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Abstract In this paper, we explore set-theoretical solutions to the Yang-Baxter equation
within the framework of BCC-algebras. We systematically analyze various mappings to deter-
mine their adherence to the braid condition. First we produce basic results by identifying several
mappings, including the identity map, constant mappings, and combinations involving elements
and constants, as solutions to the Yang-Baxter equation. We then introduce the left and right
α-extension mappings and demonstrate that they satisfy the braid condition when idempotent.
Our results are further supported by examining the validity of right extension mappings under
similar conditions. We conclude with generalized findings that confirm the braid condition for
combinations of left and right extensions and scenarios where idempotent extensions are equal
or interchanged. This study significantly enhances the understanding of BCC-algebras and their
role in solving the Yang-Baxter equation.

1 Introduction

The Yang-Baxter equation, initially introduced by the Nobel laureate C.N. Yang in the realm of
theoretical physics [1], and independently by Baxter in the field of statistical mechanics [2, 3],
has garnered significant attention across various disciplines. This equation plays a pivotal role
in knot theory, link invariants, quantum computing, braided categories, quantum groups, inte-
grable systems, and quantum mechanics. In pure mathematics, the quest to find set-theoretical
solutions within algebraic structures has been particularly influential. Notable contributions in-
clude the examination of algebraic structures arising from Yang-Baxter systems by Berceanu et
al. [4], the construction of new set-theoretical solutions in MV-algebras by Oner, Senturk et al.
[5], and the exploration of classical solutions for simple Lie algebras by Belavin and Drinfeld
[6]. Further, Senturk et al. studies on set-theoretical solutions for the Yang-Baxter equation
in triangle algebras [7], Massuyeau and Nichita’s knot invariants from Yang-Baxter operators
[8], Gateva-Ivanova’s work on braces and symmetric groups [9], Wang and Ma’s framework for
singular solutions [10], and Nichita and Parashar’s studies on spectral-parameter dependent op-
erators [11], have significantly advanced the field. Similarly, Rota-Baxter operators are studied
on complex-semi-simple algebras [12].

In recent years, there has been a growing focus on t-norm based logic systems and their
corresponding pseudo-logic systems, driven by both theoretical and practical motivations. The
algebraic investigations of these systems often precede their logical counterparts, as evidenced
in BCK, BCI and BE-algebras, which are inspired by implicational logic. These algebras, along
with their corresponding logics, often have a strong connection that allows for the translation of
well-formed formulas and theorems into algebraic terms and theorems.[13, 14, 15, 16]

To address specific problems in BCK-algebras, Y. Komori introduced BCC-algebras [17],
which are also known as BIK+-algebras [18] or BZ-algebras [19] due to their close relationship
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with BIK+ logic. Various generalizations of BCC-algebras have been studied extensively, par-
ticularly by mathematicians from China, Japan, and Korea. These algebras share a common set
of identities, with one of the most significant being (xy)z = (xz)y. This identity is prevalent
in pre-logics [20], Hilbert algebras, implication algebras [21], and MV-algebras [22]. Although
BCK-algebras satisfy this identity, it does not hold in BCC-algebras unless specific conditions
are met. The class of all bounded commutative BCC-algebras is equivalent to the class of all
MV-algebras [23], which justifies the exploration of such BCC-algebras and their generaliza-
tions, particularly those satisfying this identity under certain conditions [24].

In this manuscript, we have explored the set-theoretical solutions to the Yang-Baxter equa-
tion within the framework of BCC-algebras. By developing and analyzing various mappings,
including the identity map, constant mappings, and specific combinations of elements and con-
stants, we have demonstrated their adherence to the braid condition, confirming their validity as
solutions to the Yang-Baxter equation. Further, we introduced and examined the left and right
α-extension mappings, proving their role as viable solutions through rigorous algebraic analysis,
and showed that both left and right extension mappings, when defined with idempotent proper-
ties, serve as robust solutions. These findings were generalized through theorems, highlighting
their applicability and reinforcing the versatility of BCC-algebras in addressing complex alge-
braic equations. Concrete examples illustrated the practical implementation of these theoretical
results, reinforcing their significance with tangible applications. Our findings underscore the po-
tential of BCC-algebras in broader mathematical contexts. Future research may delve deeper into
the implications of these solutions, exploring their potential applications in fields such as cryp-
tography, quantum computing, and other areas where the Yang-Baxter equation plays a critical
role.

2 Preliminaries

This section encompasses essential definitions, propositions and some concepts pertaining to
BCC-algebras and the Yang-Baxter equation, laying the groundwork for subsequent sections.

