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Abstract In this paper, we introduce and characterize the notions of gradient remediability
for a class of hyperbolic systems. We study with respect to the gradient observation and by an
appropriate choice of efficient gradient actuators, the possibility of gradient compensation of
known or unknown disturbances. We also examine the relation between these notions and the
gradient controllability. Main properties concerning these concepts are considered. We applied
it in a one-dimensional domain and showed how to find the optimal control ensuring the gradient
remediability. Numerical examples and simulations confirm the results obtained.

1 Introduction

The problem described by the hyperbolic equations intervenes in different areas and occupies
a great importance in the practice. This work is an extension of previous works that concern
the analysis of this class of systems within certain concepts consisting of a set of notions, such
as controllability [12, 17, 18, 11, 14], detectability, observability [21, 22, 13] and remediability
[1, 3], which enable a better knowledge and understanding of the system. In addition to these
concepts, others are very important in practical applications like gradient controllability [20, 9,
15], gradient detectability [6] and gradient observability [7, 8].

We recall that the notion of gradient remediability depends on the possible existence of
appropriate gradient efficient actuators (input operator) guaranteeing the remediability of any
disturbance present in the considered systems with respect to the gradient observation (output
operator). This problem is particularly motivated by pollution problems and so-called space
compensation or remediability problems. The notions of remediability and efficient actuators
have been introduced and studied first for discrete systems and then for continuous systems of
a finite time horizon and other situations (regional and asymptotic cases, internal or boundary
actions of disturbances) [2, 4, 5]. In this work, we focused on the concept and properties of
gradient remediability for hyperbolic systems. For some related studies see [10, 16, 19].

This paper is organized as follows: In the second section, we presented the considered sys-
tems. In the third section, we defined and characterized the concepts of exact and weak gradient
remediability for hyperbolic systems. Next, and in the fourth section, we introduced the concepts
of exact and weak gradient controllability and studied their relation with exact and weak gradient
remediability. In the fifth section, we presented the characterization of the gradient remediability
and showed the effect of the structure and the location of the actuators and sensors on it. In the
sixth section, we applied in a one-dimensional domain. The seventh section is consecrated to
the problem of gradient remediability with minimum energy, we demonstrated the existence of
the optimal control ensuring the gradient compensation of any disturbance (known or unknown)
by an appropriate choice of efficient gradient actuators. In the last section, we presented an
illustrative example as well as approximations and numerical results.
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2 Considered System

We consider the system described by the hyperbolic equation
∂2y

∂t2 (x, t) = Ay (x, t) +Bu (t) + f (x, t) Q

y (x, 0) = y0 (x) ,
∂y

∂t
(x, 0) = y1 (x) Ω

y (ξ, t) = 0 Σ

(2.1)

where Ω is an open bounded domain in Rn with regular boundary Γ = ∂Ω, Q = Ω × ]0, T [ and

Σ = ∂Ω × ]0, T [ for T > 0, A =
n∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
is a second-order elliptic linear operator

with D (A) = H1
0 (Ω) ∩H2 (Ω) and verified the elliptic conditions

aij ∈ L∞ (Ω) , 1 ≤ i, j ≤ n, with aij = aji, 1 ≤ i, j ≤ n,

∃α > 0, ∀ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn,
n∑

i,j=1
aij (x) ξiξj ≥ α

n∑
i=1

|ξi|2, pp. in Ω.

B ∈ L (U, X), u ∈ L2(0, T ;U), U the control space (Hilbert space), X = H1
0 (Ω) the state

space and f ∈ L2 (0, T ;X) the disturbance term (generally unknown).
The system (2.1) is augmented by the output equation

z (t) = C∇y (t) , (2.2)

where C ∈ L
((
L2 (Ω)

)n
,O
)
, O is the observation space (Hilbert space) and ∇ the gradient

operator given by the formula

∇ : H1
0 (Ω) →

(
L2(Ω)

)n
y 7→ ∇y =

(
∂y

∂x1
,
∂y

∂x2
, · · · , ∂y

∂xn

)
.

The operator A =

[
0 I

A 0

]
defined by

A

[
y1

y2

]
=

[
y2

Ay1

]
, ∀ (y1, y2) ∈ D

(
A
)
= D (A)×H1

0 (Ω) , (2.3)

is closed linear operator with domain D
(
A
)

dense in the Hilbert space X = H1
0 (Ω) ×H1

0 (Ω)
with the inner product

⟨(y1, y2) , (z1, z2)⟩X = ⟨
√
−Ay1,

√
−Az1⟩Ω

+ ⟨y2, z2⟩Ω
.

In addition, if the operator A admits an orthonormal basis of eigenfunctions
(
wmj

)
m≥1

1≤j≤rm

asso-

ciated to eigenvalues λm < 0 with multiplicity rm, we have

Ay =
∑
m≥1

λm

rm∑
j=1

⟨y, wmj ⟩Ω
wmj , ∀y ∈ D (A) ,

and

√
−Ay =

∑
m≥1

√
−λm

rm∑
j=1

⟨y, wmj ⟩Ω
wmj , ∀y ∈ D (A) .
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The adjoint operator A
∗

of A is given by A
∗
= −A.

The operator A generates on X a C0-semigroup (S (t))t≥0 given by

S (t)

(
y1

y2

)
=


W1 (t)

(
y1

y2

)

W2 (t)

(
y1

y2

)
 , (2.4)

with

W1(t)

(
y1

y2

)
=
∑
m≥1

rm∑
j=1

(
⟨y1, wmj

⟩
Ω

cos(
√
−λmt) +

1√
−λm

⟨y2, wmj ⟩Ω
sin(

√
−λmt)

)
wmj ,

and

W2(t)

(
y1

y2

)
=
∑
m≥1

rm∑
j=1

(
−
√
−λm⟨y1, wmj

⟩
Ω

sin(
√

−λmt)+⟨y2, wmj
⟩

Ω
cos(

√
−λmt)

)
wmj

.

The adjoint semigroup (S∗(t))t≥0 of (S(t))t≥0 is given by S∗ (t) = S (−t) , ∀t ≥ 0.
Finally, we consider the operator

B : U → X

u 7→ Bu =
(

0 Bu
)T

,

and the function f̄ =
(

0 f
)T

∈ L2
(
0, T ;X

)
.

If we put

ȳ (t) =

(
y (t)

∂y

∂t
(t)

)T

, ȳ0 =
(
y0 y1

)T
and

∂ȳ

∂t
(t) =

(
∂y

∂t
(t)

∂2y

∂t2 (t)

)T

,

the system (2.1) is equivalent to the following system
∂ȳ

∂t
(t) = Aȳ(t) +Bu(t) + f̄(t) 0 < t < T

ȳ(0) = ȳ0
(2.5)

The unique solution of the system (2.5) is

y (t) = S (t) y0 +

∫ t

0
S (t− s)Bu (s) ds+

∫ t

0
S (t− s) f̄ (s) ds.

The system (2.5) is augmented by the output equation

z (t) = C∇y (t) , (2.6)

where C =
(
C 0

)
and

∇ : H1
0 (Ω)×H1

0 (Ω) →
(
L2 (Ω)

)n ×
(
L2 (Ω)

)n
(y1, y2) 7→ ∇ (y1, y2) = (∇y1,∇y2) .

