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Abstract In this paper, we introduce a graph structure G(τ) on a topological space (X, τ),
called completely separated topological graph. We show that (X, τ) is a discrete space if and
only if X\{p} is a pendant vertex of G(τ) for all p ∈ X and G(τ) is an edgeless graph if and
only if every real-valued continuous function on X is constant. Also, if (X, τX) and (Y, τY ) are
discrete topological spaces, then X and Y are homeomorphic if and only if G(τX) is isomorphic
to G(τY ). Finally, for a discrete space (X, τ), G(τ) is planar if and only if |X| ≤ 3.

1 Introduction

Graph theory apart from its combinatorial implication also helps to characterize various algebraic
structures by studying graphs associated with them. Some researchers studied graphs associated
with algebraic structures to obtain the interrelationships between graph properties and algebraic
properties. Beck [1] initiated this idea. Even though his goal was to address the issues of
coloring, his formal study eventually exposed the relationship between graph theory and algebra
and advancing applications of one to the other.

Till now, a lot of research has been done in studying graphs defined on an algebraic structure
such as groups, rings, vector space, modules, etc. In 2019, Muneshwar and Bondar [2] intro-
duced the open subset inclusion graph γ(τ) on a finite topological space (X, τ), where the vertex
set is the collection of proper open subsets of a topological space (X, τ) and two vertices A and
B are adjacent if either A ⊂ B or B ⊂ A. Again in the same year, Muneshwar and Bondar [3]
studied another graph structure on a finite topological space (X, τ), called the intersection graph,
where the vertex set is the collection of proper open subsets of X and two vertices A and B are
adjacent if and only if A

⋂
B ̸= ϕ. Muneshwar and Bondar [2] [3] studied the graph properties

of these graphs like connectedness, clique number, dominating number, etc.
In this paper, we introduce a graph defined on an arbitrary topological space (X, τ), called

completely separated topological graph G(τ). The main objective of this paper is to not only
study the graph properties of G(τ) but to investigate the relationships between topological prop-
erties of (X, τ) and graph-theoretic properties of G(τ). We show that for a T1 topological space
(X, τ), p is an isolated point of X if and only if X\{p} is a pendant vertex of G(τ) and (X, τ) is
a discrete space if and only if X\{p} is a pendant vertex of G(τ) for all p ∈ X. We also show that
if (X, τX) and (Y, τY ) are finite T1 (or T2) topological spaces, then X and Y are homeomorphic
if and only if G(τX) is isomorphic to G(τY ). Also, for any topological space (X, τ) such that
|τ | is finite, the dominating number of G(τ) is |τ | − 2 if and only if every real-valued continuous
function on X is constant.

For any two vertices A and B of a graph G, the distance d(A,B) is the length of the shortest
path between A and B. The diameter of a graph G is defined as Diam(G) = sup{d(A,B) :
A, B ∈ V (G)}. For any two vertices A, B, c(A,B) is the length of the shortest cycle containing
both A and B. The girth of a graph is the length of its shortest cycle if it exists otherwise girth
is ∞. A graph in which all vertices are pairwise adjacent is called a complete graph. The clique
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number of a graph G is defined as ω(G) = sup{|V (H)| : H is a complete subgraph of G},
where V (H) is the vertex set of H . A graph G is said to be triangulated (hypertriangulated) if
each vertex (edge) is a vertex (an edge) of a triangle. The collection of all vertices in G adjacent
to A is called an open neighbourhood of A. It is denoted by N(A) and the cardinality of N(A) is
equal to the degree of the vertex A. The closed neighbourhood of A is the set N(A)

⋃
{A} and is

denoted by N [A]. We denote the set R equipped with usual topology by Ru. Also, a topological
space (X, τ) in which every member of τ is both open and closed, is called a clopen topological
space [4].

For undefined terms concerning topology and graph theory, we refer the reader to [5] and [6]
respectively.

2 The completely separated topological graph

Definition 2.1. Let (X, τ) be any topological space. The completely separated topological graph
denoted by G(τ) is a graph whose vertex set is the collection of all proper open subsets of X
with two vertices A, B adjacent if and only if there exists a continuous function f : X −→ Ru

such that f(A) ≤ r < s ≤ f(B), r, s ∈ R. Also, f(A) ≤ r means f(a) ≤ r for every a ∈ A and
f(B) ≥ s means f(b) ≥ s for every b ∈ B.

