +L r̄
1 x+L r̄

2 x2/(2!)+L r̄
3 x3/(3!)+L r̄

4 x4/(4!)+ ......

Using Binet formulae, we get

EL x =
∞

∑
n=0

(
v
α α

n+
v
β β

n)
xn

n!
=

∞

∑
n=0

 v
α (αx)n

n!
+

v
β (βx)n

n!

=
v
α eαx+

v
β eβx.

Similarly

EF x =
∞

∑
n=0

(
v
α αn−

v
β β n)

α −β

xn

n!
=

1
α −β

∞

∑
n=0

 v
α (αx)n

n!
−

v
β (βx)n

n!

=

v
α eαx+

v
β eβx

α −β
.
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3 Some Important Identities:

The d’Ocagne’s identity provides a powerful tool for solving linear homogeneous recurrence
relations with constant coefficients. By expressing the product of consecutive terms of sequences
(such as Fibonacci or Lucas numbers) in terms of the coefficients of the recurrence relation,
it enables efficient computation and understanding of these sequences. Then d’Ocagne’s type
identity for unrestricted Fibonacci and Lucas octonions are given by

Theorem 3.1. Let m and n be any integers. Then we have

F r̄
mF r̄

n+1 −F r̄
m+1F

r̄
n = (−1)n(BFm−n +CLm−n)

and
L r̄

mL r̄
n+1 −L r̄

m+1L
r̄

n =−5(−1)n(BFm−n +CLm−n),

where B and C are given in table 1.

Proof. From the Binet’s formula, we have

F r̄
mF r̄

n+1 −F r̄
m+1F

r̄
n =

(
v
ααm−

v
ββ m

α−β

)(
v
ααn+1−

v
ββ n+1

α−β

)
−
(

v
ααm+1−

v
ββ m+1

α−β

)(
v
ααn−

v
ββ n

α−β

)
= 1

5{
v
α

v
β (αmβ n+1 −αm+1β n)−

v
β

v
α (β mαn+1 −β m+1αn)

= 1
5{

v
α

v
β αmβ n(β −α)−

v
β

v
α β mαn(α −β )}.

Now by using equation (9),

F r̄
mF r̄

n+1 −F r̄
m+1F

r̄
n =

√
5

5 (−1)n(
v
α

v
β αm−n−

v
β

v
α β m−n).

By Table (1), we have

F r̄
mF r̄

n+1 −F r̄
m+1F

r̄
n =

√
5

5
(−1)n{(B+C

√
5)αm−n − (B−C

√
5)β m−n}

=

√
5

5
(−1)n{B(αm−n −β

m−n)+C
√

5(αm−n +β
m−n)}

= (−1)n(BFm−n +CLm−n).

Similarly the second identity can be obtained.

The Catalan Identity plays a central role in combinatorics and related areas of mathematics,
providing deep insights into counting problems, algebraic manipulations, and the properties of
combinatorial structures. Its importance extends across various mathematical disciplines and
contributes to a broad spectrum of mathematical knowledge and research. The next theorem
gives Catalan’s type identity for unrestricted Fibonacci and Lucas octonions.

Theorem 3.2. For any integers m and n, we have

F r̄
m+nF

r̄
m−n − [F r̄

m]
2 = (−1)m+n+1Fn(BFn +CLn)

and
L r̄

m+nL
r̄

m−n − [L r̄
m]

2 = 5(−1)m+nFn(BFn +CLn),

where B and C are given in table 1.
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Proof.

F r̄
m+nF

r̄
m−n − [F r̄

m]
2 =

 v
α αm+n−

v
β β m+n

α −β

 v
α αm−n−

v
β β m−n

α −β

−

 v
α αm−

v
β β m

α −β

2

=
1
5
{−

v
α

v
β α

m+n
β

m−n−
v
β

v
α β

m+n
α

m−n+
v
α

v
β (βα)m+

v
β

v
α (βα)m}

=
1
5
{(−1)m+n+1(

v
α

v
β α

2n−
v
β

v
α β

2n)+(−1)m2B}

=
1
5
{(−1)m+n+1((B+

√
5C)α2n − (B−

√
5C)β 2n)+(−1)m2B}

=
1
5
{(−1)m+n+1(B(α2n +β

2n)+5C(
α2n +β 2n

α −β
))+(−1)m2B}

=
1
5
{(−1)m+n+1(BL2n +5CF2n)+(−1)m2B}.