3 Gradient Remediability

We consider the following operators

H : L2 (0, T ;U) → X

u 7→ Hu =
∫ T

0 S (T − s)Bu (s) ds,
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and

H̃ : L2
(
0, T ;X

)
→ X

f̄ 7→ H̃f̄ =
∫ T

0 S (T − s) f̄ (s) ds.

The system (2.1) is disturbed by the force f assumed unknown and excited by a control that will
be chosen to compensate for the disturbance f .
In the autonomous case, this same system is written

∂2y

∂t2 (x, t) = Ay(x, t) Q

y(x, 0) = y0(x),
∂y

∂t
(x, 0) = y1(x) Ω

y(ξ, t) = 0 Σ

(3.1)

The system (3.1) is equivalent to the following system
∂ȳ

∂t
(t) = Aȳ(t) 0 < t < T

ȳ(0) = ȳ0
(3.2)

where the solution ȳ is given by
ȳ (t) = S (t) ȳ0,

and the output function is given by

z̄ (t) = C∇S (t) ȳ0.

If the control u compensates the effect of disturbance f at the time T , we obtain

C∇Hu+ C∇H̃f̄ = 0,

Definition 3.1.

(i) A disturbance f̄ is exactly G-remediable on [0, T ], if

∃ u ∈ L2 (0, T ;U) such that C∇Hu+ C∇H̃f̄ = 0.

(ii) A disturbance f̄ is weakly G-remediable on [0, T ], if

∀ ε > 0, ∃ u ∈ L2 (0, T ;U) such that ∥C∇Hu+ C∇H̃f̄∥O < ε.

(iii) The system (2.5)-(2.6) is exactly (resp. weakly) G-remediable on [0, T ], if for every f̄ in
L2
(
0, T ;X

)
, f̄ is a disturbance exactly (resp. weakly) G-remediable on [0, T ].

Proposition 3.2.

(i) A disturbance f̄ is exactly G-remediable on [0, T ] if and only if

C∇H̃f̄ ∈ Im(C∇H).

(ii) A disturbance f̄ is weakly G-remediable on [0, T ] if and only if

C∇H̃f̄ ∈ Im(C∇H).

Proof.

(i) A disturbance f̄ is exactly G-remediable on [0, T ] if and only if

∃u ∈ L2(0, T ;U) such that C∇Hu+ C∇H̃f̄ = 0,

i.e. if and only if

∃u1 ∈ L2(0, T ;U) such that C∇H̃f̄ = C∇Hu1,

where u1 = −u ∈ L2(0, T ;U), this is equivalent to saying that C∇H̃f̄ ∈ Im(C∇H).
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(ii) A disturbance f̄ is weakly G-remediable on [0, T ] if and only if

∀ε > 0, ∃u ∈ L2 (0, T ;U) such that ∥C∇H̃f̄ + C∇Hu∥O<ε,

i.e. if and only if

∀ε > 0, ∃u1 ∈ L2 (0, T ;U) such that ∥C∇H̃f̄ − C∇Hu1∥O < ε,

where u1 = −u ∈ L2 (0, T ;U) , this is equivalent to saying that C∇H̃f̄ ∈ Im(C∇H).

Lemma 3.3.
Let V , W and Z be reflexive Banach spaces, P ∈ L (V,Z) and Q ∈ L (W,Z). Then the
following properties are equivalent

i. ImP ⊂ ImQ.

ii. ∃γ > 0 such that ∥P ∗z∗∥V ∗ ≤ γ∥Q∗z∗∥W∗ , ∀z∗ ∈ Z∗.

Proposition 3.4.
The following properties are equivalent

(i) The system (2.5)-(2.6) is exactly G-remediable on [0, T ].

(ii) Im(C∇H̃) ⊂ Im(C∇H).

(iii) There exists γ > 0 such that for every σ ∈ O∗, we have

∥S∗ (T − .)∇∗
C

∗
σ∥

L2(0,T ;X∗) ≤ γ∥B∗
S∗ (T − .)∇∗

C
∗
σ∥L2(0,T ;U∗).

Proof.

• 1 ⇔ 2 : By using the Proposition 3.2, the definition of the exactly G-remediability on
[0, T ] of the system (2.5)-(2.6) is equivalent to

C∇H̃f̄ ∈ Im(C∇H),∀f̄ ∈ L2(0, T ;X),

i.e.
Im(C∇H̃) ⊂ Im(C∇H).

• 2 ⇔ 3 : In Lemma 3.3, we put

P = C∇H̃ and Q = C∇H,

where
H̃∗ = S∗ (T − .) and H∗ = B

∗
S∗ (T − .) .

Proposition 3.5.
The following properties are equivalent

(i) The system (2.5)-(2.6) is weakly G-remediable on [0, T ].

(ii) Im(C∇H̃) ⊂ Im(C∇H).

(iii) ker(B
∗
H̃∗∇∗

C
∗
) = ker(H̃∗∇∗

C
∗
).

Proof.

• 1 ⇔ 2 : By using the Proposition 3.2, the definition of the weakly G-remediability on
[0, T ] of the system (2.5)-(2.6) is equivalent to

C∇H̃f̄ ∈ Im(C∇H), ∀f̄ ∈ L2(0, T ;X),

i.e.
Im(C∇H̃) ⊂ Im(C∇H).
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• 2 ⇒ 3 : Let σ ∈ ker(B
∗
H̃∗∇∗

C
∗
), then σ ∈ ker(H∗∇∗

C
∗
).

We have
Im(C∇H̃) ⊂ Im(C∇H),

then
Im(C∇H̃) ⊂ [ker(H∗∇∗

C
∗
)]
⊥
,

hence

⟨C∇H̃f̄ , σ⟩O×O∗ = 0, ∀f̄ ∈ L2(0, T ;X)

then σ ∈ [Im(C∇H̃)]
⊥
, this gives σ ∈ ker(H̃∗∇∗

C
∗
).

• 3 ⇒ 2 : Let σ ∈ O∗ such that H∗∇∗
C

∗
σ = 0, we have

H∗∇∗
C

∗
σ = 0 ⇒ B

∗
H̃∗∇∗

C
∗
σ = 0

⇒ H̃∗∇∗
C

∗
σ = 0

⇒ ⟨C∇H̃f̄ , σ⟩O×O∗ = 0, ∀f̄ ∈ L2(0, T ;X)

then
C∇H̃f̄ ∈ [ker(H∗∇∗

C
∗
)]
⊥
= Im(C∇H), ∀f̄ ∈ L2(0, T ;X).

4 Gradient Remediability and Gradient Controllability

In this paragraph, we mentioned the concepts of exact and weak G-controllability and studied
the relationship between it and the exact and weak G-remediability.