Remark 2.2. If (X, τ) is an indiscrete space, then it has no proper open subsets. Hence, we
will consider (X, τ) as a non-indiscrete topological space and |X| > 1. It is easy to see that a
topological space (X, τ) is discrete if and only if {p} is a vertex of G(τ), for all p ∈ X. Also,
(X, τ) is T1 if and only if X\{p} is a vertex in G(τ), for all p ∈ X.

Example 2.3. Consider a topological space (X, τ), where X = {a, b, c, d} and τ = {ϕ, {a}, {b},
{c}, {a, b}, {b, c}, {a, c}, {a, b, c}, {c, d}, {a, c, d}, {b, c, d}, X}. Then, it is easy to see that the
characteristic functions of {a}, {b}, {c, d} are continuous. The graph G(τ) is shown in Fig(i).
From Fig(i), it is clear that G(τ) is not a connected graph. Hence, G(τ) may not be a connected
graph for arbitrary space (X, τ). However, in section 3, we will show that for a discrete space
(X, τ), G(τ) is a connected graph.

Fig(i)

G(τ):
{a} {b}

{c}{b, c}

{a, b}

{a, c}

{c, d}

{b, c, d} {a, c, d}

{a, b, c}

Theorem 2.4. Let (X, τ) be any topological space and A, B be any two vertices in G(τ). If
A, B are adjacent, then A

⋂
B = ϕ.

Proof. Suppose there exists x ∈ A
⋂
B. As A, B are adjacent there exists a continuous function

f : X −→ Ru such that f(A) ≤ r < s ≤ f(B), r, s ∈ R. This implies that f(x) ≤ r and
f(x) ≥ s which is a contradiction as r < s. Hence, A

⋂
B = ϕ.

Remark 2.5. The converse of Theorem 2.4 is not generally true. For if X = {a, b, c} with
topology τ = {ϕ, {a}, {b}, {a, b}, X}, then, it is easy to see that every continuous function
f : X −→ Ru is constant. Here, A = {a} and B = {b} are disjoint but they are not adjacent.

Theorem 2.6. Let (X, τ) be any topological space. If G(τ) is a complete graph, then G(τ) is
either K1 or K2, where Kn is a complete graph with n vertices.
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Proof. If (X, τ) has only one proper open subset of X , then G(τ) has only one vertex. So,
G(τ) = K1. Suppose (X, τ) has more than one proper open subset. Let A and B be two distinct
proper open subsets of X . As G(τ) is complete, by Theorem 2.4, A

⋂
B = ϕ. Suppose there

exists another proper open subset C of X . Then, by Theorem 2.4, C
⋂

A = ϕ and C
⋂
B = ϕ.

This shows that C
⋂
(A

⋃
B) = (C

⋂
A)

⋃
(C

⋂
B) = ϕ. If A

⋃
B = X, then this will contradict

that C is a proper subsets of X as C
⋂
(A

⋃
B) = ϕ. If A

⋃
B ̸= X, then A

⋃
B is also a proper

open subset of X . But this contradicts that G(τ) is complete as A
⋃
B is not adjacent to A and

B. This shows that G(τ) has only two vertices A and B. Hence, G(τ) = K2.

Corollary 2.7. Let (X, τ) be a discrete topological space. Then, G(τ) is a complete graph if and
only if |X| = 2.

Theorem 2.8. Let (X, τ) be a T1 topological space and p ∈ X. Then, p is an isolated point of X
if and only if X\{p} is a pendant vertex of G(τ).

Proof. Suppose p ∈ X is an isolated point. As X is also T1 there exists a continuous function
that separates {p} and X\{p}. Suppose there exists another vertex A ̸= {p} which is adjacent to
X\{p}. This implies that A

⋂
(X\{p}) = ϕ, which is not possible as A ̸= {p}. Hence, X\{p}

is a pendant vertex. Conversely, suppose X\{p} is a pendant vertex. Then, there exists only
one vertex A which is adjacent to X\{p}. This implies that A

⋂
(X\{p}) = ϕ. This shows that

A = {p}. So, p is an isolated point of X as A is open.

Corollary 2.9. (X, τ) is a discrete space if and only if X\{p} is a pendant vertex of G(τ) for all
p ∈ X.

Theorem 2.10. Let (X, τ) be any topological space. Then, G(τ) is an edgeless graph if and only
if every continuous function f : X −→ Ru is constant.

