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Abstract In this paper, we generate some innovative results on the integral inequalities of the Chebyshev type as well
as the reverse Minkowski inequality using the tempered fractional integral operator. These inequalities extend some prior
conclusions. As a direct result of our major findings, we demonstrate inequalities of Chebyshev type incorporating Riemann-
Liouville fractional integral operators. These variations can lead to some intriguing outcomes in a few exceptional situations.
We may also discover some applications of this inequality by using a particular function, which we then graphically display.

1 Introduction and Preliminaries

In order to deal with the differentiation and integrals of any fractional order, the fractional calculus is a valuable tool. The
development of many fractional integral operators (FIO) and their applications across various scientific disciplines are the
main topics of recent research. Ordinary differential equations with fractional derivatives can be used to simulate a wide
range of mathematical, statistical, engineering, physical, chemical, and biological processes [1, 2, 3]. Numerous physicists
and mathematicians contributed to the advancement of the theories of fractional calculus, including Riemann-Liouville (R-
L), Caputo, Hilfer, Riesz, Hardamard, Erdélyi-Kober, Saigo, and Marichev-Saigo operator, which has been the subject of in-
depth research by numerous researchers (see [4, 5, 6, 7, 8]). The properties of the comformable fractional derivative operators
(CFDO) introduced by Khalil et al. [9]. The properties of the fractional comformable investigated by Abdeljawad et al. [10].
In[11], Jarad created the fractional conformable integral derivative operator. Anderson and Ulness [12] doveloped the concept
of conformable integral and derivative by employing local proportional derivatives. Abdeljawad and Baleanu et al. [13]
have established fractional derivative operation with exponential Kernel and their discrete versions. Applications of integral
inequalities have been developed for a huge variety of fractional integral operators in several scientific domains. Inequalities
of the Riemann- Liouville fractional integral operator have been well studied by Belarbi et al. [4]. The authors established
may inequalities such as Ostrowski type inequalities Hermite- Hadamard-Fejer inequalities [14], Chebyshev type inequalities,
Griiss type [15, 16], Gronwall inequalities [17] via generalized fractional integral operators (see [18, 19, 20, 21, 22]).

The aim of this paper we established Chebyshev-type inequality and reverse Minkowski inequality via our newly defined
tempered fractional integral operators (TFIO). In this section, we discuss basic preliminaries and notations; in the second
section Chebyshev inequality on one sided tempered fractional integral operators obtained related theorems and results, third
section we obtain some results using the reverse Minkowski inequality via tempered fractional integral operators and a related
theorem referred to as the reverse Minkowski inequality; and in the last section, we are establishing a conclusion.

The inequality Chebyshev type [23] for the synchronous and integrable functions ¥ and & specified on [a, b].

1 b 1 b 1 b
o | v (1 [ eae) (2o [ veue). (R
Two functions & and ¥ are considered as synchronous function on [a, b], if
(®(e1) — ®(e2))(¥(o1) —¥(e2)) 20, (o1, 02 € [a,b]). (1.2)

In (see [24, 15]), researchers explored and doveloped different generalization of inequalities in (1.1) Minkowski inequality is
the best- known inequalities (see [25, 18, 26, 19]), and it is a generalization of the recognized triangular inequality.

Minkowski inequality: If p > 1 € R, @, and W are functions of class € [a, b]. Then the given inequality on [a, b] is

satisfied ] ]

(/|<1>+‘P|pdg) "< (/\cp\Pdg) e (/ |‘P|pd9>i . (13)

The types of functions that we will take into consideration during this paper are described in the following definitions.
Definition 1.1. : The function ®(p) is considered in €;[a, b], if

: 1
(/ \‘P(@)\pdg) < oo, 1<p<co. (1.4)

Definition 1.2. : The function ®(p) is considered in € s[a,b], s > 0, if

1
\ i
(/ |<D(g)|”95d@) " <, 1<p< oo (1.5)
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Definition 1.3. : Let [a, b] € Rand ¢, w € C with R(¢) > 0 and 9(w) > 0, then the left and right sided tempered fractional
integral operators are respectively defined by

(181) 09 = =725 (750 = 5 [ e = 0 o), a < (16)
and
b
(151) 00 = =35 (i) = ey [ e =0 oo, w <t (17)

Now, Buschman at el. [27] was first studied on tempered fractional integral, but Meerschaert et al. [28] and Li et al. [29]
have derived the associated tempered fractional more explicitly. Other than these many authors (see[30, 31, 16]) were also
discussed using many inequalities via Tempered fractional integral operator.