Definition 4.1.

(i) The system (2.5) is exactly G-controllable on [0, T ] if

∀yd = (yd1 , y
d
2 ) ∈ ((L2(Ω))

n
)

2
,∃u ∈ L2(0, T ;U) such that ∇ȳ (T ) = yd.

(ii) The system (2.5) is weakly G-controllable on [0, T ] if

∀ε > 0,∀yd = (yd1 , y
d
2 ) ∈ ((L2(Ω))

n
)

2
,∃u ∈ L2(0, T ;U) such that

∥∇ȳ(T )− yd∥((L2(Ω))n)2 < ε.

Proposition 4.2.
If the system (2.5) is exactly (resp. weakly) G-controllable on [0, T ], then system (2.5)-(2.6) is
exactly (resp. weakly) G-remediable on [0, T ].

Proof.
It suffices to apply the fact that C is a continuous operator.

5 Gradient Efficient Actuators and Sensors

In the case where U = Rp i.e. the system (2.1) is excited by p zone actuators (Ωi, ai)1≤i≤p,
where ai ∈ L2 (Ωi), Ωi = supp (ai) ⊂ Ω, for i = 1, 2, . . . , p, the operator B is given by

B : Rp → X

u(t) = (u1(t), u2(t), . . . , up(t)) 7→ Bu(t) =
(

0
p∑

i=0
χΩi

(x)ai(x)ui(t)
)T

,

and its adjoint is

B
∗
(z1, z2) =

(
⟨a1, z2⟩Ω1

⟨a2, z2⟩Ω2
. . . ⟨ap, z2⟩Ωp

)T
∈ Rp. (5.1)
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Corollary 5.1.
The system (2.5)-(2.6) is exactly G-remediable on [0, T ] if and only if

∃γ > 0 :
∫ T

0

[
∥
√
−AW1 (s− T )∇∗

C
∗
σ∥

2
L2(Ω) + ∥W2 (s− T )∇∗

C
∗
σ∥

2
L2(Ω)

]
ds

≤ γ

p∑
i=1

∫ T

0
⟨gi,W2 (s− T )∇∗

C
∗
σ⟩

2
Ω

ds, ∀σ ∈ Rq.

Proof.
Since the Proposition 3.5, the system (2.5)-(2.6) is exactly G-remediable on [0, T ] if and only if

∃γ > 0 : ∥S∗ (T − .)∇∗
C

∗
σ∥

2
L2(0,T ;X) ≤ γ∥B∗

S∗ (T − .)∇∗
C

∗
σ∥

2
L2(0,T ;Rp), ∀σ ∈ Rq.

Firstly, we have

∥S∗ (T − .)∇∗
C

∗
σ∥

2
L2(0,T ;X) =

∫ T

0
∥S (s− T )∇∗

C
∗
σ∥

2
Xds

=

∫ T

0

[
∥
√
−AW1 (s− T )∇∗

C
∗
σ∥

2
L2(Ω) + ∥W2 (s− T )∇∗

C
∗
σ∥

2
L2(Ω)

]
ds,

and we have

B
∗
S∗ (T − .)∇∗

C
∗
σ

=
(
⟨a1,W2 (.− T )∇∗

C
∗
σ⟩ ⟨a2,W2 (.− T )∇∗

C
∗
σ⟩ · · · ⟨ap,W2 (.− T )∇∗

C
∗
σ⟩
)T

,

then

∥B∗
S∗ (T − .)∇∗

C
∗
σ∥

2
L2(0,T ;Rp) =

p∑
i=1

∫ T

0
⟨ai,W2 (s− T )∇∗

C
∗
σ⟩2

Ωds.

Hence the result.

Corollary 5.2.
The system (2.5)-(2.6) is exactly G-remediable on [0, T ] if and only if

∃γ > 0 : T
∑
m≥1

(−λm)
rm∑
j=1

⟨C∗σ,∇wmj ⟩
2
(L2(Ω))n

≤ γ

p∑
i=1

∫ T

0

[ ∑
m≥1

√
−λm×

rm∑
j=1

sin(
√
−λm(T − s))

rm∑
j=1

⟨C∗σ,∇wmj
⟩
(L2(Ω))n

⟨ai, wmj
⟩

Ωi

]2

ds, ∀σ ∈ Rq.

Proof.
We have

∥
√
−AW1 (s− T )∇∗

C
∗
σ∥

2
L2(Ω)

=∥
∑
m≥1

√
−λm

rm∑
j=1

⟨W1(s− T )∇∗
C

∗
σ,wmj ⟩wmj∥2

L2(Ω)

=∥
∑
m≥1

√
−λm

rm∑
j=1

(
⟨∇∗C∗σ,wmj ⟩Ω

cos(
√

−λm(s− T ))
)
wmj∥2

L2(Ω)

=
∑
m≥1

(−λm)
rm∑
j=1

⟨∇∗C∗σ,wmj ⟩
2
Ω

cos2(
√
−λm(s− T )),
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and

∥W2 (s− T )∇∗
C

∗
σ∥2

L2(Ω)

=∥
∑
m≥1

rm∑
j=1

−
√
−λm⟨∇∗C∗σ,wmj

⟩
Ω

sin
(√

−λm (s− T )
)
wmj

∥2
L2(Ω)

=
∑
m≥1

(−λm)
rm∑
j=1

⟨∇∗C∗σ,wmj
⟩2

Ω
sin2

(√
−λm (s− T )

)
,

then ∫ T

0

[
∥
√
−AW1 (s− T )∇∗

C
∗
σ∥

2
L2(Ω) + ∥W2(s− T )∇∗

C
∗
σ∥

2
L2(Ω)

]
ds

=

∫ T

0

[ ∑
m≥1

(−λm)
rm∑
j=1

⟨∇∗C∗σ,wmj ⟩
2
Ω

]
ds

=T
∑
m≥1

(−λm)
rm∑
j=1

⟨∇∗C∗σ,wmj ⟩
2
Ω
= T

∑
m≥1

(−λm)
rm∑
j=1

⟨C∗σ,∇wmj ⟩
2
Ω
.

And we have
p∑

i=1

∫ T

0
⟨ai,W2(s− T )∇∗

C
∗
σ⟩

2
Ω

ds

=
p∑

i=1

∫ T

0
⟨χΩi

ai,
∑
m≥1

rm∑
j=1

−
√

−λm⟨∇∗C∗σ,wmj
⟩

Ω
sin(

√
−λm(s− T ))wmj

⟩2
Ωds

=
p∑

i=1

∫ T

0

[ ∑
m≥1

rm∑
j=1

−
√
−λm⟨∇∗C∗σ,wmj

⟩
Ω
⟨χΩi

ai, wmj
⟩

Ω
sin(

√
−λm(s− T ))

]2

ds

=
p∑

i=1

∫ T

0

[ ∑
m≥1

rm∑
j=1

−
√
−λm⟨C∗σ,∇wmj ⟩Ω

⟨χΩi
ai, wmj ⟩Ω

sin(
√
−λm(s− T ))

]2

ds.