Proof. First, we assume that G(τ) is an edgeless graph. Suppose there exists a continuous
function f : X −→ Ru which is not constant. Then, there exists x, y ∈ X such that f(x) = r
and f(y) = s for some distinct r, s ∈ R. Without loss of generality, we assume r < s. Fix a
point q ∈ (r, s). As f is continuous, f−1((−∞, q)) and f−1((q,∞)) are non-trivial open subsets
of X and are adjacent in G(τ). This contradicts the fact that G(τ) is an edgeless graph. The
converse part is trivial.

Example 2.11. Consider X = R with the co-finite topology τ . It is known that every continuous
function from X to Ru is constant. So, by Theorem 2.10, G(τ) is an edgeless graph.

Remark 2.12. If (X, τ) is a hyperconnected space [7], i.e., a space in which no two non-empty
open sets are disjoint, then G(τ) is an edgeless graph. The proof follows from the fact that every
continuous function from a hyperconnected space to a T2 space is constant.

Theorem 2.13. Let (X, τ) be any topological space such that there exists a proper clopen subset
of X. Then, G(τ) is not an edgeless graph.

Proof. Suppose A is a proper clopen subset of X , then the characteristic function of A is con-
tinuous. This implies that A and X\A are adjacent in G(τ). This shows that G(τ) is not an
edgeless graph.

Corollary 2.14. If (X, τ) is a disconnected topological space, then G(τ) is not an edgeless
graph.

Remark 2.15. The converse of the claim in Corollary 2.14 is not true. Consider X = Ru. It
requires a little effort to see that the completely separated topological graph is not edgeless but
X is a connected space.

Theorem 2.16. Let (X, τX) and (Y, τY ) be any two topological spaces such that X and Y are
homeomorphic. Then, G(τX) is isomorphic to G(τY ).
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Proof. Suppose h : X −→ Y is a homeomorphic map. Consider the map h : V (G(τX)) −→
V (G(τY )) define by h(A) = h(A), ∀ A ∈ V (G(τX)). Clearly, h is bijective as h is bijective.
Next, we show that h preserves adjacency. Suppose A and B are adjacent in G(τX). Then, there
exists a continuous map f : X −→ Ru such that f(A) ≤ r < s ≤ f(B), for some r, s ∈ R.
Since h is a homeomorphism, h(A) and h(B) are open in Y . Clearly, f ◦ h−1 : Y −→ Ru is
continuous and f ◦ h−1(h(A)) = f(A) ≤ r < s ≤ f(B) = f ◦ h−1(h(B)). This show that h(A)
and h(B) are adjacent in G(τY ). Conversely, suppose A and B are adjacent in G(τY ). As h is
a homeomorphic map, we have A = h(A) and B = h(B) for some A, B ∈ V (G(τX)). We
need to show that A and B are adjacent in G(τX). As A = h(A) and B = h(B) are adjacent,
there exists a continuous map g : Y −→ Ru such that g(A = h(A)) ≤ r < s ≤ g(B = h(B)),
r, s ∈ R. Clearly, g ◦ h : X −→ Ru is continuous and g ◦ h(A) = g(h(A)) = g(A) ≤ r <
s ≤ g(B) = g(h(B)) = g ◦ h(B). This shows that A and B are adjacent in G(τX).

Remark 2.17. The converse of Theorem 2.16 is not generally true. Consider X = {a, b} with
τX = {ϕ, {a}, {b}, X} and Y = {a, b, c, d} with τY = {ϕ, {a, b}, {c, d}, X}. Then, it is apparent
that both G(τX) and G(τY ) are isomorphic to the complete graph K2. This shows that G(τX)
and G(τY ) are isomorphic to each other. But (X, τX) and (Y, τY ) are not homeomorphic.

Corollary 2.18. Let (X, τX) and (Y, τY ) be two T1(or T2) finite topological spaces. Then, X
and Y are homeomorphic if and only if G(τX) is isomorphic to G(τY ).

Proof. Suppose G(τX) is isomorphic to G(τY ). It is sufficient to prove |X| = |Y |. As X and Y
are finite, X and Y are discrete spaces. If |X| ̸= |Y |, then the number of vertices of G(τX) is
not equal to the number of vertices of G(τY ), which contradict the fact that G(τX) is isomorphic
to G(τY ). This shows that |X| = |Y |. As X and Y are discrete spaces, this shows that X and Y
are homeomorphic.