Special case: when f(k) = (k — a)™, then

(1t - o) = % / e~ =0 (15 — 0)¢~1 (g — a)"do
[T e a0 (g — ) — (5 — a))C (0 — @)™
7o . e=((x —a) ~ (o~ a))*~' (0 — )" do
ey L (i Wle—a)" et e
g ), &m0 - - ) e 0de
On setting u = 2=%, we obtain

(]Ig’“(n - a)") = e*w“ﬂ*a)% i::o (%) /0] ((k — @)™ (1 = u)* "'k — a)¢ " (xk — a)du,

T

by solving the above equation and using definition of beta function, we get

(Hg’“(ﬁ — a)") = e‘“’(“—a)% i (7&)’"(/1 — a)r+<+n) /1 w1 — u) " du

r! 0

k—a)st" SN W' (k —a)” T(r +n+ D)

e < r! Trtnictl)
Cw— ) = emwln—a)(y _ gein S WE—a)" Trtn+1)
(lla (k —a) >fe (k —a) ;) Ry T (1.8)
and when a = 0 then
Cw,.n _ WK ¢+n o (wﬁ)r r(""'l‘?’b-’rl)
(1§ (5m) = e ()< S SR (1.9)

=0

Remark 1.4.: Setting w = 0 in the equation (1.6) and (1.7) reduced to left and right R-L fractional integral operators
respectively, for ¢ € € and R(¢) > 0.

(157) 09 = 96,0 606 = 15 [ (6= 0 oo, a <, (110
and
b
(151) 09 =35, 09 = s [ (o= m oo, < (111

The tempered fractional integral (1.6), satisfies the following semigroup property for R(y) > 0,R(¢) > 0:

1 (I995(x) ) = RO, .12

The aim of this paper is divided into two section. The first section Chebyshev and second section Minkowski inequalities via
tempered fractional integral are discussed.

2 Main result 1

In this part, we established Chebyshev inequalities via tempered fractional operator.

Theorem 2.1. Suppose ® and ¥ are two integrable functions which are synchronous on [a,o0). Then the subsequent in-
equality holds for all k € [a, b] and ,w € C with R(¢) > 0 and R(w) > O:

(1590%) (w) > [(15°()]7" (199®) () (15%) (). @.1)
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Proof. [a,00) is synchronous for @ and ¥, thus

(®(e1) — P(e2)) (Y(o1) — ¥(e2)) 2 0, 2.2)
or equivalent
D(01)¥(01) + P(02)¥(02) > P(01)¥(02) + P(02)¥(01), (2.3)
multiplying both sides of (2.3) by %e*“(”ﬂ” ) (k — 01)% ! and integrating the resulting inequality with respect to g over
(a, k), we attain
1

@ /: €7W<K*Ql)(l‘f - Q])Cflch‘(Ql)‘P(Ql)dQ] + % /: 670-)(“79[)(5 _ Ql)c71¢(92)\}l(92)d91

1 r 1 K
> —w(k—01) (L _ C~lgp Wy d / —wlk—o1)(. _ -1g v J
> F(C)/a e (k—o1) (01)¥(e2) QH——F(O e (k— o1) (02)¥(01)dor,
it follows that

(15%) () + Sle2)¥(e2) 5 | Cela) (s — o) dor > W(en) (15°@) (5) + 0(e2) (15%) (),
thus we obtain
(15209 (m) + D(e2)Ple2) (151) (1) = Wle2) (159 () + D(2) (I4'P) (), 24

again multiplied both sides of (2.4) by ﬁe*“’(”*m)(n — 02)¢7! and integrating the resulting inequality w.r.t g» over
(a, k), we obtain
1

w 1 m —w(k—o2 — W " —w(k—0 _
(1) (n)@/a e v (i — 00)doy + (151) (n)@/a =m0 (15 — 03)¢ 71 D(02)W(02)den
1

> (1579) () i [ e o) e + (1599) ) [T = o) en)den

or equivalent to

(15@®) (5) (15(1)) () + (15 (1)) () (159D () > (15@) () (I5%) () + (19%) () (15@) (),

(25)
or
(1590%) (w) > 15 ()] (15@) (x) (15%) (), 2.6)
setting n = 0, then equation (1.8) reduced into
e —a))"T(r +1)
159 (1)) = eelh—a) (g _ )¢ $ W Z )T+ 1) 2.7
(15)) =e narz i @.7)
equation (2.6) becomes
(HC,wq>LF> (k) > —uw( gi w(k —a))'T(r+1) B (H(,wq)> (k) (HC,wLIJ) (k) (2.8)
a K)~Z |€ H (Z 2 T'FT+C+) a K a K). .
For a = 0, the equation (2.8) reduce to
¢ > (wr)T(r 4+ 1) - ¢
w > —un C ,w ¢ w ) )
(1[0 @\P) (k) > [ ; ey )] <]I0 qa) (k) (110 ‘I‘) (k) (2.9)

