
Palestine Journal of Mathematics

Vol 14(2)(2025) , 410–415 © Palestine Polytechnic University-PPU 2025

A STUDY OF SOME GENERALIZED CENTRAL SETS
THEOREM NEAR ZERO ALONG PHULARA’S WAY

J. Poddar and S. Pal

Communicated by Ivan Gotchev

MSC 2010 Classifications: Primary 05D10; Secondary 05C55.

Keywords and phrases: Central sets, Central Sets Theorem, Algebra of Stone-Čech compactification of discrete semi-
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Abstract The Central Sets Theorem near zero was originally proved by Hindman and Leader.
Later a version of Central Sets Theorem was proved by De, Hindman and Strauss known to be
the stronger Central Sets Theorem. Subsequently many other versions of Central Sets Theorem
came, among which Dev Phulara proved the theorem for a sequence of central sets instead of
taking one set. In this paper, we provide a more general version of the theorem along Dev
Phulara’s way near zero.

1 Introduction

Ramsey theory is a very enriched branch of combinatorics which deals with the question that
when a set with some particular structure is partitioned into finitely many cells, then whether one
of the cells also have that structure. This can be approached through many ways, like Ergodic
theory and topological dynamical system, algebra or often using elementary combinatorics. An
age old theorem in this area is the following, known as the celebrated van der Wearden’s theorem,
which we state for a simple motivation.

Theorem 1.1 (van der Wearden’s Theorem[12]). Let l, r ∈ N. If we have an r colouring of N
then if we are given a length l, there exists two numbers a, d ∈ N so that

{a, a+ d, . . . , a+ ld}

is monochromatic.

After a long period, in late seventies, Furstenberg, in his famous work introduced a very
interesting set dynamically, known as the central set [5] and proved that central sets have rich
combinatorial structure, which is known as the Central Sets Theorem.

Theorem 1.2 (Original Central Sets Theorem [5, Proposition 8.21]). Let C be a central subset
of N, let k ∈ N, and for each i ∈ {1, 2, . . . , k}, let ⟨yi,n⟩∞n=1be a sequence in Z. There exist
sequences ⟨an⟩∞n=1 in Z and ⟨Hn⟩∞n=1 in Pf (N) such that

(1) For each n ∈ N, maxHn< minHn+1 , and
(2) For each i ∈ {1, 2, . . . , k}, and F ∈ Pf (N), we have

∑
n∈F

(
an +

∑
t∈Hn

yi,t

)
∈ C.
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Later in nineties, Hindman and Bergelson took a giant leap in this area by studying central
sets with the help of algebraic structure of Stone-Čech compactification of natural numbers [2],
which we will discuss in the next section. One of the advantages of the definition by Bergelson
and Hindman over the earlier one is that from this definition it can be stated easily that a super set
of a central set is again central. From the origin of Furstenberg’s Central Sets Theorem following
extensions of Central Sets Theorem has been established. Hindman, Maleki and Strauss proved
a version of Central Sets Theorem in [8], taking countably infinitely many sequences and De,
Hindman and Strauss proved a version of Central Sets Theorem in [3], taking all sequences at a
time. The key focus of our work is also in this direction, where we will provide several versions
of Central Sets Theorem.

In case of βN it may be observed that idempotents live only at infinity, but if we turn our
attention to dense subsemigroups of (R,+) then idempotents also live near 0. The idea first
appeared in [7]. They showed that there are localized minimal idempotents near 0 all of whose
members satisfy some localized Central Sets Theorem conclusion.

Definition 1.3. Let S be a dense subsemigroup of ((0,∞) ,+). Then we define the following,

Z =

{
⟨⟨yi,t⟩∞t=1⟩∞i=1 | for each i ∈ N, ⟨yi,t⟩∞t=1

is a sequence inS ∪ −S ∪ {0} and
∑∞

t=1 | yi,t | converges

}
.