Remark 2.19. Corollary 2.18 is still true if X and Y are infinite discrete topological spaces.
However, for an infinite T1(or T2) non-discrete topological space, it is not known if the converse
part of the Corollary 2.18 holds.

Theorem 2.20. For any topological space (X, τ), G(τ) is never a cycle Cn, ∀ n ≥ 3.

Proof. Case I: We will first show that G(τ) is not C3. Suppose G(τ) is C3, then G(τ) is a
complete graph. By Theorem 2.6, G(τ) is either K1 or K2, which is a contradiction. Hence,
G(τ) is not C3.
Case II: Suppose G(τ) is a cycle C4 say A−B−C −D−A. By Theorem 2.4, A

⋂
B = ϕ and

A
⋂
D = ϕ. This implies that A

⋂
(B

⋃
D) = (A

⋂
B)

⋃
(A

⋂
D) = ϕ. This shows that B

⋃
D

is a proper open subset of X . If B
⋃
D is different from B, D, and C, then this will contradict

the fact that G(τ) has only four vertices. If B
⋃
D = C, then this will contradict the fact that C

is adjacent to both B and D. So, either B
⋃
D = B or B

⋃
D = D which gives D is a subset of

B or B is a subset of D. Similarly, we have either A
⋃

C = A or A
⋃
C = C , then C is a subset

of A or A is a subset of C. We have the following two subcases:
subcase i: If B

⋃
D = B, then either A

⋃
C = A or A

⋃
C = C. Consider the case B

⋃
D = B

and A
⋃
C = A, i.e., D and C are proper subset of B and A respectively. This implies that

D
⋃
C is a proper open subset of X as B

⋂
C = ϕ. It is easy to see that D

⋃
C is an open

set different from A, B, C, and D. This contradicts that G(τ) has only four vertices. Similarly
if B

⋃
D = B and A

⋃
C = C, then we get D

⋃
A is a proper open subset of X , which is a

contradiction.
subcase ii: : If B

⋃
D = D, then either A

⋃
C = A or A

⋃
C = C. In the same ways as in

subcase i, we will get a contradiction. Hence, G(τ) is not C4 for any topological space (X, τ).
Case III: Suppose G(τ) is a cycle Cn for n ≥ 5. Then, there exist four vertices A, B, C, D
(say) such that −A − B − C − D− is part of the cycle Cn. By Theorem 2.4, B

⋂
A = ϕ and

B
⋂
C = ϕ. This implies that B

⋂
(A

⋃
C) = (B

⋂
A)

⋃
(B

⋂
C) = ϕ. This shows that A

⋃
C

is a proper open subset of X . Clearly, A
⋃
C is different from B and D as C is adjacent to both

B and D. So, we have either A
⋃
C = A or A

⋃
C = C or A

⋃
C is a new vertex different from

A, B, C, D. If A
⋃
C is a new vertex different from A, B, C, D, then as it is not adjacent to A

there exists another vertex N which is adjacent to A
⋃

C. So, there exists a continuous function
f : X −→ Ru such that f(N) ≤ r < s ≤ f(A

⋃
C). This shows that f(N) ≤ r < s ≤ f(A)
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and f(N) ≤ r < s ≤ f(C). This implies that N is adjacent to A, C, and A
⋃

C, which is not
possible as G(τ) is a cycle. So, we have either A

⋃
C = A or A

⋃
C = C. Similarly, we have

B
⋃
D = B or B

⋃
D = D. If A

⋃
C = A and B

⋃
D = B, then in the same way as in case II,

we have C
⋃
D is a proper open set and is different from A, B, C, and D. So, C

⋃
D is also a

vertex of G(τ). As G(τ) is a cycle there exists vertex K which is adjacent to C
⋃

D. So, there
exists a continuous function f : X −→ Ru such that f(K) ≤ r < s ≤ f(C

⋃
D). This shows

that f(K) ≤ r < s ≤ f(C) and f(K) ≤ r < s ≤ f(D). This implies that K is adjacent to C, D,
and C

⋃
D, which is not possible as K, C, D, and C

⋃
D are vertices on the cycle Cn. Similarly,

if A
⋃
C = A and B

⋃
D = D, we get a contradiction. Hence, G(τ) is never a cycle Cn.