O

Theorem 2.2. Suppose ® and ¥ be two integrable function that are synchronous on [a, 00). Then the subsequent inequality
holds for all k € [a,b] and ¢,n,w € C with R(¢) > 0,9R(n) > 0 and R(w) > 0:

(15@®) () (12 (1)) (5) + (15 (1)) (%) A2 DY) (1) > (I52@) () (122) () + (199) () (122 ) ().
(2.10)

Proof. Multiplying both sides of equation (2.4) by ﬁe“"(ﬁ_m) (k — 02)"~! and integrating the resulting inequality with
respect to p; over (a, k), we get
1

(150) (0 [ e s — )1+ (151) ) s [0 ) )0l ¥en)
1

> (1590) (0) s [ e s — ) Wleadden + (1699) (8) s [ e 00 b(en)den,

or equivalent

(152 0w) () @ (1) () + (1% (1)) (1) @P=OY) () = (159@) (6) (T1D) (0) + (1) () TL20) ().
.11)
O
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Theorem 2.3. Let (¢;)j—1,2,3...n. be n positive increasing functions on [a, c0). Then for k € [a,b],¢ € (0,1],w,{ € C,
with R(w) > 0 and R(C) > 0, we have

n

ﬁpj (k) > (]IC“’ ) H(]IC“’ ) . 2.12)
G=1

Proof. In order to demonstrate that this theorem is correct, we will use inductiononn € N. i.e. for n = 1, we have
I (1) (k) > 1901 (K), K> 0
i.e. holds. Now for n = 2, since ¢; and ¢, are positive and increasing functions, therefore we have

(p1(r) = @1(0)) (p2(k) — p2(8)) > 0.
Consequently, by using theorem 2.1, we have

I (o) () 2 [(161))7" (161 ) () (152 ()-

Now consider the induction hypothesis

n—I1 _n—1
159 [ TTes | 0> (540) " T (165 (s, @.13)
j=1 J=1

since ¢; : j = 1,2, ...n are positive increasing functions on R, therefore @ : H ] <pj is increasing on R™. Let ¥ = ¢,
and applying theorem 2.1 for the functions ® and ¥, we have

199 ([Tes | (8) =15 | TT @i | (en) (),
j=1

or equivalent

15 (@) () 2 (1)1 | 15 [T (o) (0) | (6%n) (w),
using equation (2.13), in the right hand side of the above equation, we yield

2 (152 0)1 7 (154 0)" " TT (15%05) 9 (150 ) ()
or

Hw] w) > (1 é*“’(l))'_”ﬁ (15%; ) (x). 2.14)

O

Theorem 2.4. Let @ and ¥ be two functions defined on [a, 00) such that ® is increasing and ¥ is differentiable with a real
number with ¥ bounded below and m = infi>q v (), then

o0
1)
IS (DW) (x) > [1$% (1]~ ISY D()IS W (k) Z (r+ ]IC’“‘P(/{) +mlI$® ((k — a)¥(k)) (2.15)
o r+c+l
Proof. Let h = ®(x) — m(k — a). We discover that h is differentiable and increasing on R/ and also using theorem 2.1,
we have

I$9(@(k) = m(x — a)¥(r)] > [I5°(1)] 79 (@(k) — m(k — a)Ig* (¥(x)),

> [194()] 7 g @(R)IE P (k) — m[Ig (1] 715 (5 — a)I5*¥(x), (2.16)
from equation (1.8), settingn = 1
Cw (g —q)) = e—wln— gyt $ Wik = @) T(r +2)

<]Ia (k a)) e Z per T 2.17)

also, setting n = 0, in equation (1.8) then reduced into

> —a))"T(r +1)

I5(1) = e ("= (5 — )¢ Wk —a)Tlr+1) 2.18
<“ ()> € (k—a) Tz:(:) rIT(r+¢+1) @19

Thus form equation (2.16), we have

5 (@(0) — gl — a))¥(x)] 2 (15 (1)] 7 I @(m)1G“W(x) — m(n —a) x 3
or equivalent to

L6 @) > [5(0)] 7 5B H(0) = (s — a) x 3 LI I (= ) (),
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3 Main result IT

In this section we discuss about Minkowski inequality and it’s reverse via tempered fractional operator.