Hence, the result follows immediately from Corollary 5.1.

Now and in the case where O = Rq i.e. the output of the system (2.6) is given by q sensors
(Di, 	si)1≤i≤q, where 	si ∈ L2 (Di), Di = supp (	si) ⊂ Ω, for i = 1, 2, . . . , q and Di ∩Dj = ∅
for i ̸= j, the operator C =

(
C 0

)
is given by

C :
(
L2 (Ω)

)n → Rq

y 7→ Cy =
( n∑
i=1

⟨	s1, yi⟩D1

n∑
i=1

⟨	s2, yi⟩D2
. . .

n∑
i=1

⟨	sq, yi⟩Dq

)T
,

and its adjoint is C
∗
=
(
C∗ 0

)T
, with for σ = (σ1, σ2, . . . , σq) ∈ Rq

C∗σ=
( q∑
i=1

χDi
(x)σi 	si(x)

q∑
i=1

χDi
(x)σi 	si(x) . . .

q∑
i=1

χDi
(x)σi 	si(x)

)T
. (5.2)

Corollary 5.3.
The system (2.5)-(2.6) is exactly G-remediable on [0, T ] if and only if

∃γ > 0 : T
∑
m≥1

(−λm)
rm∑
j=1

[ q∑
l=1

σl

n∑
k=1

⟨	sl,
∂wmj

∂xk
⟩Dl

]
≤ γ

p∑
i=1

∫ T

0

[ ∑
m≥1

√
−λm

× sin(
√
−λm(T − s))

rm∑
j=1

q∑
l=1

σl

n∑
k=1

⟨	sl,
∂wmj

∂xk
⟩Dl

⟨ai, wmj
⟩Ωi

]2

ds, ∀σ ∈ Rq.
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Proof.
It suffices to use the relation (5.2).

▷ Now, we introduce the notion of the gradient efficient actuators

Definition 5.4. The actuators (Ωi, ai)1≤i≤p, ai ∈ L2 (Ωi) are said to be gradient efficient if the
system (2.5)-(2.6) so excited is weakly G-remediable on [0, T ].

In order to give it a characterization, we appreciate the following two definitions, for m ≥ 1

� The matrix Am of order (p× rm) defined by

Am =
(〈

ai, wmj

〉
Ωi

)
ij
, 1 ≤ i ≤ p and 1 ≤ j ≤ rm.

� The matrix Sm of order (q × rm) defined by

Sm =

(
n∑

k=1

⟨	si,
∂wmj

∂xk
⟩Di

)
ij

, 1 ≤ i ≤ p and 1 ≤ j ≤ rm.

Proposition 5.5.
The actuators (Ωi, ai)1≤i≤p , ai ∈ L2 (Ωi) are gradient efficient if and only if

ker (∇∗C∗) =
⋂
m≥1

ker (Amgm) .

Where, for σ ∈ Rq and m ≥ 1,

gm (σ) =
(
⟨∇∗C∗σ,wm1⟩Ω

⟨∇∗C∗σ,wm2⟩Ω
. . .

〈
∇∗C∗σ,wmrm

〉
Ω

)T
∈ Rrm .

Proof.
Since the Proposition 5.3, the actuators (Ωi, ai)1≤i≤p , ai ∈ L2 (Ωi) are gradient efficient if and
only if

ker
(
B

∗
H̃∗∇∗

C
∗)

= ker
(
H̃∗∇∗

C
∗)

.

Let σ ∈ Rq, we have

B
∗
H̃∗∇∗

C
∗
σ = B

∗
S (.− T )∇∗

C
∗
σ

=
(
⟨a1,W2 (.− T )∇∗

C
∗
σ⟩ ⟨a2,W2 (.− T )∇∗

C
∗
σ⟩ · · · ⟨ap,W2 (.− T )∇∗

C
∗
σ⟩
)T

,

then

B
∗
H̃∗∇∗

C
∗
σ =



∑
m≥1

√
−λm sin

(√
−λm (T − .)

) rm∑
j=1

⟨∇∗C∗σ,wmj
⟩

Ω
⟨a1, wmj

⟩
Ω1∑

m≥1

√
−λm sin

(√
−λm (T − .)

) rm∑
j=1

⟨∇∗C∗σ,wmj
⟩

Ω
⟨a2, wmj

⟩
Ω2

...∑
m≥1

√
−λm sin

(√
−λm (T − .)

) rm∑
j=1

⟨∇∗C∗σ,wmj
⟩

Ω
⟨ap, wmj

⟩
Ωp


,

and we have ∀m ≥ 1,

Amgm (σ) =



rm∑
j=1

⟨∇∗C∗σ,wmj
⟩

Ω
⟨a1, wmj

⟩
Ω1

rm∑
j=1

⟨∇∗C∗σ,wmj
⟩

Ω
⟨a2, wmj

⟩
Ω2

...
rm∑
j=1

⟨∇∗C∗σ,wmj
⟩

Ω
⟨ap, wmj

⟩
Ωp

.
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If we assume that σ ∈
⋂

m≥1
ker (Amgm), then σ ∈ ker (Amgm), ∀m ≥ 1 and

σ ∈ ker (Amgm) , ∀m ≥ 1

⇒
rm∑
j=1

〈
∇∗C∗σ,wmj

〉
Ω

〈
ai, wmj

〉
Ωi

= 0, ∀i ∈ {1, 2, . . . , p}, ∀m ≥ 1

⇒
∑
m≥1

√
−λm sin

(√
−λm (T − .)

) rm∑
j=1

〈
∇∗C∗σ,wmj

〉
Ω

〈
ai, wmj

〉
Ωi

= 0,

∀i ∈ {1, 2, . . . , p}

⇒ B
∗
H̃∗∇∗

C
∗
σ = 0 ⇒ σ ∈ ker

(
B

∗
H̃∗∇∗

C
∗)

,

then
⋂

m≥1
ker (Amgm) ⊂ ker

(
B

∗
H̃∗∇∗

C
∗)

.

And if we assume that σ ∈ ker
(
B

∗
H̃∗∇∗

C
∗)

, then B
∗
H̃∗∇∗

C
∗
σ = 0 and

∑
m≥1

√
−λm sin

(√
−λm (T − .)

) rm∑
j=1

⟨∇∗C∗σ,wmj
⟩

Ω
⟨ai, wmj

⟩
Ωi

= 0, ∀i ∈ {1, 2, . . . , p}

since for T large enough, the sets
(
sin
(√

−λn (T − .)
))

n≥1 form a complete orthogonal set of
L2 (0, T ), then we have

rm∑
j=1

⟨∇∗C∗σ,wmj ⟩Ω
⟨ai, wmj ⟩Ωi

= 0, ∀i ∈ {1, 2, . . . , p}, ∀m ≥ 1

⇒ Amgm (σ) = 0, ∀m ≥ 1

⇒ σ ∈ ker (Amgm) = 0, ∀m ≥ 1

⇒ σ ∈
⋂
m≥1

ker (Amgm) ,

then ker
(
B∗H̃∗∇∗

C∗
)
⊂
⋂

m≥1
ker (Amgm).