Definition 2.1. [25] A BCC-algebra is defined as a non-empty set X equipped with a binary
internal operation ” · ” and a distinguished element ”0” that satisfy the following axioms:

(BCC1) For all x, y, z ∈ X , ((y · z) · ((x · y) · (x · z)) = 0;

(BCC2) For all x ∈ X , x · x = 0;

(BCC3) For all x ∈ X , x · 0 = 0;

(BCC4) For all x ∈ X , 0 · x = x; and

(BCC5) For all x, y ∈ X , if x · y = 0 and y · x = 0, then x = y.

Proposition 2.2. In a BCC-algebra B, the following properties hold for any x, y, z ∈ B:

(i) x · y = 0 and y · z = 0 imply x · z = 0,

(ii) x · y = 0 implies (z · x) · (z · y) = 0,

(iii) x · y = 0 implies (y · z) · (x · z) = 0,

(iv) x · (y · x) = 0,

(v) (y · x) · x = 0 if and only if x = y · x, and

(vi) x · (y · y) = 0.

Now, we explain Yang-Baxter equation on BCC-algebras.
Let FBCC be a field where the tensor product is defined, and consider WBCC as an FBCC-

vector space. We represent the mapping on WBCC ⊗ WBCC by δ. The twist map for this
structure is given by δ(w1 ⊗ w2) = w2 ⊗ w1, while the identity map on FBCC is indicated by
I : WBCC → WBCC . For an FBCC-linear map ℑ : WBCC ⊗ WBCC → WBCC ⊗ WBCC , we
define ℑ12 = ℑ⊗ I , ℑ13 = (I ⊗ δ)(ℑ⊗ I)(δ ⊗ I), and ℑ23 = I ⊗ℑ.
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Definition 2.3. [26] A Yang–Baxter operator is defined as an invertible FBCC-linear map ℑ :
WBCC ⊗ WBCC → WBCC ⊗ WBCC that adheres to the braid condition, commonly known as
the Yang–Baxter equation:

ℑ12 ◦ ℑ23 ◦ ℑ12 = ℑ23 ◦ ℑ12 ◦ ℑ23. (2.1)

If ℑ satisfies Equation (2.1), then the compositions ℑ ◦ µ and µ ◦ ℑ fulfill the quantum Yang–
Baxter equation (QYBE):

ℑ12 ◦ ℑ13 ◦ ℑ23 = ℑ23 ◦ ℑ13 ◦ ℑ12. (2.2)

To determine set-theoretical solutions of the Yang–Baxter equation within BCC-algebras, the
following definition is pivotal.

Definition 2.4. [26] Consider a set B, and let ℑ : B × B → B × B be a mapping given by
ℑ(b1, b2) = (b1, b2). The map ℑ is a set-theoretical solution of the Yang–Baxter equation if it
satisfies:

ℑ12 ◦ ℑ23 ◦ ℑ12 = ℑ23 ◦ ℑ12 ◦ ℑ23, (2.3)

which is also equivalent to:

ℑ12 ◦ ℑ13 ◦ ℑ23 = ℑ23 ◦ ℑ13 ◦ ℑ12. (2.4)

where

ℑ12 : B3 → B3, ℑ12(b1, b2, b3) = (b1, b2, b3),

ℑ23 : B3 → B3, ℑ23(b1, b2, b3) = (b1, b2, b3),

ℑ13 : B3 → B3, ℑ13(b1, b2, b3) = (b1, b2, b3).

3 Set-Theoretical Solutions of Yang-Baxter Equation on BCC-algebras

In this section, we explored various set-theoretical solutions to the Yang-Baxter equation within
the framework of BCC-algebras. We began by identifying several specific mappings, including
the identity map and constant mappings, that satisfy the Yang-Baxter equation, as outlined in
Lemma 3.1. We then extended our analysis to mappings involving associative binary operations,
demonstrating their adherence to the braid condition as shown in Lemma 3.2. We introduced
the concepts of left and right α-extension mappings, Lα and Rα, and established their validity
as solutions through detailed proofs in Lemmas 3.4 to 3.8. The section culminates with The-
orems 3.9 to 3.11, which provide generalized results for mappings involving these extensions,
ensuring their compliance with the braid condition. Finally, Corollary 3.12 further reinforces the
applicability of these mappings by confirming that certain combinations of idempotent exten-
sions also fulfill the braid condition, thereby validating their role as set-theoretical solutions to
the Yang-Baxter equation in BCC-algebras.

Lemma 3.1. Let B be a BCC-algebra. The following mappings are set-theoretical solutions of
the Yang-Baxter equation for any element α ∈ B:

(i) If ℑ is the identity map,

(ii) If ℑ(b1, b2) = (0, 0),

(iii) If ℑ(b1, b2) = (α, α),

(iv) If ℑ(b1, b2) = (b1, α),

(v) If ℑ(b1, b2) = (α, b2),

(vi) If ℑ(b1, b2) = (b1, 0),

(vii) If ℑ(b1, b2) = (0, b2).
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Proof. (v) : Consider the mappings ℑ12 and ℑ23 defined as follows:

ℑ12 : B3 → B3, ℑ12(b1, b2, b3) = (α, b2, b3),

ℑ23 : B3 → B3, ℑ23(b1, b2, b3) = (b1, α, b3).