Theorem 3.1. Let ®,¥ € € ;[a,k],s € R/{0} and p > 1, be two positive functions in [0, 00) such that, for all k >
a, ]Iﬁ”ﬁ)?(n) < oo and Hg’w‘{’p(/@) <oo If0<m< 2(e) < M form, M € RT and for all ¢ € [a, K], then

¥(e)
1 1 1
(150 (0)) ? + (15997 (1)) * < 1 (1@ +¥)(x)) 7, 3.1)
_ M(m+41)+(M+1)
where  c1 = = TR
Proof. using the given condition % <M, a<p<k,weget
(o) < M¥(0) + MP(g) — MP(0),
or
(M +1)@(¢) < M (¥(o) + ®(0)),
which is equivalent to
(M + )PP () < MP (¥(0) + ()", (3.2)
by multiplying both sides of (3.2) with ﬁe*“(’**’)(n — 0)¢~1, then we integrate the resulting inequality with respect to

o over (a, k)
(M 1 [ e O ) e e

I(¢)
1 K
< M7 [T S (9(0) + @0)) de,
I'(¢) Ja
or
(M + 1) (19907 (1)) < MP (19 (% + D) (x)) ,
thus ] .
4 M L
Cw pP P < C,w P P
[]Ia @ (n)] < (M - []Ia (¥ + @) (m)} . (3.3)
On the other hand, as m < %, it follows that m¥(p) < ®(p),
1 1 1
Y(e) < —®(0) + —¥(0) — —¥(0),
m m m
or equivalent to
1\? o 1\?
(14 2) ¥ < (5) @0+, G
m m
now, multiplying both sides of (3.4) by ﬁe*“("*ﬂ’)(n — 0)¢~L, then we integrate the resulting inequality w.r.t ¢ over
(a, k),we obtain
1 1 1
[i5ewr00]” < (o) 152 @ o 0] 65)
m + 1
by adding equation (3.3) and equation (3.5), we obtain the result given in (3.1)
5 5 Mm+1)+(M+1) 5
IS9P (k) ) P + (IS9PP(k)) P < I$% (@ + W)P(x)) 7. 3.6
(@) " + (16w n)) " < =P (1@ ) (3.6)
Thus equation (3.6) is knows as the reverse Minkowski inequality involving tempered fractional operator.
O

Theorem 3.2. Let ®,¥ € C, ila,k],s € R/{0} and p > 1, are two positive functions in [0,00) s.t., for all k >

a, 1§ PP (k) < 00 and I§“'WP (k) < 00 If0 < m < G& < M form, M € R* and for all o € [a, ], then

<Hg’“¢p(n)>% + (Hngw(n))% > o [JIngqﬂf'(,-@)]é [15wv ()] g 37

where ¢y = W — 2.

Proof. Taking the product between equation (3.3) and equation (3.5), we have
M
(M +1)(m+1)

involving the Minkowski inequality, on the right side of equation (3.8),we obtain

[Hg’“’dﬂ”(n)] g [Hg"*"PP(n)] v < (Hng (@ +W)P (H)) v (3.8)

%M(m“) [Hg’“’@p(m)]% [Hg’wp(n)]% < {(Hg""dﬂ?(n))% + (ﬂgww(n))%r (3.9)

from equation (3.9), we get

(155079) ¥ + (15w () 2 (LDl 21)

i 72) [Hngclﬂ'(n)]é [Hg*W‘PP(n)] P 30
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Now, other inequalities of the Minkowski reverse type are given in the result that we present below

Theorem 3.3. Let ®, ¥ € C ;[a,k],s € R/[0] and p,q > 1 and % + é = 1, be two positive functions in [0, 00) s.t., for

all k> a,1$* P (k) < oo and ]Ig*”lPP(n) < oo If0<m< % < M form, M € R" and for all ¢ € |a, k), then
L L M\ 7a L 1
(ngqﬂ’(n)) g (Hg’ww(n)) 1< (E) " (]Ig’“’dw(m)q—’qm)). G.11)