On the other hand, we have for every σ ∈ Rq,

H̃∗∇∗
C∗σ = S∗ (T − .)∇∗

C∗σ

= S (.− T )∇∗
C∗σ

=

(
W1 (.− T )∇∗

C∗σ

W2 (.− T )∇∗
C∗σ

)

=


∑
m≥1

rm∑
j=1

⟨∇∗C∗σ,wmj
⟩

Ω
cos
(√

−λm (T − .)
)
wmj∑

m≥1

rm∑
j=1

√
−λm⟨∇∗C∗σ,wmj

⟩
Ω

sin
(√

−λm (T − .)
)
wmj

 ,

We have

σ ∈ ker
(
H̃∗∇∗

C∗
)
⇒ H̃∗∇∗

C∗σ = 0

⇒


∑
m≥1

rm∑
j=1

⟨∇∗C∗σ,wmj ⟩Ω
cos
(√

−λm (T − .)
)
wmj∑

m≥1

rm∑
j=1

√
−λm⟨∇∗C∗σ,wmj

⟩
Ω

sin
(√

−λm (T − .)
)
wmj

 =

(
0
0

)
,



520 H. Aichaoui, S. Benhadid, S. Rekkab and R. Al-Saphory

Since for T large enough, the sets(
sin
(√

−λn (T − ·)
))

n≥1
and

(
cos
(√

−λn (T − ·)
))

n≥1

forms a complete orthogonal set of L2 (0, T ) , then we have

σ ∈ ker
(
H̃∗∇∗

C∗
)
⇒ ∇∗C∗σ = 0 ⇔ σ ∈ ker (∇∗C∗) ,

then
ker
(
H̃∗∇∗

C∗
)
⊂ ker (∇∗C∗) .

And we have

σ ∈ ker (∇∗C∗) ⇒ ∇∗C∗σ = 0

⇒


∑
m≥1

rm∑
j=1

⟨∇∗C∗σ,wmj ⟩Ω
cos
(√

−λm (T − .)
)
wmj∑

m≥1

rm∑
j=1

√
−λm⟨∇∗C∗σ,wmj ⟩Ω

sin
(√

−λm (T − .)
)
wmj

 =

(
0
0

)
,

then
σ ∈ ker (∇∗C∗) ⇒ σ ∈ ker

(
H̃∗∇∗

C
∗)

,

so
ker (∇∗C∗) ⊂ ker

(
H̃∗∇∗

C
∗)

,

and therefore
ker (∇∗C∗) = ker

(
H̃∗∇∗

C
∗)

.

Corollary 5.6.
If there exists m0 ≥ 1 such that rank

(
ST
m0

)
= q, then the actuators (Ωi, ai)1≤i≤p, ai ∈ L2 (Ωi)

are gradient efficient if and only if ⋂
m≥1

ker
(
AmST

m

)
= {0} .

Proof.
Let σ ∈ Rq, then

σ ∈
⋂
m≥1

ker
(
AmST

m

)
⇔ σ ∈ ker

(
AmST

m

)
, ∀m ≥ 1

⇔ AmST
mσ = 0, ∀m ≥ 1

⇔
q∑

l=1

rm∑
j=1

σl⟨	sl,

n∑
k=1

∂wmj

∂xk
⟩Dl

〈
ai, wmj

〉
Ωi

= 0, ∀i ∈ {1, 2, . . . , p}, ∀m ≥ 1

⇔
rm∑
j=1

⟨∇∗C∗σ,wmj
⟩

Ω
⟨ai, wmj

⟩
Ωi

= 0, ∀i ∈ {1, 2, . . . , p}, ∀m ≥ 1

⇔ (Amgm) (σ) = 0,∀m ≥ 1

⇔ σ ∈ ker (Amgm) ,∀m ≥ 1

⇔ σ ∈
⋂
m≥1

ker (Amgm) ,

this gives ⋂
m≥1

ker
(
AmST

m

)
=
⋂
m≥1

ker (Amgm) .
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On the other hand, we have σ ∈ ker (∇∗C∗) ⇔ ∇∗C∗σ = 0 and by using (5.2), we obtain

⟨∇∗C∗σ,wmj
⟩

Ω
=

q∑
l=1

σl⟨	sl,

n∑
k=1

∂wmj

∂xk
⟩Dl

, ∀j ∈ {1, 2, . . . , rm}, ∀m ≥ 1

then (
⟨∇∗C∗σ,wm1⟩Ω

⟨∇∗C∗σ,wm2⟩Ω
. . . ⟨∇∗C∗σ,wmrm

⟩
Ω

)T
= ST

mσ, ∀m ≥ 1

and
∇∗C∗σ = 0 ⇒ ST

mσ = 0,∀m ≥ 1,

then
σ ∈ ker (∇∗C∗) ⇒ σ ∈ ker(ST

m),∀m ≥ 1.

since for m0 ≥ 1, we have rank
(
ST
m0

)
= q, then

ker
(
ST
m0

)
= {0},

this gives σ = 0, i.e. ker (∇∗C∗) = {0} and from the proposition 5, we have the result.

Corollary 5.7.
If there exists m0 ≥ 1 such that rank

(
ST
m0

)
= q and if

rank
(
Am0S

T
m0

)
= q (5.3)

or

rank (Am0) = rm0 (5.4)

then the actuators (Ωi, ai)1≤i≤p, ai ∈ L2 (Ωi) are gradient efficient.

Proof.

• If there exists m0 ≥ 1 such that

rank
(
ST
m0

)
= q and rank

(
Am0S

T
m0

)
= q.

The matrix
(
Am0S

T
m0

)
is of order (p× q) then from the rank-nullity theorem, we have

rank
(
Am0S

T
m0

)
+ dim

(
ker
(
Am0S

T
m0

))
= q,

then
dim

(
ker
(
Am0S

T
m0

))
= 0,

which is equivalent to
ker
(
Am0S

T
m0

)
= {0},

then ⋂
m≥1

ker
(
AmST

m

)
= {0},

that is equivalent, from the corollary 5.6, to the gradient efficient of actuators (Ωi, ai)1≤i≤p.

• Now, we suppose that

rank
(
ST
m0

)
= q and rank (Am0) = rm0 .

The matrix
(
ST
m0

)
is order (rm0 × q) then from the rank-nullity theorem, we have

rank
(
ST
m0

)
+ dim

(
ker
(
ST
m0

))
= q,

then
dim

(
ker
(
ST
m0

))
= 0,



522 H. Aichaoui, S. Benhadid, S. Rekkab and R. Al-Saphory

that is equivalent to

ker
(
ST
m0

)
= {0}, (5.5)

the same, the matrix (Am0) is order (p× rm0), then from rank-nullity theorem, we have

rank (Am0) + dim (ker (Am0)) = rm0 ,

then
dim (ker (Am0)) = 0,

that is equivalent to

ker (Am0) = {0}, (5.6)

On the other hand, let σ ∈ ker
(
Am0S

T
m0

)
then

(
Am0S

T
m0

)
σ = 0 which gives

Am0

(
ST
m0

σ
)
= 0.

from (5.5), we obtain ST
m0

σ = 0 and from (5.6), we obtain σ = 0. then

ker
(
Am0S

T
m0

)
= {0},

hence therefore
⋂

m≥1
ker
(
AmST

m

)
= {0}, that is equivalent, from the corollary 5.6, to the

gradient efficient of actuators (Ωi, ai)1≤i≤p.