We need to verify that the equation

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = (ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3)

holds for all (b1, b2, b3) ∈ B3. We compute as follows:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = ℑ12(ℑ23(ℑ12(b1, b2, b3)))

= ℑ12(ℑ23(α, b2, b3))

= ℑ12(α, α, b3)

= (α, α, b3)

= ℑ23(α, α, b3)

= ℑ12(ℑ23(b1, α, b3))

= ℑ23(ℑ12(ℑ23(b1, b2, b3)))

= (ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3).

Thus, the mapping ℑ(b1, b2) = (α, b2) satisfies the Yang-Baxter equation as a set-theoretical
solution on BCC-algebras. The proofs for the other mappings follow a similar process to that
shown for (v).

Lemma 3.2. Let (B; ·) be a BCC-algebra. The mappings defined by

(i) ℑ(b1, b2) = (b1 · b2, 0)

(ii) ℑ(b1, b2) = (0, b2 · b1)

satisfy the braid condition in this structure, where the operation · is associative, i.e., b1 ·(b2 ·b3) =
(b1 · b2) · b3 for all b1, b2, b3 ∈ B. Consequently, these mappings are set-theoretical solutions of
Yang-Baxter equation in BCC-algebras.

Proof. (i) : Consider the mappings ℑ12 and ℑ23 defined as follows:

ℑ12 : B3 → B3, ℑ12(b1, b2, b3) = (b1 · b2, 0, b3),

ℑ23 : B3 → B3, ℑ23(b1, b2, b3) = (b1, b2 · b3, 0).

We need to verify that the equation

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = (ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3)

holds for all (b1, b2, b3) ∈ B3. We compute as follows:
By Definition 2.1 (BCC3), we have:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = ℑ12(ℑ23(ℑ12(b1, b2, b3))) (3.1)

= ℑ12(ℑ23(b1 · b2, 0, b3))

= ℑ12(b1 · b2, 0 · b3, 0)

= ℑ12(b1 · b2, b3, 0)

= ((b1 · b2) · b3, 0, 0).

Similarly, we get

(ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3) = ℑ23(ℑ12(ℑ23(b1, b2, b3))) (3.2)

= ℑ23(ℑ12(b1, b2 · b3, 0))

= ℑ23(b1 · (b2 · b3), 0, 0)

= (b1 · (b2 · b3), 0, 0).
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The Equation (3.1) and the Equation (3.4) are equal to each other since we have b1 · (b2 · b3) =
(b1 · b2) · b3 for all b1, b2, b3 ∈ B. It follows that:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = (ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3)

for all (b1, b2, b3) ∈ B3. Therefore, the mapping ℑ(b1, b2) = (b1 · b2, 0) satisfies the Yang-Baxter
equation as a set-theoretical solution in BCC-algebras.
(ii) : It is clearly obtained by using a similar method as in the proof of Lemma 3.2 (i).

Definition 3.3. Let (B; ·) be a BCC-algebra. We define the following mappings for any α ∈ B:

Lα : B → B

b 7→ Lα(b) := α · b,

where Lα is called the left α-extension mapping in the BCC-algebra.
Similarly, the mapping

Rα : B → B

b 7→ Rα(b) := b · α

is called the right α-extension mapping in the BCC-algebra.

Lemma 3.4. Let (B; ·) be a BCC-algebra. Consider the mapping defined by

ℑ(b1, b2) = (Lα(b2),Lα(b1)),

where Lα(b) = α · b denotes the left α-extension mapping. This mapping satisfies the braid
condition within this structure. Consequently, it serves as a set-theoretical solution to the Yang-
Baxter equation in BCC-algebras.

Proof. Let us examine the mappings ℑ12 and ℑ23, which are defined as follows:

ℑ12 : B3 → B3, ℑ12(b1, b2, b3) = (Lα(b2),Lα(b1), b3),

ℑ23 : B3 → B3, ℑ23(b1, b2, b3) = (b1,Lα(b3),Lα(b2)).

Our goal is to verify whether the following equality holds:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = (ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3).

for every element (b1, b2, b3) ∈ B3. We proceed with the calculations as follows:
First, we compute:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = ℑ12(ℑ23(ℑ12(b1, b2, b3))) (3.3)

= ℑ12(ℑ23(Lα(b2),Lα(b1), b3))

= ℑ12(Lα(b2),Lα(b3),Lα(Lα(b1)))

= (Lα(Lα(b3)),Lα(Lα(b2)),Lα(Lα(b1))).