Proof. : Since % <M, o€ [a,k], wehave ®(g) < M¥(p),

or equivalent
1 —1 1
Yi(o) > M@ @), (3.12)
1
multiplying both sides of equation (3.12) by ®7 (), we can rewrite it as follows
1 1 —1 1 1
D7 (0)¥i(0) = M@ @4 (0)®7 (o), (3.13)

now, multiplying both sides of (3.13) by %e*“("“*g)(n — 0)¢~ 1, then we integrate the resulting inequality with respect

to g over (a, k) and using the relation % + é = 1, we obtain

or equivalently ]
M7 []Ig’“’d)(n)]% < [ﬂgw (@(n)\pé(n))} v (3.14)
On the other hand m < %, it follows that
MW () < B¥ (o), (3.15)

1
further, by multiplying both sides of equation (3.15) by ¥4 () and involving the relation i + é = 1, it yield

1 1 1
m?¥(o) < @7 (0)¥4 (o), (3.16)
now, multiplying both sides of (3.16) by ﬁe*“’(”*’?) (k — )~ 1, then we integrate the resulting inequality with respect
to p over (a, k), we obtain

or equivalently

1

1 1 1 1 7
m#a [ngwwm)] 1< {Hg"" (qﬁ (K)W7d (H))] ‘. (3.17)
Finally, we multiplied equation (3.14) by equation (3.17) and using the relation% + é = 1, we obtain required inequality
(3.11). [}

Theorem 3.4. Let ®,¥ € Cy s[a, k], s € R/[0] and p,q > 1 and % + é = 1, are two positive functions in [0, 00) s.t., for

all k > a,ﬂg’wd)p(n) < oo and ]Ig’wll’p(n) < oo If0<m< 32—5 < M form, M € R" and for all ¢ € |a, k], then

IS ®(k)¥(k) < e (ung (@ +PP) (n)) te (ﬂng (@9 + W) (n)), (3.18)

_ 2~ mp _ 297!
where c3 = PP and cy = TN

Proof. Using ®(0) < M¥(o) for ¢ € (a, k), we discover the subsequent inequality:
Q(0)(M +1) < M (®(0) +¥(0)),

or equivalent to

(M + 1)P®P(0) < MP(® + ¥)"(0), (3.19)
now, multiplying both sides of (3.19) by %e‘“’("_g)(ﬁ — 0)¢~ 1, then we integrate the resulting inequality with respect
to o over (a, k),we obtain

MP
C,w pP Cow P
(]Ia @ ) )< G (]Ia (@ +W) ) (k). (3.20)
Also, we have 0 < m < %, 0 € [a, k], it follows
(m+ 1)7%9(p) < (@ +¥)? (o), 3.21)

further, we multiplying both sides of (3.21) by e*“’('ﬁfg)(n — 0)¢~!, then we integrate the resulting inequality with

1
()
respect to p over (a, k), we obtain

1
= (15 @+ w)7) (x), (322)

(]Ig""‘lﬂl> (k) < mr i
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Now, applying young’s inequality
@P(o) , ¥(o)

P(e)¥(e) < + ; (3.23)
p q
multiplying both sides of (3.23) by ﬁe‘w(“_g)(n — 0)¢~!, then we integrate the resulting inequality with respect to o
over (a, k), we obtain
1 1
(Hg'“’dD‘{-’(m)) <- (Hngqﬂ) (k) + — (ugwq) (), (3.24)
p q
using equation (3.20) and equation (3.22) in equation(3.24), we obtain
MP 1
I5“ W < —— (1% @® 4+ PP +— (I$¥ (D + W) , 3.25
(Gerin) < s (6@ +9r) () + e (1 @+ 1)) () (3.25)
now, using inequality (z + )% <257 1(2° +y°), s> 1, xz,y >0, wehave
2p—l P 29—1
I$9 (W) (k) < ——— (IS (P + PP +——— (I$% (@9 + P4 . 3.26
@) < o (16 1(9) + o (6 ) (%) (3:26)
O

Theorem 3.5. Let @, ¥ € Cy s[a, k], s € R/{0} and p,q > land L + 1

all k > a,]Ig’wCIDp(/{) < oo and ]Ig’w‘l’p(n) <oo. [f0<c<m< % < M for c,m, M € R* and forall ¢ € [a, K],
then