6 Application

We consider the system
∂2y

∂t2 (x, t) = ∆y(x, t) +
p∑

i=1
χΩi

ai (x)ui (t) + f(x, t) Q

y(x, 0) = y0(x),
∂y

∂t
(x, 0) = y1(x) Ω

y(ξ, t) = 0 Σ

(6.1)

where Ω ⊂ Rn is an open and bounded domain with a sufficiently regular boundary, and we
consider the system (6.1) is augmented by the output equation

z =

(
n∑

i=1
⟨	s1,

∂y

∂xi
⟩
D1

n∑
i=1

⟨	s2,
∂y

∂xi
⟩
D2

. . .
n∑

i=1
⟨	sq,

∂y

∂xi
⟩
Dq

)T

(6.2)

There exists an orthonormal basis of eigenfunctions
(
wmj

)
m≥1
1≤j≤rm

of ∆ associated to eigenvalues

(λm)m≥1 with multiplicity rm and given by ∆wmj
= λmwmj

, ∀m ≥ 1 and j = 1, 2, . . . , rm.

For Ω = ]0, 1[ , the eigenfunctions of ∆ are

wm (x) =
√

2 sin (mπx) , ∀m ≥ 1,

and the simple associated eigenvalues are

λm = −m2π2, ∀m ≥ 1,

The semigroup generated by ∆ is

S(t)

(
y1

y2

)
=


∑
m≥1

(⟨y1, wm⟩
Ω

cos (mπt) +
1
mπ

⟨y2, wm⟩
Ω

sin (mπt))wm∑
m≥1

(−mπ⟨y1, wm⟩
Ω

sin (mπt) + ⟨y2, wm⟩
Ω

cos (mπt))wm
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If D = supp (	s) ⊂]0, 1[, (q = 1) and if there exists m0 such that
〈

	s,
∂wm0

∂x

〉
D

̸= 0, then, from

the Corollary 5.6, an actuator (Ω1, a1) is gradient efficient if and only if

⟨a1, wm0⟩Ω1
=

∫
Ω1

a1 (x) sin (m0πx) dx ̸= 0.

Thus for example, if a1 = wm0 then the actuator (Ω1, a1) is gradient efficient.

7 Exact Gradient Remediability With Minimal Energy

In this section we consider the following exact gradient remediability problem:
For f ∈ L2

(
0, T ;H1

0 (Ω)
)
, does there exist an optimal control u∗ ∈ L2 (0, T ;U) such that

z̄u∗,f (T ) = C∇S (T ) ȳ0, i.e. minimizing the function J (u) = ∥u∥2
L2(0,T ;U) on the set

Uad =
{
u ∈ L2 (0, T ;U) : C∇Hu+ C∇H̃f̄ = 0

}
.

For σ ∈ O∗ ≃ O, let

N(σ) =
[ ∫ T

0
∥B∗

S∗(T − s)∇∗
C

∗
σ∥

2
U∗ ds

] 1
2

,

Not that N is a semi-norme, but not necessarity a norm.

Lemma 7.1.
If ker(∇∗C∗) = {0}, then the following conditions are equivalent

(i) The system (2.5)-(2.6) is weakly G-remediable on [0, T ].

(ii) ker(H∗∇∗
C

∗
) = {0}.

(iii) N is a norme on O.

Proof.
• (1) ⇔ (2): From the proposition 3.5, the system (2.5)-(2.6) is weakly G-remediable on
[0, T ] if and only if ker(H∗∇∗

C
∗
) = ker(H̃∗∇∗

C
∗
), since the ker(H̃∗∇∗

C
∗
) = ker(∇∗C∗)

and ker(∇∗C∗) = {0} then ker(H∗∇∗
C

∗
) = {0}.

• (2) ⇒ (3): We have N (σ) = ∥H∗∇∗
C

∗
σ∥L2(0,T ;U∗), then

N (σ) = {0} ⇒ H∗∇∗
C

∗
σ = 0 ⇒ σ ∈ ker(H∗∇∗

C
∗
) ⇒ σ = 0.

• (3) ⇒ (2): We have σ ∈ ker(H∗∇∗
C

∗
) ⇒ N(σ) = 0 ⇒ σ = 0.

Let us consider the operateur Λ = C ∇HH∗∇∗
C

∗
for σ ∈ O∗ ≃ O, we have Λσ =

C ∇HH∗∇∗
C

∗
σ ∈ O.

Lemma 7.2.
If ker(∇∗C∗) = {0}, then the following conditions are equivalent

(i) the system (2.5)-(2.6) is weakly G-remediable on [0, T ].

(ii) the operateur Λ is positive definite.

Proof.
For σ ∈ O∗ ≃ O, we have

⟨Λσ, σ⟩O = ⟨C∇HH∗∇∗
C

∗
σ, σ⟩O = ⟨H∗∇∗

C
∗
σ,H∗∇∗

C
∗
σ⟩L2(0,T ;U∗)

= ∥H∗∇∗
C

∗
σ∥

2
L2(0,T ;U∗) = [N(σ)]

2
,

then (1) ⇔ (2).
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Suppose that N is a norme on O and let F be the completion of the space O with the norm
N , then F is a Hilbert space with the inner product defined by

⟨σ, θ⟩F = ⟨H∗∇∗
C

∗
σ,H∗∇∗

C
∗
θ⟩L2(0,T ;U∗) ,∀σ, θ ∈ F .

Proposition 7.3.

(i) O ⊂ F with continuos injection.

(ii) ⟨Λσ, θ⟩O = ⟨σ, θ⟩F , ∀σ, θ ∈ O.

(iii) There exists an isomorphism extention unique of Λ from F to F∗ such that

∥Λσ∥F∗ = ∥σ∥F , ∀σ ∈ F .

Proof.

(i) For σ ∈ O, we have

∥σ∥F = ∥H∗∇∗
C

∗
σ∥L2(0,T ;U∗)

⇒ ∥σ∥2
F =

∫ T

0
∥B∗

S∗(T − s)∇∗
C

∗
σ∥

2
U∗ ds

⇒ ∥σ∥2
F ≤

(∫ T

0
∥B∗

S∗ (T − s)∇∗
C

∗∥
2
U∗ds

)
.∥σ∥2

O ≤ γ∥σ∥2
O.

(ii) Let σ, θ ∈ O, we have

⟨Λσ, θ⟩O = ⟨C∇HH∗∇∗
C

∗
σ, θ⟩O = ⟨σ, θ⟩F .