Then, we obtain:

(ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3) = ℑ23(ℑ12(ℑ23(b1, b2, b3))) (3.4)

= ℑ23(ℑ12(b1,Lα(b3),Lα(b2)))

= ℑ23(Lα(Lα(b3)),Lα(b1),Lα(b2))

= (Lα(Lα(b3)),Lα(Lα(b2)),Lα(Lα(b1))).

Since the results from Equation (3.3) and the Equation (3.4) match, it follows that the mapping
ℑ(b1, b2) = (Lα(b2),Lα(b1)) satisfies the Yang-Baxter equation. Hence, it represents a valid
set-theoretical solution within BCC-algebras.
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· 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 1 2 0 0 0 0
4 0 1 2 3 0 0 0
5 0 1 2 3 4 0 6
6 0 1 2 3 5 5 0

Table 1. Definition of the operation · on B

Example 3.5. Consider the set B = {0, 1, 2, 3, 4, 5, 6}. The binary operation · on B is defined as
depicted in Table 1.
Then, the structure (B; ·) forms a BCC-algebra. To verify the mapping ℑ(b1, b2) = (Lα(b2),Lα(b1))
where Lα(b) = α · b and for α = 5, we perform the following calculations:
• For b1 = 0:

ℑ(0, 0) = (L5(0),L5(0)) = (0, 0)

ℑ(0, 1) = (L5(1),L5(0)) = (1, 0)

ℑ(0, 2) = (L5(2),L5(0)) = (2, 0)

ℑ(0, 3) = (L5(3),L5(0)) = (3, 0)

ℑ(0, 4) = (L5(4),L5(0)) = (4, 0)

ℑ(0, 5) = (L5(5),L5(0)) = (0, 0)

ℑ(0, 6) = (L5(6),L5(0)) = (6, 0)

• For b1 = 1:

ℑ(1, 0) = (L5(0),L5(1)) = (0, 1)

ℑ(1, 1) = (L5(1),L5(1)) = (1, 1)

ℑ(1, 2) = (L5(2),L5(1)) = (2, 1)

ℑ(1, 3) = (L5(3),L5(1)) = (3, 1)

ℑ(1, 4) = (L5(4),L5(1)) = (4, 1)

ℑ(1, 5) = (L5(5),L5(1)) = (0, 1)

ℑ(1, 6) = (L5(6),L5(1)) = (6, 1)

• For b1 = 2:

ℑ(2, 0) = (L5(0),L5(2)) = (0, 2)

ℑ(2, 1) = (L5(1),L5(2)) = (1, 2)

ℑ(2, 2) = (L5(2),L5(2)) = (2, 2)

ℑ(2, 3) = (L5(3),L5(2)) = (3, 2)

ℑ(2, 4) = (L5(4),L5(2)) = (4, 2)

ℑ(2, 5) = (L5(5),L5(2)) = (0, 2)

ℑ(2, 6) = (L5(6),L5(2)) = (6, 2)



SET-THEO. SOL. YANG-BAXTER EQ. BCC-ALG. 473

• For b1 = 3:

ℑ(3, 0) = (L5(0),L5(3)) = (0, 3)

ℑ(3, 1) = (L5(1),L5(3)) = (1, 3)

ℑ(3, 2) = (L5(2),L5(3)) = (2, 3)

ℑ(3, 3) = (L5(3),L5(3)) = (3, 3)

ℑ(3, 4) = (L5(4),L5(3)) = (4, 3)

ℑ(3, 5) = (L5(5),L5(3)) = (0, 3)

ℑ(3, 6) = (L5(6),L5(3)) = (6, 3)

• For b1 = 4:

ℑ(4, 0) = (L5(0),L5(4)) = (0, 4)

ℑ(4, 1) = (L5(1),L5(4)) = (1, 4)

ℑ(4, 2) = (L5(2),L5(4)) = (2, 4)

ℑ(4, 3) = (L5(3),L5(4)) = (3, 4)

ℑ(4, 4) = (L5(4),L5(4)) = (4, 4)

ℑ(4, 5) = (L5(5),L5(4)) = (0, 4)

ℑ(4, 6) = (L5(6),L5(4)) = (6, 4)

• For b1 = 5:

ℑ(5, 0) = (L5(0),L5(5)) = (0, 0)

ℑ(5, 1) = (L5(1),L5(5)) = (1, 0)

ℑ(5, 2) = (L5(2),L5(5)) = (2, 0)

ℑ(5, 3) = (L5(3),L5(5)) = (3, 0)

ℑ(5, 4) = (L5(4),L5(5)) = (4, 0)

ℑ(5, 5) = (L5(5),L5(5)) = (0, 0)