3 Properties of G(τ ) for discrete space

In this section, we discuss properties of G(τ) when τ is a discrete topology. In a discrete space
(X, τ), every function from X to Ru is continuous. So, to prove two subsets are adjacent, it is
enough to show that they are disjoint.

When X = {a, b}, then vertices of G(τ) are A = {a} and B = {b} and the graph G(τ) is as
shown in Fig(ii).

Fig(ii)

G(τ):
A B

When X = {a, b, c}, then vertices are A = {a}, B = {b}, C = {c}, D = {a, b}, E = {a, c},
F = {b, c} and the graph G(τ) is as shown in Fig(iii).

Fig(iii)

G(τ):

A B

C

F D E

Theorem 3.1. Let (X, τ) be a discrete topological space and A, B be any two proper open
subsets of X . Then,
(i) d(A,B) = 1 if and only if A

⋂
B = ϕ.

(ii) d(A,B) = 2 if and only if A
⋂
B ̸= ϕ and A

⋃
B ̸= X .

(iii) d(A,B) = 3 if and only if A
⋂
B ̸= ϕ and A

⋃
B = X.

Proof. (i) Trivial.
(ii) Suppose d(A,B) = 2, then by (i) A

⋂
B ̸= ϕ and there exists an open subset C of X which

is adjacent to both A and B. This implies that C
⋂

A = ϕ and C
⋂
B = ϕ. This implies that

(C
⋂
A)

⋃
(C

⋂
B) = ϕ. So, C

⋂
(A

⋃
B) = ϕ. This shows that A

⋃
B ̸= X . Conversely,

suppose A
⋂
B ̸= ϕ and A

⋃
B ̸= X , then A − (X\(A

⋃
B)) − B is a path of length 2. This

shows that d(A,B) = 2.
(iii) If d(A,B) = 3, then by (i), A

⋂
B ̸= ϕ. Further, from (ii), it follows that A

⋃
B = X .

Conversely, by (i) d(A,B) ̸= 1 and by (ii) d(A,B) ̸= 2. Clearly, A− (X\A)− (X\B)−B is a
path of length 3 as (X\A)

⋂
(X\B) = ϕ. Hence, d(A,B) = 3.

Corollary 3.2. Let (X, τ) be a discrete topological space. Then, G(τ) is a connected graph with

Diam(G(τ)) =

{
1, if |X| = 2
3, if |X| ≥ 3

(3.1)

Theorem 3.3. Let (X, τ) be a discrete topological space. Then, girth(G(τ)) = 3 if and only if
|X| ≥ 3.
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Proof. The proof is trivial.

Theorem 3.4. Let (X, τ) be a discrete topological space and A, B be any two proper open
subsets of X such that A

⋃
B ̸= X. Then,

(i) For |X| ≥ 3, c(A,B) = 3 if and only if A
⋂
B = ϕ.

(ii) For |X| ≥ 4, c(A,B) = 4 if and only if A
⋂

B ̸= ϕ and |X\(A
⋃

B)| ≥ 2.

Proof. (i) Suppose c(A,B) = 3, then it is obvious that A
⋂
B = ϕ. Conversely, suppose

A
⋂
B = ϕ. Then, since A

⋃
B ̸= X we see that (A,B,X\(A

⋃
B)) form a cycle of length

3. So, c(A,B) = 3.
(ii) Suppose c(A,B) = 4. By (i) A

⋂
B ̸= ϕ. Suppose |X\(A

⋃
B)| = 1, then there exists x ∈ X

such that X\(A
⋃
B) = {x} (i.e., A

⋃
B
⋃
{x} = X). Since c(A,B) = 4, there exists two dis-

tinct vertices C1 and C2 which are adjacent to both A and B. This implies that C1
⋂

A = ϕ and
C1

⋂
B = ϕ. This implies that C1

⋂
(A

⋃
B) = ϕ. This shows that C1 = {x}. Similarly, we get

C2 = {x} which contradicts the fact that C1 and C2 are distinct. Hence, |X\(A
⋃

B)| ≥ 2. Con-
versely, suppose A

⋂
B ̸= ϕ and |X\(A

⋃
B)| ≥ 2. By (i), c(A,B) > 3. Let p, q ∈ X\(A

⋃
B)

such that p ̸= q, then {p}, {q} are vertices. It is not difficult to see that (A, {p}, B, {q}) form a
cycle of length 4. Hence, c(A,B) = 4.