Theorem 1.4 (Central Sets Theorem near 0). Let S be a dense subsemigroup of ((0,∞) ,+) and
let A be a central set near 0. If we take Y = ⟨⟨yi,t⟩∞t=1⟩∞i=1 ∈ Z , then there exist sequences
⟨an⟩∞n=1 in S and ⟨Hn⟩∞n=1 in Pf (N) such that

(a) for each n ∈ N, an < 1
n and maxHn < minHn+1 and

(b) for each f ∈ {f | f : N → N and for alln ∈ N, f (n) ≤ n},

FS

(
⟨an +

∑
t∈Hn

yf(n),t⟩∞n=1

)
⊆ A.

Proof. [7, Theorem 4.11].

In [1] the authors extended this theorem for general semigroups. The above idea has been
generalized in [11] to get notions of largeness with respect to filters. Following [11] a version of
Central Sets Theorem was proved in [6].

In recent days Dev Phulara provided a much generalized form of the Central Sets Theorem
in [10], not merely for a single central set but for a sequence of central sets. This work extended
the work of De, Hindman and Strauss of [3], and this is the key motivation of our work and so
we mention that theorem here. Some notations used in the following theorem are new and will
be defined in the next section.

Theorem 1.5. Let (S, ·) be a semigroup and r be an idempotent in J (S) and let ⟨Cn⟩∞n=1 be a
sequence of members of r. Then there exist functions

m : Pf

(NS)→ N, α ∈ ×F∈Pf (NS)S
m(F )+1 and τ ∈ ×F∈Pf (NS)Jm(F ) such that

(1) if F,G ∈ Pf

(NS) and ∅ ≠ G ⊊ F , then τ (G) (m (G))< τ (F ) (1) and
(2) when n ∈ N, G1, G2, . . . , Gn ∈ Pf

(NS), ∅ ≠ G1 ⊊ G2 ⊊ . . . ⊊ Gn, and for each
i ∈ {1, 2, . . . , n}, fi ∈ Gi, and l =| G1 | one has

n∏
i=1

m(Gi)∏
j=1

α (Gi) (j) · fi (τ (Gi) (j))

 · α (Gi) (m (Gi) + 1)

 ∈ Cl.

Proof. [10, Theorem 3.6].

The importance of Phulara’s version over the previous works is that for all the members of
the sequence ⟨Cn⟩∞n=1 of members of the idempotent r there exists single

m : Pf

(NS)→ N, α ∈ ×F∈Pf (NS)S
m(F )+1, τ ∈ ×F∈Pf (NS)Jm(F ).

But we have to pay a price for that, as the sequence ∅ ≠ G1 ⊊ G2 ⊊ . . . ⊊ Gn of Pf

(NS) starts
from the position of the central set of consideration.
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The paper has been organized as follows. In the next section we are going to discuss many
important definitions and required preliminary ideas for the understanding of the paper, namely
some algebra of the Stone-Čech compactification and concepts of idempotents near 0. In section
3 we will prove the Central Sets Theorem near zero along the idea of Phulara and a consequence.

2 Definitions and Preliminaries

We now give a brief review about the Stone-Čech compactification of a discrete semigroup. Let
(S, ·) be any discrete semigroup and denote its Stone-Čech compactification by βS. βS is the
set of all ultrafilters on S, where the points of S are identified with the principal ultrafilters.
The basis for the topology is

{
Ā : A ⊆ S

}
, where Ā = {p ∈ βS : A ∈ p}. The operation of S

can be extended to βS making (βS, ·) a compact, right topological semigroup with S contained
in its topological center. That is, for all p ∈ βS, the function ρp : βS → βS is continuous,
where ρp (q) = q · p and for all x ∈ S, the function λx : βS → βS is continuous, where
λx (q) = x · q. For p, q ∈ βS and A ⊆ S, A ∈ p · q if and only if

{
x ∈ S : x−1A ∈ q

}
∈ p, where

x−1A = {y ∈ S : x · y ∈ A}.
Since βS is a compact Hausdorff right topological semigroup, it has a smallest two sided

ideal denoted by K (βS), which is the union of all of the minimal right ideals of S, as well as
the union of all of the minimal left ideals of S. Every left ideal of βS contains a minimal left
ideal and every right ideal of βS contains a minimal right ideal. The intersection of any minimal
left ideal and any minimal right ideal is a group, and any two such groups are isomorphic.
Any idempotent p in βS is said to be minimal if and only if p ∈ K (βS). Though central set
was defined dynamically, there is an algebraic counterpart of this definition, established by V.
Bergelson and N. Hindman in [2], as mentioned in the introduction.