1, be two positive functions in [0, 00) s.t., for

M+1 1w _ PP < (160ap(r)) P 4 (1owwr()? <« ML (e _ ) ¥
e (e @) = ¥(m)P) 7 < (1607 (m) " + (15497 (r)) " < T (169 (@(n) — ¥ (R))7) "
(3.27)
Proof. By applying the hypothesis, 0 < ¢ < m < % < M, we obtain the subsequent inequalities
(M+1)(m—c) < (m+ 1)(M —c), (3.28)
or equivalent to
(M+1) _ (m+1)
— < .
M—c) = (m—0)’ (3:29)
further, we have
(o) (o) — c¥(0)
< & < —_o< < (M —
" =M MT9s Ty =
which implies that
®(o) — ¥l (0) > (o) — C‘I‘(9)7
(m—c) (M —c¢)
or equivalent to
(P(0) — c¥(0)” b, < (Ple) = ¥(0)®
(M —op <YP(p) < (m—op (3.30)
Again, we have ﬁ < % < #,
(m—c) _ P(o) —c¥(e) _ (M —c)
em T c®(p) - cM
or MNP »
(5=) @0 - vy <o < (™) @) - exio)r. (3D
—c m—c

ow, multiplying both sides of (3.3 y mrme” VT8 (k — 0)57 7, then we integrate the resulting inequality with respect
N Itiplying both sides of (3.30) by e~ =L th i he resulting inequality with

to g over (a, k), we obtain

5 (00— ) <) <

1

mﬂg’w (P(r) — c¥(K),

or

1 1 1 1 L
15 (@) — W()?] 7 < [150wr ()] < (16 (@(x) — ¥(m)P] * . (332)
(M —c¢) (m—c¢)

Now, multiplying both sides of (3.31) by ﬁe‘“’("_g) (k — 0)¢~1, then we integrate the resulting inequality with respect
to o over (a, k),we obtain

M 5 L m L
¢w _ PP < 16w pP P < Cw _ p|P
Gr—g [ (@) — et ] < [I0er(n)] " < s I (@(0) — ()] (3:33)
Then, adding equation (3.32) and equation (3.33), we obtain desire result (3.27). O

Theorem 3.6. Let ®,¥ € C; [a,k],s € R/{0} and p > 1 be two positive functions in [0,00) s.t., for all K >
a, 1Y ®P (k) < 0o and I9“WP(k) < oo, If0 < a < ®(9) < Aand0 < b < ¥(o) < B fora,b,A, B € R*
and for all o € [a, K], then

1

[(HQ%P) (n)]% + [(Hngwp) (n)] P []Ig’“(CD + T)P(n)ﬁ , (3.34)

A(a+B)+B(A+b)

with ¢s = =0T E)
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Proof. Under the given condition, it follows that 0 < b < ¥(p) < B,
or
1

1 1
-> > 3.35
bW~ B (339
conducting the product between (3.35) and 0 < a < ®(p) < A, we have
A_ @
4520, 2 (336)
b Y() — B
then
a¥(e) < B®(o),
or equivalent to
(a+ B)¥(0) < B(P(0) +¥(0))
implies that,
P(p) < B ! [} Y(p))P 3.37
7 + , .
0= (r5) @0 +¥0) 637
and
0<a<®()< A,
o 1 1 1
-2 2>, (3.38)
a P A
conducting the product between (3.38) and 0 < b < ¥(p) < B, we have
b g B
- < #lo) < —, (3.39)
AT ®() " a
then
bd(0) < A¥(0),
or equivalent to
(b+ A)P(0) < A(P(0) +¥(0),
implies that,
D A\ P(o))P
(o)< () (@ , 3.40
0= (775) @0+ o) (.40

now, multiplying both sides of (3.37) by %C)e*“’("*g)(n — 0)¢~1, then we integrate the resulting inequality with respect
to g over (a, k),we can written as
1

[]Ig"‘"l’p(n)] v < (a f B) [ﬂgw@ n W)p(ﬁ)] v (3.41)

Also, multiplying both sides of (3.40) by %efw("‘*g)(m — 0)¢~1, then we integrate the resulting inequality with respect
to p over (a, k), we can written as

1 A 1
¢,w P _ ¢ ,w P
(1520200 < (55 ) 5= @+ wreo] . (3.42)
Finally, adding equation (3.41) and equation (3.42), we obtain desire result.
L 5 _ Ala+B)+B(A+b) 5
C,w P ¢ w P ¢,w P
[(]Ia <1>P) (n)] + [(Ha tpp) (H)] < AT 0esE []Ia @+ ‘P)p(m)] . (3.43)

O

Theorem 3.7. Let ®,¥ € C; ;[a,k],s € R/{0} and p > 1 be two positive functions in [0,00) s.t., for all k >

a, 1§ PP (k) < 00 and 5 WP (k) < 00 If0 < m < G& < M form, M € R* and for all o € [a, ], then
1

o (I[g’W@(H)‘P(n))