It is easy to see that for a discrete topological space (X, τ), G(τ) is not triangulated and not
hypertriangulated. The next two theorems give some conditions that a vertex is a vertex of some
triangle and an edge is an edge of some triangle.

Theorem 3.5. Let (X, τ) be a discrete topological space such that |X| ≥ 3 and A be any proper
open subset of X . Then, A is a vertex of a triangle if and only if |X\A| ≥ 2.

Proof. Suppose A is a vertex of a triangle with |X\A| = 1, i.e., X\A = {p} for some p ∈
X . But p is an isolated point as X is discrete. This implies that A is a pendant vertex by
Theorem 2.8. This contradicts the fact that A is a vertex of a triangle, that is, A is adjacent to
two vertices. Hence, |X\A| ≥ 2. Conversely, let p, q ∈ X\A such that p ̸= q. Clearly we see
that ({p}, {q}, A) form a triangle.

Theorem 3.6. Let (X, τ) be a discrete topological space such that |X| ≥ 3 and A, B be any
proper open subsets of X such that AB is an edge in G(τ). Then, the edge AB is an edge of a
triangle if and only if A

⋃
B ̸= X.

Proof. Suppose AB is an edge of a triangle. Then, there exists a vertex C which is adjacent
to both A and B and so, C

⋂
A = ϕ and C

⋂
B = ϕ. This implies that C

⋂
(A

⋃
B) =

(C
⋂
A)

⋃
(C

⋂
B) = ϕ. This shows that A

⋃
B ̸= X. Conversely, suppose A

⋃
B ̸= X . Then,

X\(A
⋃
B) is adjacent to both A and B. This shows that AB is an edge of a triangle.

4 Open and closed neighbourhood of an open set in G(τ )

In this section, we investigate the properties of an open neighbourhood N(A) and closed neigh-
bourhood N [A] in the graph G(τ). From the definition of G(τ) it is clear that A is a proper
open subset of X if and only if A is a vertex of G(τ). So, the set N(A) can also be seen as the
collection of proper open subsets of X that, when considered as vertices in the graph G(τ), are
adjacent to A. Similarly, N [A] can be seen as the collection of proper open subsets of X that,
when considered as vertices in the graph G(τ), are adjacent to A including A. For a discrete
space (X, τ), it is easy to see that N(A) = {B : B ∈ τ\{ϕ,X} and B

⋂
A = ϕ}.

Remark 4.1. Let (X, τ) be any topological space. Then, N [A] = {A} for any vertex A if and
only if every continuous function f : X −→ Ru is constant. This claim follows from Theorem
2.10.

Theorem 4.2. Let (X, τ) be a discrete topological space and A be any proper open subset of X .
Then, N [A] induced a complete subgraph if and only if |X\A| = 1.
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Proof. Suppose N [A] induces a complete subgraph. If |X\A| > 1, then there exist p, q ∈ X\A
such that p ̸= q. As X is a discrete space, it is easy to see that {p} and {p, q} are adjacent to A,
but not adjacent to each other. This contradicts the fact that N [A] induces a complete subgraph.
Hence, |X\A| = 1. Conversely, suppose |X\A| = 1. This implies that A = X\{p} for some
p ∈ X . So, A is a pendant vertex, as p is an isolated point. This shows that N [A] = {{p}, A}
induces a complete subgraph with only two vertices and one edge.

Theorem 4.3. Let (X, τ) be a discrete topological space. Then, N [A] forms a base for X if and
only if A is a singleton subset of X , where N [A] = {A}

⋃
{B : B ∈ τ\{ϕ,X} and B

⋂
A = ϕ}.

Proof. Suppose N [A] forms a base for X . Assuming A is not a singleton set, then there exists
p, q ∈ A, such that p ̸= q. Then, {p} /∈ N [A] and {q} /∈ N [A]. But this contradicts that N [A]
is a base for discrete space X. Conversely, suppose A is singleton say {p}, then it is easy to see
that {x} ∈ N [A] for all x ∈ X . This shows that {{x} : x ∈ X} ⊆ N [A] and hence N [A] forms
a base for X .

Theorem 4.4. Let (X, τ) be any topological space. If A is any proper open subset of X , then
deg(A) = |N(A)| ≤ 2|X\A| − 1, where deg(A) denotes the degree of the vertex A.