Since

5F2
n = 5

(
αn −β n

α −β

)2

= α
2n +β

2n −2α
n
β

n = L2n −2(−1)n

and

F2n =

(
α2n −β 2n

α −β

)
=

(αn +β n)(αn −β n)

α −β
= FnLn.

Therefore

F r̄
m+nF

r̄
m−n − [F r̄

m]
2 =

1
5
{(−1)m+n+1(B(5F2

n +(−1n))+5CFnLn)+(−1)m2B}

=
1
5
{(−1)m+n+1(5BF2

n +5CFnLn)}= (−1)m+n+1Fn(BFn +CLn).

Similarly

L r̄
m+nL

r̄
m−n − [L r̄

m]
2 = (

v
α α

m+n+
v
β β

m+n)(
v
α α

m−n+
v
β β

m−n)−{
v
α α

m+
v
β β

m}2

=
v
α

v
β α

m+n
β

m−n+
v
β

v
α β

m+n
α

m−n−
v
α

v
β (βα)m−

v
β

v
α (βα)m

= (−1)m−n(
v
α

v
β α

2n+
v
β

v
α β

2n)− (−1)m2B

= (−1)m+n((B+
√

5C)α2n +(B−
√

5C)β 2n)− (−1)m2B

= (−1)m+n{B(α2n +β
2n)+5C

(
α2n +β 2n

α −β

)
}+(−1)m2B

= (−1)m+n(BL2n +5CF2n)+(−1)m2B

= (−1)m+n(B(5F2
n +(−1)n)+5CFnLn)+(−1)m2B

= (−1)m+n(5BF2
n +5CFnLn) = 5(−1)m+nFn(BFn +CLn).

The Cassini’s type identities are obtained by putting n = 1 in Theorem 3.2, which are given
as follows:

Corollary 3.3. For any integer m , we have

F r̄
m+1F

r̄
m−1 − [F r̄

m]
2 = (−1)m(B+C)

and
L r̄

m+1L
r̄

m−1 − [L r̄
m]

2 =−5(−1)m(B+C).
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4 More Features

In this section, we outline numerous properties concerning the unrestricted Fibonacci and Lucas
quaternions, along with several summation formulae. The subsequent theorem summarizes these
identities. Let r̄ = (r1, r2, r3, r4, r5, r6, r7) be a 7-tuple of arbitrary integers and n ∈ N. Then
define r̄+n as

r̄+n = (r1 +n, r2 +n, r3 +n, r4 +n, r5 +n, r6 +n, r7 +n).

Theorem 4.1. For any integer n, the following identities hold

F r̄+1
n = F r̄

n +F r̄
n−1 −Fn−1,

L r̄+1
n = L r̄

n +L r̄
n−1 −Ln−1,

Proof. By definition 2.1,

F r̄+1
n = Fn +Fn+r1+1e1 +Fn+r2+1e2 +Fn+r3+1e3 +Fn+r4+1e4 +Fn+r5+1e5

+Fn+r6+1e6 +Fn+r7+1e7

= Fn +(Fn+r1 +Fn+r1−1)e1 +(Fn+r2 +Fn+r2−1)e2 +(Fn+r3 +Fn+r3−1)e3 +(Fn+r4

+Fn+r4−1)e4 +(Fn+r5 +Fn+r5−1)e5 +(Fn+r6 +Fn+r6−1)e6 +(Fn+r7 +Fn+r7−1)e7

= Fn +Fn+r1e1 +Fn+r2e2 +Fn+r3e3 +Fn+r4e4 +Fn+r5e5 +Fn+r6e6 +Fn+r7e7

+Fn +Fn+r1e1 +Fn+r2e2 +Fn+r3e3 +Fn+r4e4 +Fn+r5e5 +Fn+r6e6 +Fn+r7e7 −Fn−1

= F r̄
n +F r̄

n−1 −Fn−1.