IN

CESTE) (ng’w(qa +‘P)2(n)) < % (Hgv%(n)\y(n)) . (3.44)

P

Proof. Using the condition 0 < m < g2 ) < M, it follows that

€

(
m< — <M
or
(m+ 1)%(0) < ®(0) +¥(0) < (M +1)¥(0), (3.45)

also, it follows that

< < i’

M ™ @) ~m
or

(M) o0 < 0l0) + 90 < (™4 ) (o), (.46

conducting the product between equation (3.45) and equation (3.46), we have

©(0)¥(e) _ (Do) +¥(2)* _ P(0)¥(0)
M T (M4+1)(m+1) T m

. (3.47)
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now, multiplying both sides of (3.47) by e_“’("_g)(ﬁ — 0)¢~ 1, then we integrate the resulting inequality with respect

1L
(<)
to g over (a, K),we can written as

= (5 (n)) < o (9% (@) + ¥()?) <

7 T DOIT T (1) ¥(x)) - (3.48)

1
m
O

Theorem 3.8.: Let ®,¥ € C, sla,k],s € R/{0} and p > 1 be two positive functions in [0,00) s.t., for all K >
a, 1% ®P (k) < 0o and I WP (k) < oo. If0 < m < y < M form, M € RT and for all ¢ € [a, K], then

(o)
1 1 1
[(152@7) ()] 7 + [(19297) ()] * <2 [1n7 @) ()] 7, (3.49)
where
h[®(k), ¥(k)] = maz K% n 1) D) — M), M) = (b(”)} . (3.50)
m m
Proof. Under the given condition 0 < m < % <M, o€ (a,k)
It can be written as
0<m§M+m7M§M, (3.51)
()
and ®
M+mfﬁ§M7 (3.52)
(o)
from equation(3.51) and equation (3.52), we obtain
M+ m)¥(p) — P
w(o) < MO = o, (), w(0)), 65
where 1 [®(0), ¥(0)] = max [(% + 1) ®(0) — M¥(o), %M] .
On the other hand, from the hypothesis, it also follows that
1 g 1
0<*SLQ)S*, (3.54)
M (0) = m
then )
1 1 1 ¥
— < — - = = 3.55
M~ M + m (o) ( )
and v
1 1 1
— *—MS*7 (3.56)
M m (o) m
from equation (3.55) and equation (3.56), which implies that
1 1
1 o) Plo) —¥(e)
=< G+ ) <—, 3.57)
M (o) m
or
1 1
Do) <M (M + *) @(0) — M¥(0),
m
M(M +m)®(0) — ¥(o)M*m
- mM ’
or
M
a(0) < (o +1) Bl - (o),
thus
@(0) < h[P(0)¥(0)], (3.58)
from equation (3.53) and equation (3.58) we can write
WP (o) < P [®(0), ¥(0)], (3.59)
P () < b [@(0), ¥(0)] s (3.60)

now, multiplying both sides of (3.59) and (3.60) by ﬁe*“’(”*g) (k — 0)¢~1, then we integrate the resulting inequality with

respect to g over (a, k), we can written as

(=) o]

Sl

1

[(5707) o] < s5-rwiowrio]

Now adding equation (3.61) and equation (3.62), we get desire result given in equation (3.49).

< [Hg’%p(da\v)?(n)]% :

(3.61)

(3.62)
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4 Applications

Let u(x) and v(z) be two integrable functions which are synchronous on [a, b], then the theorem 2.1 and theorem 2.2 hold
the following results such that

u(e) = oo = 3~ =D

r=0
and '
o) = 1+ @—ay =y LD
o r!
therefore
o) = o (oln—a)) = L [* mwlimo)p _ ye—1 I 5 (2= a)"
) =15 () = g [, o {Zo = }de,

now changing the summation and order of integration, we get

I 1 [
=g e ()~ (o= )0 — ) de,
r=0 -~ va

= eiw(nia)i Z L /"€ Z (wlo = a))” (k—a)— (0 —a)* (o —a)"do,
=0 a

s!