(iii) Let σ ∈ F , the linear operator

Λσ : O −→ R
θ 7−→ (Λσ) (θ) = ⟨Λσ, θ⟩O

is continuous on O for the topology of F , because

| (σθ) (θ) | = |⟨Λσ, θ⟩O| = |⟨σ, θ⟩F | ≤ ∥σ∥F .∥θ∥F.

then it can be continuously extended in a unique way to F , hence Λσ ∈ F∗ and ∥Λσ∥F∗ =
∥σ∥F , and so the operator Λ is an isomorphism from F to F∗.

The following result, for the exact gradient remediability with minimal energy.

Proposition 7.4.
For f ∈ L2(0, T ;H1

0 (Ω)), the equation

Λσf = −C∇H̃f̄ ,

has a unique solution σf ∈ F , and the control

uσf
(t) = B

∗
S∗(T − t)∇∗

C
∗
(σf ) , ∀t ∈ [0, T ]

satisfies C∇Huσf
+ C∇H̃f̄ = 0. Moreover, uσf

is optimal, with ∥uσf
∥
L2(0,T ;U)

= ∥σf∥F .

Proof.
The operator Λ is isomorphism from F to F∗ then for f ∈ L2(0, T ;H1

0 (Ω)), the equation

Λσf = −C∇H̃f̄ , (7.1)
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has a unique solution and for uσf
= B∗S∗(T − .)∇∗C∗σf , we obtain

Λσf = C∇
∫ T

0
S(T − s)BB

∗
S∗(T − s)∇∗C

∗
σfds = C∇Huσf

,

then
C∇Huσf

+ C∇H̃f̄ = 0.

On the other hand, consider the set

Uad = {u ∈ L2 (0, T ;U) | C∇Hu+ C∇H̃f̄ = 0},

Uad is convex, closed and non-empty, because uσf
∈ Uad.

Now we Consider the function

J(u) = ∥C∇Hu+ C∇H̃f̄∥
2
O + ∥u∥2

L2(0,T ;U).

For u ∈ Uad, we have J(u) = ∥u∥2
L2(0,T ;U). J is strictly convex on Uad, hence it admits a unique

minimum in u∗ ∈ Uad, i.e.

∃!u∗ ∈ Uad : J(u∗) = min
u∈Uad

J(u),

with u∗ characterized by
⟨u∗, v − u∗⟩ ≥ 0 , ∀v ∈ Uad.

For v ∈ Uad, we have

⟨uσf
, v − uσf

⟩
L2(0,T ;U)

=

∫ T

0
⟨uσf

(t), v(t)− uσf
(t)⟩U dt

=

∫ T

0
⟨B∗

S∗ (T − t)∇∗
C

∗
σf , v(t)− uσf

(t)⟩U dt

=

∫ T

0
⟨∇∗

C
∗
σf , S(T − t)B(v(t)− uσf

(t))⟩U dt

= ⟨σf , C∇
∫ T

0
S(T − t)B(v(t)− uσf

(t)) dt⟩U

= ⟨σf , C∇Hv − C∇Huσf
⟩U = 0.

Since u∗ is unique, we have u∗ = uσf and uσf is optimal with ∥uσf
∥2
L2(0,T ;U)

= ∥σf∥2
F .

Remark 7.5. If O = Rq, we have F = F∗ = O = Rq.

8 Approximations And Numerical Simulations

In this section we give an approximations of σf defined by (7.1) as a solutions of a finite dimen-
sion linear system Ax = b and then the optimal control uσf

.

8.1 Approximation

Coefficients of the system

For i, j ≥ 1, let
aij = ⟨Λei, ej⟩Rq ,

where (ei)1≤i≤q is the canonical basis of Rq, we have

Λei = C∇
∫ T

0
S(T − s)BB

∗
S∗(T − s)∇∗

C
∗
ei ds.
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Then

Λei =



∑
m′≥1

rm′∑
k′=1

∑
m≥1

rm∑
k=1

W1 (m′, k′,m, k)∑
m′≥1

rm′∑
k′=1

∑
m≥1

rm∑
k=1

W2 (m′, k′,m, k)

...∑
m′≥1

rm′∑
k′=1

∑
m≥1

rm∑
k=1

Wq (m′, k′,m, k)


Where for α ∈ {1, 2, ..., q}, we have

Wα (m
′, k′,m, k) =

p∑
τ=1

⟨aτ , ωmk
⟩Ωτ

⟨aτ , ωm′
k′ ⟩Ωτ

n∑
l=1

⟨	si,
∂ωmk

∂xl
⟩Di

n∑
l′=1

⟨	sα,
∂ωm′

k′

∂xl′
⟩Dα

×

( √
−λm√
−λm′

∫ T

0
sin
(√

−λm (T − s)
)

sin
(√

−λm′ (T − s)
)

ds

)
,

So

aij = ⟨Λei, ej⟩Rq =
∑
m′≥1

rm′∑
k′=1

∑
m≥1

rm∑
k=1

Wj (m
′, k′,m, k) ,

for M and N sufficiently large

aij ≃
M∑

m′=1

rm′∑
k′=1

N∑
m=1

rm∑
k=1

p∑
τ=1

⟨aτ , ωmk
⟩

Ωτ

〈
aτ , ωm′

k′

〉
Ωτ

n∑
l=1

⟨	si,
∂ωmk

∂xl
⟩Di

n∑
l′=1

⟨	sj ,
∂ωm′

k′

∂xl′
⟩Dj

×
( √

−λm√
−λm′

∫ T

0
sin
(√

−λm (T − s)
)

sin
(√

−λm′ (T − s)
)

ds

)
,

and for j ≥ 1, let

bj = −
〈
C ∇H̃f̄ , ej

〉
Rq
,

we have

C∇H̃f̄ =



∑
m≥1

rm∑
k=1

n∑
l=1

1√
−λm

⟨	s1,
∂ωmk

∂xl
⟩D1

∫ T

0 ⟨f (s) , ωmk
⟩

Ω
sin
(√

−λm (T − s)
)

ds∑
m≥1

rm∑
k=1

n∑
l=1

1√
−λm

⟨	s2,
∂ωmk

∂xl
⟩D2

∫ T

0 ⟨f (s) , ωmk
⟩

Ω
sin
(√

−λm (T − s)
)

ds

...∑
m≥1

rm∑
k=1

n∑
l=1

1√
−λm

⟨	sq,
∂ωmk

∂xl
⟩Dq

∫ T

0 ⟨f (s) , ωmk
⟩

Ω
sin
(√

−λm (T − s)
)

ds


then

bj = −
∑
m≥1

rm∑
k=1

n∑
l=1

1√
−λm

⟨	sj ,
∂ωmk

∂xl
⟩Dj

∫ T

0
⟨f (s) , ωmk

⟩
Ω

sin
(√

−λm (T − s)
)