Proof. If B is any vertex adjacent to A, then A
⋂
B = ϕ. This shows that B ⊆ X\A. Thus, the

only vertices adjacent to A are the non-empty subsets of X\A. Hence, |N(A)| ≤ 2|X\A|−1.

Corollary 4.5. Let (X, τ) be a finite discrete topological space with |X| = n. If A is any proper
open subset of X such that |A| = m, then deg(A) = |N(A)| = 2n−m − 1.

Remark 4.6. It is known that the number of subsets of cardinality m in the power set of a set
of cardinality n is n!

m!(n−m)! . Hence, the number of vertices in G(τ) ( (X, τ) is a finite discrete
space) having degree (2n−m − 1) is n!

m!(n−m)! .

Corollary 4.7. Let (X, τ) be a finite discrete topological space such that |X| = n. Then, e =
1
2
∑n−1

m=1
n!

m!(n−m)!(2
n−m − 1), where e denotes the number of edges of G(τ).

Proof. The proof follows from Remark 4.6 and from the fact that the sum of the degree of all
vertices is 2e.

Remark 4.8. Let (X, τ) be a discrete topological space. Then,
(i) Minimum degree of a vertex in G(τ) is 1.
(ii)Maximum degree of a vertex in G(τ) is 2|X|−1 − 1.

Theorem 4.9. Let (X, τ) be a discrete topological space and A, B be any proper open subsets
of X . Then, N(A)

⋂
N(B) = N(A

⋃
B).

Proof. Let C ∈ N(A)
⋂
N(B). This implies that C

⋂
A = ϕ and C

⋂
B = ϕ. This shows

that C ∈ N(A
⋃
B) since C

⋂
(A

⋃
B) = (C

⋂
A)

⋃
(C

⋂
B) = ϕ. Conversely, suppose C ∈

N(A
⋃
B). Then, ϕ = C

⋂
(A

⋃
B) = (C

⋂
A)

⋃
(C

⋂
B). This implies that C

⋂
A = ϕ and

C
⋂
B = ϕ. This shows that C ∈ N(A)

⋂
N(B).

Theorem 4.10. Let (X, τ) be a discrete topological space and A, B be any proper open subsets
of X such that A

⋂
B ̸= ϕ. Then,

(i) N(A)
⋃
N(B) ⊆ N(A

⋂
B)

(ii) N(A)
⋂
N(B) ⊆ N(A

⋂
B)

Proof. (i) Let C ∈ N(A)
⋃
N(B). This implies that C

⋂
A = ϕ or C

⋂
B = ϕ. But we have

C
⋂
(A

⋂
B) = (C

⋂
A)

⋂
(C

⋂
B) = ϕ. This shows that N(A)

⋃
N(B) ⊆ N(A

⋂
B).

(ii) Let C ∈ N(A)
⋂
N(B). Then, C

⋂
A = ϕ and C

⋂
B = ϕ and so C

⋂
(A

⋂
B) =

(C
⋂
A)

⋂
(C

⋂
B) = ϕ. This shows that N(A)

⋂
N(B) ⊆ N(A

⋂
B).

Remark 4.11. Equality of Theorem 4.10 does not hold in general. Let a, b, c ∈ X . Let A =
{a, b}, B = {b, c} and C = {a, c}. Clearly, C ∈ N(A

⋂
B) but C /∈ N(A)

⋃
N(B) and

C /∈ N(A)
⋂
N(B).
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5 Dominating number and clique number

In a graph G, a dominating set is a set D of vertices such that any vertex in G either belongs to
D or is adjacent to at least one member of D. The dominating number of a graph G is defined as
dt(G) = inf{|D| : D is a dominating set of G}.

Theorem 5.1. Let (X, τ) be a clopen topological space. Then, dt(G(τ)) = 1 if and only if
τ = {ϕ,A,B,X}, where A

⋂
B = ϕ and A

⋃
B = X.

Proof. Suppose dt(G(τ)) = 1 and D = {A} is a dominating set for some clopen set A. Let B
be any vertex such that B ̸= A. As D is a dominating set, B is adjacent to A. By Theorem 2.4,
B
⋂
A = ϕ. As (X, τ) is a clopen topological space, X\B is also a vertex. This shows that X\B

is not adjacent to A as (X\B)
⋂
A ̸= ϕ. By definition of dominating set, we have A = X\B.