ℑ(5, 6) = (L5(6),L5(5)) = (6, 0)

• For b1 = 6:

ℑ(6, 0) = (L5(0),L5(6)) = (0, 6)

ℑ(6, 1) = (L5(1),L5(6)) = (1, 6)

ℑ(6, 2) = (L5(2),L5(6)) = (2, 6)

ℑ(6, 3) = (L5(3),L5(6)) = (3, 6)

ℑ(6, 4) = (L5(4),L5(6)) = (4, 6)

ℑ(6, 5) = (L5(5),L5(6)) = (0, 6)

ℑ(6, 6) = (L5(6),L5(6)) = (6, 6)

Let’s verify the braid condition for any selected example to demonstrate. We chose b1 =
0, b2 = 1, b3 = 2 and α = 5, then we get
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(ℑ12 ◦ ℑ23 ◦ ℑ12)(0, 1, 2) = ℑ12(ℑ23(ℑ12(0, 1, 2))) (3.5)

= ℑ12(ℑ23(L5(1),L5(0), 2))

= ℑ12(ℑ23(1, 0, 2))

= ℑ12(1,L5(2),L5(0))

= ℑ12(1, 2, 0)

= (L5(2),L5(1), 0)

= (2, 1, 0),

and also,

(ℑ23 ◦ ℑ12 ◦ ℑ23)(0, 1, 2) = ℑ23(ℑ12(ℑ23(0, 1, 2))) (3.6)

= ℑ23(ℑ12(0,L5(2),L5(1)))

= ℑ23(ℑ12(0, 2, 1))

= ℑ23(L5(2),L5(0), 1)

= ℑ23(2, 0, 1)

= (2,L5(1),L5(0))

= (2, 1, 0).

Since the Equation (3.5) and the Equation (3.6) are identical, the mapping ℑ(b1, b2) = (Lα(b2),Lα(b1))
verifies the braid condition for b1 = 0, b2 = 1, b3 = 2 and α = 5. As a similar technique, braid
condition can be implemented for all elements on this example.

Lemma 3.6. Let (B; ·) be a BCC-algebra. Consider the mapping defined by

ℑ(b1, b2) = (Lα(b1),Lα(b2)),

where Lα(b) = α·b represents the left extension mapping with Lα being an idempotent operation.
This mapping satisfies the braid condition for this algebraic structure. Thus, it provides a valid
set-theoretical solution to the Yang-Baxter equation within the framework of BCC-algebras.

Proof. Consider the mappings ℑ12 and ℑ23 defined as follows:

ℑ12 : B3 → B3, ℑ12(b1, b2, b3) = (Lα(b1),Lα(b2), b3),

ℑ23 : B3 → B3, ℑ23(b1, b2, b3) = (b1,Lα(b2),Lα(b3)).

To show that these mappings satisfy the braid condition, we need to verify:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = (ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3)

for all (b1, b2, b3) ∈ B3. We will compute each side step-by-step.
Firstly, we calculate:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = ℑ12(ℑ23(ℑ12(b1, b2, b3))) (3.7)

= ℑ12(ℑ23(Lα(b1),Lα(b2), b3))

= ℑ12(Lα(b1),Lα(Lα(b2)),Lα(b3))

= (Lα(Lα(b1)),Lα(Lα(Lα(b2))),Lα(b3)).

Also, we compute:

(ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3) = ℑ23(ℑ12(ℑ23(b1, b2, b3))) (3.8)

= ℑ23(ℑ12(b1,Lα(b2),Lα(b3)))

= ℑ23(Lα(b1),Lα(Lα(b2)),Lα(b3))

= (Lα(b1),Lα(Lα(Lα(b2))),Lα(Lα(b3))).
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We need to show that:

(Lα(Lα(b1)),Lα(Lα(Lα(b2))),Lα(b3)) = (Lα(b1),Lα(Lα(Lα(b2))),Lα(Lα(b3))).

Given that Lα is an idempotent mapping, we have Lα(Lα(b)) = Lα(b) for all b ∈ B. Thus:

Lα(Lα(b1)) = Lα(b1) and Lα(Lα(b3)) = Lα(b3).

Therefore, the computed expressions from the Equation (3.7) and the Equation (3.8) are identical.
Hence, the mapping ℑ(b1, b2) = (Lα(b1),Lα(b2)) satisfies the Yang-Baxter equation, proving it
is a valid set-theoretical solution within BCC-algebras.

Lemma 3.7. Let (B; ·) be a BCC-algebra. Define the mapping as follows:

ℑ(b1, b2) = (Rα(b2),Rα(b1)),

where Rα(b) = b·α represents the right α-extension mapping. This mapping adheres to the braid
condition within this algebraic structure. As a result, it constitutes a set-theoretical solution to
the Yang-Baxter equation in BCC-algebras.