Definition 2.1. Let S be a discrete semigroup. Then a subset A of S is called central if and only
if there is some minimal idempotent p such that A ∈ p.

In this context we now need to define a few combinatorially rich sets which arises now and
then in Ramsey theory, later we will also give these definitions in other settings according as our
requirement.

Definition 2.2. Let (S, ·) be a semigroup and A ⊆ S, then

(i) The set A is thick if and only if for any F ∈ Pf (S), there exists an element x ∈ S such that
F · x ⊆ A. For example one can see

⋃
n∈N [2n, 2n + n] is a thick set in N.

(ii) The set A is called syndetic if and only if there exists a finite subset G of S such that⋃
t∈G t−1A = S. For example the set of even and odd numbers are both syndetic set in N.

(iii) T = SN = {f |f : N → S}.

(iv) For m ∈ N, Jm = {(t (1) , . . . , t (m)) ∈ Nm : t (1) < . . . < t (m)} .

(v) Given m ∈ N, a ∈ Sm+1, t ∈ Jm and f ∈ F ,

x (m, a, t, f) =

 m∏
j=1

(a (j) · f (t (j)))

 · a (m+ 1)

where the terms in the product
∏

are arranged in increasing order.

(vi) A ⊆ S is called a J-set iff for each F ∈ Pf (T ), there exist m ∈ N, a ∈ Sm+1, t ∈ Jm such
that, for each f ∈ T ,

x (m, a, t, f) ∈ A.

(vii) If the semigroup S is commutative, the definition is rather simple. In that case, a set A ⊆ S
is a J-set if and only if whenever F ∈ Pf

(NS), there exist a ∈ S and H ∈ Pf (N), such
that for each f ∈ F , a+

∑
t∈H f(t) ∈ A.
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It should be noted that a set is thick if it contains a translation of any finite subset. Also with
a finite translation, if the set covers the entire semigroup, then it will be called a Syndetic set.

We next define the notion of idempotents near zero, originally introduced by Hindman and
Leader in [7].

We work with S = ((0,∞) ,+). We have been considering those semigroups which are
dense in S with respect to the natural topology of S. When we want to discuss the Stone-Čech
compactification of such a semigroup S, we have to shift to Sd, the set S with the discrete
topology.

Definition 2.3. Let S be a dense subset of ((0,∞) ,+). Then

0+ (S) = {p ∈ βSd : (∀ϵ > 0) (0, ϵ) ∩ S ∈ p} .

We now have to recall the notions of combinatorially rich sets near zero from the literature.

Definition 2.4. Let S be a dense subsemigroup of ((0,∞) ,+). and let A ⊆ S.

(i) A is a central set near zero if and only if there exists an idempotent p in the smallest ideal
of 0+ (S) with A ∈ p.

(ii) A subset A of (0, 1) is syndetic near 0 if and only if ∀ϵ > 0 there exist F ∈ Pf (0, ϵ) and
δ > 0 such that S ∩ (0, δ) ⊆

⋃
t∈F (−t+A).

(iii) The collection of all sequences in S converging to zero is denoted by T0.

(iv) A subset A of (0, 1) is called J-set near 0 iff whenever F ∈ Pf (T0) and δ > 0 , there exist
a ∈ S ∩ (0, δ) and H ∈ Pf (N) such that for each f ∈ F , a+

∑
t∈H f (t) ∈ A.

(v) J0 (S) = {p ∈ 0+ : ∀A ∈ p,A is a J-set near 0}.

3 Central Sets Theorem Near Zero Along Phulara’s Way

In this section we will show that the Central Sets Theorem near zero can be modified in the
direction of Dev Phulara, i.e we show that the conclusion of the theorem is true if we take a
sequence of central sets instead of a single central set. But before that we need to state a lemma
first.

Lemma 3.1. Let S be a dense subsemigroup of ((0,∞) ,+) and A ⊆ S is a J−set near zero.
Whenever m ∈ N and F ∈ Pf (T0) and δ > 0, there exist a ∈ S ∩ (0, δ) and H ∈ Pf (N) such
that minH > m and for each f ∈ F , a+

∑
t∈H f (t) ∈ A.