This shows that B = X\A and A
⋃
B = X . Suppose there exists another dominating set

D′ = {A′} where A ̸= A′. As A is a vertex and D′ is a dominating set, then in the same way
we get A′ = X\A and A = X\A′. This shows that A′ = B. Hence, A and B are the only two
proper open subsets of X and τ = {ϕ,A,B,X}. The converse part follows from the fact that the
characteristic function of A is continuous and hence G(τ) is a complete graph with two vertices
A and B.

Remark 5.2. Theorem 5.1 is not generally true if (X, τ) is not clopen topological space. For
example, consider X = {a, b} and τ = {ϕ, {a}, X}. Then, dt(G(τ)) = 1 with dominating set
D = {{a}}, but τ contain only one proper open subset.

Theorem 5.3. Let (X, τ) be any topological space such that |τ | is finite. Then, dt(G(τ)) = |τ |−2
if and only if every continuous function f : X −→ Ru is constant.

Proof. Suppose dt(G(τ)) = |τ | − 2. If possible there exists a non-constant continuous function
f : X −→ Ru such that f(p) = r and f(q) = s for some p, q ∈ X and r, s ∈ R, r ̸= s.
Without loss of generality, we assume r < s and fix t ∈ (r, s), then A = f−1((−∞, t)) and
B = f−1((t,∞)) are proper open subsets which are adjacent to each other in G(τ). It is easy to
see that D = τ\{ϕ,X,A} is a dominating set with |D| = |τ | − 3 which is less than dt(G(τ)),
which is not possible. So, every continuous function f : X −→ Ru is constant. Conversely, by
Theorem 2.10, G(τ) is an edgeless graph. Hence, dt(G(τ)) = |τ | − 2.

Theorem 5.4. Let (X, τ) be a discrete topological space. Then,

dt(G(τ)) =

{
1, if |X| = 2
|X|, if |X| ≥ 3

(5.1)

Proof. If |X| = 2, then by Theorem 5.1 dt(G(τ)) = 1. If |X| > 2, then for each dominating set
D and for each p ∈ X , we have either {p} or X\{p} lies in D. This shows that cardinality of D
is at least |X|. So, by definition of dominating number, we get dt(G(τ)) = |X|.

Theorem 5.5. Let (X, τ) be a discrete topological space. Then, the clique number of G(τ) is
ω(G(τ)) = |X|.

Proof. Let H(τ) be a subgraph induced by vertex set V (H(τ)) = {{x} : x ∈ X}. Then, as X
is a discrete space, every vertex {x} is adjacent to {y} for all x ̸= y, x, y ∈ X . This shows
that H(τ) is a complete graph with |X| number of vertices. It is also easy to see that H(τ) is
the largest complete subgraph of G(τ) as V (H(τ)) = {{x} : x ∈ X} is the largest collection of
subsets of X such that no two members intersect. Hence, the clique number of G(τ) is |X|.

Remark 5.6. Let (X, τ) be a discrete topological space such that |X| > 2. Then, the clique
number of G(τ) is the same as the dominating number of G(τ).

Theorem 5.7. Let (X, τ) be a discrete topological space. Then, G(τ) is planar if and only if
|X| ≤ 3.
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Proof. Suppose G(τ) is planar and |X| ≥ 4. Let a, b, c, d be distinct points in X . As X is
a discrete topological space, G(τ) contains K3,3 as a subgraph as illustrated by Fig(iv). But
K3,3 is a non-planar graph. This contradicts that G(τ) is planar. Hence, |X| ≤ 3. Conversely, if
|X| ≤ 3, then the graphs are as shown in Fig(ii) and Fig(iii), which are planar.

Fig(iv)

K3,3:

{b} {a} {a, b}

{c} {d} {c, d}

Conclusion
In this paper, we introduced the completely separated topological graph and studied various in-
terrelations among (X, τ) as a topological space and G(τ) as a graph. We showed that (X, τ) is
T1 if and only if X\{p} is a vertex of G(τ) for all p ∈ X and X is discrete space if and only if
X\{p} is a pendant vertex of G(τ) for all p ∈ X , and p is an isolated point of X if and only if
X\{p} is a pendant vertex of G(τ). We also discussed various graph properties like complete-
ness, connectedness, dominating number, clique number, planar, etc. for discrete topological
space. For further research in this area, one can explore topics like connectedness, independent
set, dominating set, etc. in the case of an arbitrary topological space (X, τ). One can also study
the line graph of G(τ) and the complement graph of G(τ).
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