Proof. Let us consider the mappings ℑ12 and ℑ23, which are defined as follows:

ℑ12 : B3 → B3, ℑ12(b1, b2, b3) = (Rα(b2),Rα(b1), b3),

ℑ23 : B3 → B3, ℑ23(b1, b2, b3) = (b1,Rα(b3),Rα(b2)).

We need to check whether the following equation holds:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = (ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3)

for all (b1, b2, b3) ∈ B3. We proceed with the calculations as follows:
First of all, we compute:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = ℑ12(ℑ23(ℑ12(b1, b2, b3))) (3.9)

= ℑ12(ℑ23(Rα(b2),Rα(b1), b3))

= ℑ12(Rα(b2),Rα(b3),Rα(Rα(b1)))

= (Rα(Rα(b3)),Rα(Rα(b2)),Rα(b1)).

Then, we get:

(ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3) = ℑ23(ℑ12(ℑ23(b1, b2, b3))) (3.10)

= ℑ23(ℑ12(b1,Rα(b3),Rα(b2)))

= ℑ23(Rα(Rα(b3)),Rα(b1),Rα(b2))

= (Rα(Rα(b3)),Rα(Rα(b2)),Rα(b1)).

Since the results from Equation (3.9) and the Equation (3.10) match, it follows that the mapping
ℑ(b1, b2) = (Rα(b2),Rα(b1)) satisfies the Yang-Baxter equation. Therefore, it serves as a valid
set-theoretical solution within BCC-algebras.

Lemma 3.8. Let (B; ·) be a BCC-algebra. Define the mapping by

ℑ(b1, b2) = (Rα(b1),Rα(b2)),

where Rα(b) = b·α is the right extension mapping, and Lα is idempotent. This mapping adheres
to the braid condition within this algebraic structure, making it a valid set-theoretical solution
to the Yang-Baxter equation in the context of BCC-algebras.
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Proof. Let us consider the mappings ℑ12 and ℑ23, defined as follows:

ℑ12 : B3 → B3, ℑ12(b1, b2, b3) = (Rα(b1),Rα(b2), b3),

ℑ23 : B3 → B3, ℑ23(b1, b2, b3) = (b1,Rα(b2),Rα(b3)).

To prove that these mappings satisfy the braid condition, we need to verify the following equality:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = (ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3),

for all (b1, b2, b3) ∈ B3. We will compute each side step-by-step.
For the left hand side of the braid condition, we calculate:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = ℑ12(ℑ23(ℑ12(b1, b2, b3))) (3.11)

= ℑ12(ℑ23(Rα(b1),Rα(b2), b3))

= ℑ12(Rα(b1),Rα(Rα(b2)),Rα(b3))

= (Rα(Rα(b1)),Rα(Rα(Rα(b2))),Rα(b3)).

For the right hand side of the braid condition, we compute:

(ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3) = ℑ23(ℑ12(ℑ23(b1, b2, b3))) (3.12)

= ℑ23(ℑ12(b1,Rα(b2),Rα(b3)))

= ℑ23(Rα(b1),Rα(Rα(b2)),Rα(b3))

= (Rα(b1),Rα(Rα(Rα(b2))),Rα(Rα(b3))).

We need to show that:

(Rα(Rα(b1)),Rα(Rα(Rα(b2))),Rα(b3)) = (Rα(b1),Rα(Rα(Rα(b2))),Rα(Rα(b3))).

Given that Rα is an idempotent mapping, we have Rα(Rα(b)) = Rα(b) for all b ∈ B. Thus:

Rα(Rα(b1)) = Rα(b1) and Rα(Rα(b3)) = Rα(b3).

Therefore, the expressions obtained in Equation (3.11) and Equation (3.12) are identical. Conse-
quently, the mapping ℑ(b1, b2) = (Rα(b1),Rα(b2)) satisfies the Yang-Baxter equation, proving
that it is a valid set-theoretical solution within BCC-algebras.

Theorem 3.9. Let (B; ·) be a BCC-algebra. Define the mapping as

ℑ(b1, b2) = (Lα(b2),Rα(b1)),

where Lα(Rα(b2)) = 0 for every b2 ∈ B. This mapping satisfies the braid condition within
this algebraic structure, thereby providing a valid set-theoretical solution to the Yang-Baxter
equation in BCC-algebras.

Proof. Consider the mappings ℑ12 and ℑ23, defined as:

ℑ12 : B3 → B3, ℑ12(b1, b2, b3) = (Lα(b2),Rα(b1), b3),

ℑ23 : B3 → B3, ℑ23(b1, b2, b3) = (b1,Lα(b3),Rα(b2)).