Proof. [1, Lemma 3.3].

Now we are in a position to prove our required version.

Theorem 3.2. Let S be a dense subsemigroup of ((0,∞) ,+), let p be an idempotent in J0 (S),
and let ⟨Cn⟩∞n=1 be a sequence of members of p. Then for each δ ∈ (0, 1) , there exist αδ :
Pf (T0) → S and Hδ : Pf (T0) → Pf (N) such that

1. αδ (F ) < δ for each F ∈ Pf (T0);
2. if F,G ∈ Pf (T0) , ∅ ≠ F ⊊ G, then maxHδ (F ) < minHδ (G) and
3. if m ∈ N and G1, G2, ..., Gm ∈ Pf (T0) , ∅ ≠ G1 ⊊ G2 ⊊ . . . ⊊ Gm, fi ∈ Gi for each

i = 1, 2, . . . ,m, and |G1| = r, then

m∑
i=1

αδ (Gi) +
∑

t∈Hδ(Gi)

fi (t)

 ∈ Cr.

Proof. We may assume that ⟨Cn⟩∞n=1 to be decreasing. For each n, let C∗
n = {x ∈ Cn : −x+ Cn ∈ p}.

Then C∗
n ∈ p and by [9, Corollary 4.14], for each x ∈ C∗

n, −x+ C∗
n ∈ p.

Let δ ∈ (0, 1) be given. We define αδ ∈ S and Hδ ∈ Pf (N) for F ∈ Pf (T0) by induction on
| F | so that

(1) αδ (F ) < δ.
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(2) if F,G ∈ Pf (T0) , ∅ ≠ G ⊊ F , then maxHδ (G) < minHδ (F ) .
(3) if m ∈ N and ∅ ̸= G1 ⊊ G2 ⊊ . . . ⊊ Gm = F , fi ∈ Gi, for each i = 1, 2, . . . ,m, and

|G1| = r, then
m∑
i=1

αδ (Gi) +
∑

t∈Hδ(Gi)

fi (t)

 ∈ C⋆
r .

Let f ∈ T0 and let F = {f}. Since C1 ∈ p and p ∈ J0 (S), C⋆
1 is J-set near zero, so for given

δ > 0, pick a ∈ S ∩ (0, δ) and L ∈ Pf (N) such that a+
∑

t∈L f (t) ∈ C⋆
1 .

Let αδ (F ) = a and Hδ (F ) = L. Then the hypotheses are satisfied, (2) is vacuously true.
Now assume that F ∈ Pf (T0), | F |= n > 0, and αδ (G) and Hδ (G) have been defined for

all proper subsets G of F , satisfying the induction hypotheses.
Let Kδ =

⋃
{Hδ (G) : ∅ ≠ G ⊊ F} and let d = maxKδ.

For r ∈ {1, 2, . . . , n− 1}, let

Mr
δ =


∑s

i=1

(
αδ (Gi) +

∑
t∈Hδ(Gi)

fi (t)
)

:

s ∈ {1, 2, . . . , n− 1} , ∅ ≠ G1 ⊊ G2 ⊊ . . . ⊊ Gs ⊊ F,

fi ∈ Gi for i ∈ {1, 2, . . . , s} , and | G1 |= r

 .

Then each Mr
δ is finite and by hypothesis (3), Mr

δ ⊆ C⋆
r . Let

A = C⋆
n ∩

n−1⋂
r=1

⋂
x∈Mr

δ

(−x+ C⋆
r ) .

Then A ∈ p, and so A is a J-set near zero. By Lemma 3.1, pick a ∈ S∩(0, δ) and L ∈ Pf (N)
such that minL > d and for each f ∈ F , a+

∑
t∈L f (t) ∈ A. Let αδ (F ) = a and Hδ (F ) = L.

Hypothesis (1) holds directly and since minL > d, hypothesis (2) holds.
To verify hypothesis (3) let ∅ ̸= G1 ⊊ G2 ⊊ . . . ⊊ Gm = F , let f1, f2, . . . , fm be given such

that each fi ∈ Gi, and let r =| G1 |. Assume first that m = 1. Then hypothesis (3) holds because
αδ (F ) +

∑
t∈Hδ(F ) f (t) ∈ A ⊆ C∗

n.