ds,

for N sufficiently large, we have

bj ≃ −
N∑

m=1

rm∑
k=1

n∑
l=1

1√
−λm

⟨	sj ,
∂ωmk

∂xl
⟩
Dj

∫ T

0
⟨f (s) , ωmk

⟩
Ω

sin
(√

−λm (T − s)
)

ds.
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Optimal control

For j ≥ 1, the function coordinates uj,σf
of the optimal control

uσf
= B

∗
S∗ (T − .)∇∗

C
∗
σf ∈ L2 (0, T ;Rp) ,

are given by

uj,σf
= ⟨aj ,W2 (.− T )∇∗

C
∗
σf ⟩Ωj

=
∑
m≥1

rm∑
k=1

n∑
l=1

q∑
l′=1

−(σf )l′
√
−λm⟨	sl′ ,

∂ωmk

∂xl
⟩Dl′ ⟨aj , ωmk

⟩Ωj
sin
(√

−λm (.− T )
)
,

for N sufficiently large, we have

uj,σf
≃

N∑
m=1

rm∑
k=1

n∑
l=1

q∑
l′=1

−(σf )l′
√

−λm⟨	sl′ ,
∂ωmk

∂xl
⟩Dl′ ⟨aj , ωmk

⟩Ωj
sin
(√

−λm (.− T )
)
.

Cost

The cost is given by

∥uσf ∥L2(0,T ;Rp)
=

(∫ T

0
∥B∗

S∗(T − s)∇∗
C

∗
σf∥

2
Rpds

) 1
2

=

 p∑
j=1

∫ T

0

∑
m≥1

rm∑
k=1

n∑
l=1

q∑
l′=1

−(σf )l′
√
−λm⟨	sl′ ,

∂ωmk

∂xl
⟩Dl′ ⟨aj , ωmk ⟩Ωj sin(

√
−λm(s− T ))

2

ds


1
2

,

for N sufficiently large

∥uσf ∥L2(0,T ;Rp)
≃ p∑

j=1

∫ T

0

(
N∑

m=1

rm∑
k=1

n∑
l=1

q∑
l′=1

−(σf )l′
√
−λm⟨	sl′ ,

∂ωmk

∂xl
⟩Dl′ ⟨aj , ωmk ⟩Ωj sin(

√
−λm(s− T ))

)2

ds

 1
2

.

8.2 The corresponding observation

The observation corresponding to the control is given by

zuσf
,f = C∇S (t) ȳ0 + C∇

∫ t

0
S (t− s)Buσf (s) ds+ C∇

∫ t

0
S (t− s) f̄ (s) ds,

and

zj,uσf
,f =

∑
m≥1

rm∑
k=1

n∑
l=1

[〈
y0, ωmk

〉
Ω

cos
(√

−λm t
)
+

1√
−λm

〈
y1, ωmk

〉
Ω

sin
(√

−λm t
)]

× ⟨	sj ,
∂ωmk

∂xl
⟩Dj

+
∑
m≥1

rm∑
k=1

p∑
i=1

n∑
l=1

1√
−λm

⟨	sj ,
∂ωmk

∂xl
⟩Dj ⟨ai, ωmk

⟩
Ωi

∫ t

0
ui (s) sin

(√
−λm (t− s)

)
ds

+
∑
m≥1

rm∑
k=1

n∑
l=1

1√
−λm

⟨	sj ,
∂ωmk

∂xl
⟩Dj

∫ t

0
⟨f (s) , ωmk

⟩
Ω

sin
(√

−λm (t− s)
)

ds,
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for N sufficiently large

zj,uσf
,f ≃

N∑
m=1

rm∑
k=1

n∑
l=1

[〈
y0, ωmk

〉
Ω

cos
(√

−λm t
)
+

1√
−λm

〈
y1, ωmk

〉
Ω

sin
(√

−λm t
)]

× ⟨	sj ,
∂ωmk

∂xl
⟩Dj

+
M∑

m=1

rm∑
k=1

p∑
i=1

n∑
l=1

1√
−λm

⟨	sj ,
∂ωmk

∂xl
⟩Dj ⟨ai, ωmk

⟩
Ωi

∫ t

0
ui (s) sin

(√
−λm (t− s)

)
ds

+
M∑

m=1

rm∑
k=1

n∑
l=1

1√
−λm

⟨	sj ,
∂ωmk

∂xl
⟩Dj

∫ t

0
⟨f (s) , ωmk

⟩
Ω

sin
(√

−λm (t− s)
)

ds.

8.3 Numerical simulations

For Ω = ]0, 1[, we consider the system
∂2y

∂t2 (x, t) = ∆y(x, t) +
p∑

i=1
χΩi

ai(x)ui(t) + f(x, t) Q

y(x, 0) =
∂y

∂t
(x, 0) = 0 Ω

y(ξ, t) = 0 Σ

This system is equivalent to
∂ȳ

∂t
(x, t) = ∆ȳ (x, t) +

(
0

p∑
i=1

χΩi
ai (x)ui (t)

)T

+
(

0 f (x, t)
)T

Q

ȳ (x, 0) =
∂ȳ

∂t
(x, 0) = 0 Ω

ȳ (ξ, t) = 0 Σ

is augmented by the output equation

z (t) = C∇y (t) = C∇ȳ (t) .

The eigenfunctions are defined by

ωm (x) =
√

2 sin (mπx) , m ≥ 1,

the eigenvalues are simple and given by

λm = −m2π2, m ≥ 1.

By choosing

• A sesor (D, 	s) : With D = ]0, 1[ and 	s (x) =
√

2x2

• An efficient actuator (Ω, a) : With Ω = ]0, 1[ and a (x) = cos
(π

3
x
)

,

• A disturbed function : f (x, t) = 240 exp
(
−
(

t

10
+ x

))
, t > 0.

And for T = 50, numerical results are obtained which show the theoretical results previously
obtained.
Hence, in Figure 1, the representations of the discrete observation zu,f corresponding to the
control optimal u = uσf

and the disturbance f , the observation corresponding to the disturbance
f and without control u = 0 and the z0,0 which represent the normal observation, that is u = 0
and f = 0.
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Figure 1. Representation of zuσf ,f (blue),z0,f (red) and z0,0(black).

The Figure 1 show that the disturbance f is compensate by the control optimal uσf
at the time

T (T = 50) that is, we have zuσf
≡ z0,0 (t), and the optimal control uσf

ensuring the gradient
remediability of the disturbance f , is represented in Figure 2.
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Figure 2. Representation of the optimal control uσf .

9 Conclusion

Gradient remediability of hyperbolic systems is considered. The relationship with the notions of
gradient controllability is studied. We showed that if any hyperbolic system is gradient control-
lable, it is gradient remediable. The role of actuators and sensors in the gradient compensation
of any disturbance is examined. An algorithm has been successfully implemented and we il-
lustrated this with an example and numerical simulations. The obtained results are related to
the choice of convenient gradient efficient actuators. Many questions remain open, such as the
case of the regional gradient remediability of hyperbolic systems. These questions are still under
consideration and the results will appear in a separate paper.
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