To demonstrate that these mappings meet the braid condition, we need to verify the equality:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = (ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3),

for all (b1, b2, b3) ∈ B3. Let’s compute each side step-by-step.
Starting with the left-hand side:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = ℑ12(ℑ23(ℑ12(b1, b2, b3))) (3.13)

= ℑ12(ℑ23(Lα(b2),Rα(b1), b3))

= ℑ12(Lα(b2),Lα(b3),Rα(Rα(b1)))

= (Lα(Lα(b3)),Rα(Lα(b2)),Rα(Rα(b1))).
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Now, for the right-hand side:

(ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3) = ℑ23(ℑ12(ℑ23(b1, b2, b3))) (3.14)

= ℑ23(ℑ12(b1,Lα(b3),Rα(b2)))

= ℑ23(Lα(Rα(b3)),Rα(b1),Rα(b2))

= (Lα(Lα(b3)),Lα(Rα(b2)),Rα(Rα(b1))).

We need to establish that:

(Lα(Lα(b3)),Rα(Lα(b2)),Rα(Rα(b1))) = (Lα(Lα(b3)),Lα(Rα(b2)),Rα(Rα(b1))).

Using Proposition 2.2 (iv), we get Lα(Rα(b2)) = 0. Furthermore, we have Lα(Rα(b2)) = 0
for all b2 ∈ B from our assumption. Then we deduce that Rα(Lα(b2)) = Lα(Rα(b2)). There-
fore, the expressions from Equation (3.13) and Equation (3.14) are identical. Consequently, the
mapping ℑ(b1, b2) = (Lα(b2),Rα(b2)) satisfies the Yang-Baxter equation, establishing it as a
valid set-theoretical solution within BCC-algebras.

Theorem 3.10. Let (B; ·) be a BCC-algebra. Consider the mapping defined by:

ℑ(b1, b2) = (Lα(b1),Rα(b2)),

where Lα and Rα are idempotent operations satisfying Lα(Rα(Lα(b2))) = 0 for every b2 ∈ B.
This mapping meets the braid condition for this algebraic structure, thereby serving as a valid
set-theoretical solution to the Yang-Baxter equation within the context of BCC-algebras.

Proof. We examine the mappings ℑ12 and ℑ23, which are given by:

ℑ12 : B3 → B3, ℑ12(b1, b2, b3) = (Lα(b1),Rα(b2), b3),

ℑ23 : B3 → B3, ℑ23(b1, b2, b3) = (b1,Lα(b2),Rα(b3)).

To confirm that these mappings fulfill the braid condition, we must show that:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = (ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3)

for any (b1, b2, b3) ∈ B3. We will compute both sides step by step.
First, we calculate the left-hand side:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = ℑ12(ℑ23(ℑ12(b1, b2, b3))) (3.15)

= ℑ12(ℑ23(Lα(b1),Rα(b2), b3))

= ℑ12(Lα(b1),Lα(Rα(b2)),Rα(b3))

= (Lα(Lα(b1)),Rα(Lα(Rα(b2))),Rα(b3)).

Then, we calculate the right-hand side:

(ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3) = ℑ23(ℑ12(ℑ23(b1, b2, b3))) (3.16)

= ℑ23(ℑ12(b1,Lα(b2),Rα(b3)))

= ℑ23(Lα(b1),Rα(Lα(b2)),Rα(b3))

= (Lα(b1),Lα(Rα(Lα(b2))),Rα(Rα(b3))).

We need to demonstrate that:

(Lα(Lα(b1)),Rα(Lα(Rα(b2))),Rα(b3)) = (Lα(b1),Lα(Rα(Lα(b2))),Rα(Rα(b3))).

Since Lα and Rα are idempotent, we get:

Lα(Lα(b1)) = Lα(b1) and Rα(Rα(b3)) = Rα(b3).
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Moreover, we attain Rα(Lα(Rα(b2))) = 0 for each b2 ∈ B via Proposition 2.2 (iv). By the
assumption, we have Lα(Rα(Lα(b2))) = 0 for every b2 ∈ B. Then, we conclude:

Rα(Lα(Rα(b2))) = Lα(Rα(Lα(b2)))

for each b2 ∈ B. Therefore, the expressions in Equations (3.15) and (3.16) are identical. Conse-
quently, the mapping ℑ(b1, b2) = (Lα(b1),Rα(b2)) adheres to the Yang-Baxter equation, estab-
lishing it as a valid set-theoretical solution in BCC-algebras.

Theorem 3.11. Consider a BCC-algebra (B; ·). Suppose Lα and Rβ are idempotent mappings
such that Lα(b) = Rβ(b) for every b ∈ B. Then, the mapping defined by

ℑ(b1, b2) = (Lα(b1),Rβ(b2)),

satisfies the braid condition in this algebraic structure. Therefore, it provides a valid set-
theoretical solution to the Yang-Baxter equation in the realm of BCC-algebras.