Now assume that m > 1, and let r =| G1 |. Let

y =
m−1∑
i=1

αδ (Gi) +
∑

t∈Hδ(Gi)

fi (t)

 .

Then y ∈ Mr
δ , and αδ (F ) +

∑
t∈Hδ(F ) fm (t) ∈ A ⊆ (−y + C⋆

r ) as required.

We now discuss a combinatorial result which is classic but we generalize together for near
zero and along a sequence of central sets.

Theorem 3.3. Let S be a dense subsemigroup of ((0,∞) ,+), let p be an idempotent in J0 (S).
Let (Cn)

∞
n=1 be a sequence of members of p. Let k ∈ N and for each l ∈ {1, 2, . . . , k} let

⟨yl,n⟩∞n=1 be a sequence in T0. Then there exist a sequence ⟨an⟩∞n=1 in T0 and a sequence ⟨Hn⟩∞n=1
in Pf (N) such that maxHn < minHn+1 for each n ∈ N and such that for each l ∈ {1, 2, . . . , k}
and F ∈ Pf (N) with minF = m, we have

∑
n∈F

(
an +

∑
t∈Hn

yl,t

)
∈ Cm.

Proof. We may assume that (Cn)
∞
n=1 is downward directed. Pick αδ and Hδ as guaranteed by

Theorem 3.2. Now choose ⟨γu⟩∞u=1in this manner. Let

γ1 ∈ T0 \
{
⟨y1,n⟩∞n=1 , ⟨y2,n⟩∞n=1 , . . . , ⟨yk,n⟩

∞
n=1

}
which is defined due to the non-triviality of S. For u ∈ N, pick

γu+1 ∈ T0 \
({

⟨y1,n⟩∞n=1 , ⟨y2,n⟩∞n=1 , . . . , ⟨yk,n⟩
∞
n=1

}
∪ {γ1, γ2, . . . , γu}

)
.
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This choice is possible due to the fact that T0 is infinite. Now define

Gu =
{
⟨y1,n⟩∞n=1 , ⟨y2,n⟩∞n=1 , . . . , ⟨yk,n⟩

∞
n=1

}
∪ {γ1, γ2, . . . , γu} .

Let auδ = αδ (Gu) and Hu
δ = Hδ (Gu). Let l ∈ {1, 2, . . . , k} and let F ∈ Pf (N) which is

enumerated as {n1, n2, . . . , ns}, so that m = n1. Then we have

Gm = Gn1 ⊊ Gn2 ⊊ . . . ⊊ Gns .

Also we have that for each i ∈ {1, 2, . . . , s}, ⟨yl,t⟩∞t=1 ∈ Gni , and | Gn1 |= m+ k. So we have,

∑
n∈F

anδ +
∑
t∈Hn

δ

yl,t

 =
s∑

i=1

αδ (Gni) +
∑

t∈Hδ(Gni)

yl,t

 ∈ Cm+k ⊆ Cm.
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[9] N.Hindman, D.Strauss, Algebra in the Stone-Čech Compactifications: theory and applications, second
edition, de Gruyter, Berlin, 2012.

[10] D.Phulara, A generalized Central Sets Theorem and applications, Topology and its Applications 196
(2015) 92–105.

[11] O. Shuungula,Y. Zelenyuk and Y. Zelenyuk, The closure of the smallest ideal of an ultrafilter semigroup,
Semigroup Forum 79 (2009) , 531–539.

[12] B. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskunde 19 (1927), 212–216.

Author information
J. Poddar, Department of Mathematics, Techno India University, Saltlake Sector V, Kolkata 700091, West
Bengal, India.
E-mail: jyotirmoy.p@technoindiaeducation.com

S. Pal, Department of Mathematics, University of Kalyani, Kalyani, Nadia-741235, West Bengal, India.
E-mail: sujan2016pal@gmail.com

Received: 2024-07-23

Accepted: 2024-10-22


	1 Introduction
	2 Definitions and Preliminaries
	3 Central Sets Theorem Near Zero Along Phulara's Way