e—w(k—a) > s L
= I e (-0~ (o - ) e,

setting ¢ = £—, we obtain
e—wlk—a) X 1 X2 ;s
_ Zizi(n )r+s+C/ tr+9(1 )C Lt
L) 4grtag s a
C,w (k—a)) _ ,~w(k—a) o W _ T+S+CF(T+S+1)
5 () =e ZZMS!(“ D e rs 10 @
r=0 s=0
Also
1 " > )
990n) = 15901+ (s — o))" = i [T emenelem gt 3 (e m e gy
F(C) @ r=0

now changing the summation and order of integration, we get

_ 1 ad (n)r “e_w((,@_a)—( ~ (e —a)— (0 —aNSYo—a)
- r(c); e 2 (5 a) ~ (o~ @)~ (o — a) o,
—eeteo s O [Ty e (o)~ (0 ) o — o,
7‘:0 : @ s=0 :
—w(na)wnroogx )
Z(ﬁ Z / —a)™** (5 —a) — (0 — )" ")do,

setting z = 2=% we obtain
(k—a) = r o K
— F( Z Z _ r+s+§/ Z7'+5(] _ Z)Cfldz7
C r=0 ! s=0 " a
oo oo ws
r 1
9l + (@ — ) = et 3Oy W o prperc Db S D) @2

ot r's' I'(r+s+¢)

O

Proposition 4.1. Ler u(x) = e~ %and v(k) = [1 4 (k — a)]™ two integrable functions which are synchronous on |a, co).
Then the theorem 2.1 holds inequality for all k € [a,b] and {,w € C with R({) > 0 and R(w) > 0

2
X W I'(r+s+1)
¢,w > ¢w —1 —w(k—a) w _ st
(15w (5) > [(15<(1))] { T e “3)
r=0 s=0
Proposition 4.2. Let u(k) = "~ %and v(k) = [1 + (k — a)]™ be two integrable functions which are synchronous on

[a, 00). Then the theorem 2.2 holds inequality for all k € [a,b] and {,n,w € Cwith R({) > 0,R(n) > 0and R(w) > 0:

—lrea) o e W . I(r+s+1)
s (] H(,w 1 e > w(k—a) w _ ,\rt+s+C
(2w ) () (@ (1) () 4+ (1(1)) () (1 “u0) () 2 e XY e g
oo 00 s o s
—w(k—a) (n)"‘w _ \THs+n F(T’ +s+ 1) —w(k—a) (n)T‘w A\ +s+C r(,r +s+ l)
xe Tz:%;) rls! (x—a) F(r+s+17)+e Tz:%; rls! (k—a) I(r+s+¢)
—w(k—a) IS wh \rtstn I'(r+s+1) A4
e 2.0 e T(rts+n) @4
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4.1 Graphical representations
33 FT T T T & T s
an o ]
H
28 .'.T _:-
= -
3 3
W 3 5 B
Fi 4.:
15 F -."" :‘ 1
-.: -n:
u -
. .
1w Ay N E
¥ 4
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ir _‘\."' Ay ]
t""“ I."“‘
ettt i llll'l‘.l‘
1] -!|||l|l|lIIIIII|||"“llIIIIII|IIII|||I|“|H||.|l|l|l|lllllllllllllllllllllllll-
T E] 4 H

]
Figure 1. Curve between x and 17 (e(*=NI¥P[1 + (k — a)]"(I¥P[1])~" with different value

of pwitha=1,n=2.
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Figure 2. Curve between « and [P ("~ @[l + (k — a)]*) with different value of p with a =

1,n=2.

4.2 Result and discussion

In this paper,we present result of theorem 2.1 graphically in which figure 1 shows right hand side of equation (2.1), whereas
value of @ = 1 and n = 2. The figure 3 verifies the inequality since for a given value of x, the left hand side of inequality

figure 2 shows left hand side of equation (2.1). In figure 3 we show theorem 2.1 in combined form of figure 1 and 2 with fixed

always greater than equal to right hand side whereas for small value of x equality holds.

5 Conclusion remarks
fractional integral operator defined as Belarbi and Dahamani et al. [4]. Some applications will be discussed in the propositions

In this current paper, we introduced Chebshev inequality by using the tempered fractional integral operator as a particular
4.1 and 4.2. Also important inequalities Minkowski inequality involving tempered fractional integral operator generalized

case, w = 0 and a = O then the inequality (2.1), (2.10), (2.12), and (2.15) involving fractional integral will leads to R-L

the reverse Minkowaski inequality and some important relation.
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as 7 T T T w T ™
'l
B [
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B L 4
an £ ¥
r ¥ ¥
: > : »
s | = ¥ =
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Figure 3. Comparison between 12 (e("=N[“P[1 + (k — a)]"(I¥P[1])~" and I¥P(elF=@)[1 +
(k—a)]").
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