Proof. We examine the mappings ℑ12 and ℑ23, which are given by:

ℑ12 : B3 → B3, ℑ12(b1, b2, b3) = (Lα(b1),Rβ(b2), b3),

ℑ23 : B3 → B3, ℑ23(b1, b2, b3) = (b1,Lα(b2),Rβ(b3)).

To confirm that these mappings fulfill the braid condition, we must show that:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = (ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3)

for any (b1, b2, b3) ∈ B3. We will compute both sides step by step.
First, we calculate the left-hand side:

(ℑ12 ◦ ℑ23 ◦ ℑ12)(b1, b2, b3) = ℑ12(ℑ23(ℑ12(b1, b2, b3))) (3.17)

= ℑ12(ℑ23(Lα(b1),Rβ(b2), b3))

= ℑ12(Lα(b1),Lα(Rβ(b2)),Rβ(b3))

= (Lα(Lα(b1)),Rβ(Lα(Rβ(b2))),Rβ(b3)).

Then, we calculate the right-hand side:

(ℑ23 ◦ ℑ12 ◦ ℑ23)(b1, b2, b3) = ℑ23(ℑ12(ℑ23(b1, b2, b3))) (3.18)

= ℑ23(ℑ12(b1,Lα(b2),Rβ(b3)))

= ℑ23(Lα(b1),Rβ(Lα(b2)),Rβ(b3))

= (Lα(b1),Lα(Rβ(Lα(b2))),Rβ(Rβ(b3))).

We need to demonstrate that:

(Lα(Lα(b1)),Rβ(Lα(Rβ(b2))),Rβ(b3)) = (Lα(b1),Lα(Rβ(Lα(b2))),Rβ(Rβ(b3))).

Since Lα and Rα are idempotent, we get:

Lα(Lα(b1)) = Lα(b1) and Rα(Rα(b3)) = Rα(b3).

Using our assumption, we attain:

Lα(b2) = Rβ(b2) ⇒ Rβ(Lα(b2)) = Lα(Rβ(b2))

⇒ Lα(Rβ(Lα(b2))) = Rβ(Lα(Rβ(b2)))

for each b2 ∈ B. Then, we conclude:

(Lα(Lα(b1)),Rβ(Lα(Rβ(b2))),Rβ(b3)) = (Lα(b1),Lα(Rβ(Lα(b2))),Rβ(Rβ(b3))).

Therefore, the results from Equations (3.17) and (3.18) are equivalent. Hence, the mapping
ℑ(b1, b2) = (Lα(b1),Rβ(b2)) conforms to the Yang-Baxter equation, proving it to be a valid
set-theoretical solution in BCC-algebras.
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Corollary 3.12. Let (B; ·) be a BCC-algebra. Assume that Lα and Rβ are idempotent mappings
satisfying Lα(b) = Rβ(b) for all b ∈ B. Then the mapping defined by

ℑ(b1, b2) = (Rβ(b1),Lα(b2)),

fulfills the braid condition within this algebraic structure. Consequently, it constitutes a valid
set-theoretical solution to the Yang-Baxter equation within the context of BCC-algebras.

Proof. The result follows directly by applying the same approach used in the proof of Theorem
3.11.

4 Conclusion

In this manuscript, we have explored the set-theoretical solutions to the Yang-Baxter equation
within the framework of BCC-algebras. By developing and analyzing various mappings, we
have demonstrated their adherence to the braid condition, thereby confirming their validity as
solutions to the Yang-Baxter equation.

The study began by establishing fundamental lemmas, including mappings such as the iden-
tity map, constant mappings, and specific combinations of elements and constants, all shown to
satisfy the braid condition. Further, we introduced and examined the left and right α-extension
mappings, proving their role as viable solutions through rigorous algebraic analysis.

Significantly, we have shown that both left and right extension mappings, when defined with
idempotent properties, serve as robust solutions. The results culminated in theorems that gen-
eralized these findings, highlighting their applicability and reinforcing the versatility of BCC-
algebras in addressing complex algebraic equations.

Through the provision of concrete examples, the practical implementation of these theoretical
results was illustrated, reinforcing the theoretical contributions with tangible applications. Our
findings underscore the potential of BCC-algebras in broader mathematical contexts, especially
in relation to the Yang-Baxter equation. Future research may delve deeper into the implications
of these solutions, exploring their potential applications in fields such as cryptography, quantum
computing, and other areas where the Yang-Baxter equation plays a critical role. In conclusion,
this work significantly advances the understanding of BCC-algebras and their capacity to pro-
vide set-theoretical solutions to the Yang-Baxter equation, paving the way for further theoretical
developments and practical applications in various scientific domains such as [27, 28].
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