Similarly second identity can be obtained.

Corollary 4.2. For any integer n, we have

F r̄
n = F r̄+1

n +Fn−1,

L r̄
n = L r̄+1

n +Ln−1,

Proof. These results are obtained by putting F r̄
n+1 = F r̄

n +F r̄
n−1 in Theorem 4.1.

Next Lemma gives a relation between F r̄
n and L r̄

n .

Lemma 4.3. For any integer n, we have

L r̄
n = F r̄

n−1 +F r̄
n+1.

Proof. By using Binet formula, we get

F r̄
n−1 +F r̄

n+1 =

 v
α αn−1−

v
β β n−1

α −β

+

 v
α αn+1−

v
β β n+1

α −β



=

 v
α αn

( 1
α
+α

)
−

v
β β n

(
1
β
+β

)
α −β


=

v
α α

n+
v
β β

n = L r̄
n .

A relation between unrestricted Fibonacci/Lucas octonion and Fibonacci/Lucas octonion is given
in the next theorem.
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Theorem 4.4. Let m and n be any integers. Then the following identities hold

F r̄
m+nFm+n −F r̄

m−nFm−n = F r̄
2mF2n

and
L r̄

m+nLm+n −L r̄
m−nLm−n = 5F r̄

2mF2n.

Proof. By Binet formula F r̄
m+nFm+n −F r̄

m−nFm−n

=

 v
α αm+n−

v
β β m+n

α −β

(αm+n −β m+n

α −β

)
−

 v
α αm−n−

v
β β m−n

α −β

(αm−n −β m−n

α −β

)

=

 v
α α2m+2n+

v
β β 2m+2n−

v
α α2m−2n−

v
β β 2m−2n

(α −β )2


=

 v
α α2m(α2n −α−2n)+

v
β β 2m(β 2n −β−2n)

(α −β )2


=

 v
α α2m(α2n −β 2n)−

v
β β 2m(α2n −β 2n)

(α −β )2


=

 v
α α2m−

v
β β 2m

(α −β )

(α2n −β 2n

α −β

)
= F r̄

2mF2n.

The other identity can be proved similarly.

In the following theorem, we present sum formulae for the unrestricted Fibonacci and Lucas
octonions.

Theorem 4.5. The subsequent summation formulae are valid for any integer n.

n

∑
t=0

F r̄
t = F r̄

n+2 −F r̄
1 (4.1)

n

∑
t=0

L r̄
t = L r̄

n+2 −L r̄
1 (4.2)

n

∑
t=0

(
n
t

)
F r̄

t = F r̄
2n (4.3)

n

∑
t=0

(
n
t

)
L r̄

t = L r̄
2n. (4.4)

Proof. Let at = F r̄
t+2 −F r̄

1 . Then by the definition of unrestricted Fibonacci octonions, we
obtain

at −at−1 = F r̄
t+2 −F r̄

t+1 = F r̄
t+2 −F r̄

t+1 −F r̄
t +F r̄

t = F r̄
t .

Hence
n

∑
t=0

F r̄
t =

n

∑
t=0

at −at−1 = an −a−1 = F r̄
n+2 −F r̄

1 −F r̄
1 +F r̄

1 = F r̄
n+2 −F r̄

1 .

To prove 4.3, we use Binet formula

n

∑
t=0

(
n
t

)
F r̄

t =
n

∑
t=0

(
n
t

) v
α α t−

v
β β t

α −β
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=
1

α −β

(
v
α

n

∑
t=0

(
n
t

)
α

t−
v
β

n

∑
t=0

(
n
t

)
β

t

)

=
1

α −β

(
v
α (α +1)n−

v
β (β +1)n

)

=

v
α (α)2n−

v
β (β )2n

α −β
= F r̄

2n.

Equations 4.2 and 4.4 can be proved similarly.
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