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Abstract Deterministic differential equations have been extensively utilized by the mathe-
matical community to model and analyze the propagation of epidemics. However, these equa-
tions are constrained by their dependence on initial value selection, rendering their solutions
sensitive to these initial conditions. Consequently, this deterministic framework fails to incorpo-
rate random fluctuations, parameter variability, data uncertainties, and unpredictable dynamics
inherent in real-world scenarios. Stochastic differential equations, therefore, offer a viable alter-
native, providing a more robust modeling approach that accounts for these stochastic elements.
In this study, we examine a stochastic SVIR (Susceptible, Vaccinated, Infected, Recovered) epi-
demic model characterized by a general nonlinear incidence function. Initially, we establish the
existence of a global positive solution for the stochastic model. Subsequently, we demonstrate
that the disease is almost surely permanent under the condition of sufficiently small environ-
mental fluctuations. Furthermore, we identify two specific conditions under which the disease
disappears exponentially with near certainty. Lastly, we present numerical simulations employ-
ing various incidence functions to corroborate our theoretical findings.

1 Introduction

The wide spread of infectious diseases has a significant impact on societies at multiple levels. It
affects income distribution, reduces economic growth and consumption, disrupts supply chains,
and increases the rates of unemployment and inflation [1, 2, 3, 4]. The presence of the disease
also influences tourism and financial markets, as individuals demonstrate a reduced propensity to
travel to affected regions, and investors exhibit adverse reactions to the uncertainty and volatility
associated with the disease [5, 6]. At the educational level, the precautionary measures im-
plemented by authorities have resulted in the closure of schools, necessitating a shift towards
self-directed learning. This transition has adversely impacted the regular continuity of academic
instruction and the efficacy of evaluation processes, while also contributing to an elevated rate
of school dropout [7, 8].

To comprehend the diseases’ dynamics and predict their behaviors, mathematical models are
widely used to describe the transmission of infectious diseases [13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29]. Many of these models have their origins in previous works
[30, 31, 32]. Moreover, there have been a number of studies examining the stochastic processes
[33, 34, 35, 36]. In attempting to curtail the spread of infectious diseases, vaccination is regarded
as the most successful intervention strategy (see [37, 38, 39, 40, 41, 42]). In [39], the authors
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considered the following stochastic SVIR epidemic model


dS(t) = [p+ ϵV (t)− (µ+ a)S(t)− βS(t)I(t)] dt− σS(t)I(t)dB(t),

dV (t) = [−(µ+ ϵ)V (t) + aS(t)] dt,

dI(t) = [−(µ+ γ + c)I(t) + βS(t)I(t)] dt+ σS(t)I(t)dB(t),

dR(t) = [γI(t)− µR(t)] dt.

(1.1)

S(t) denotes the number of members who are susceptible to an infection at time t. I(t) denotes
the number of infected members at time t. V (t) is the number of members who are vaccinated.
R(t) is defined as the number of recovered individuals. The other symbols involved in model
(1.1) are described below.

Symbol Meaning
p A constant input of new members into the population.
β The disease transmission coefficient between compart-

ments S and I.
µ The natural death rate of S, I, V and R.
a The proportional coefficient of vaccinated individuals

for the susceptibles.
γ The recovery rate of infected individuals.
ϵ The rate at which the vaccinated individuals lose their

immunity.
c The disease-caused death rate of infected individuals.
B(t) A standard Brownian motion with intensity σ2 > 0.

The analysis of (1.1) consists of examining the conditions under which the disease persists or
disappears. If R0 = pβ(µ+ϵ)

µ(µ+γ+c)(µ+ϵ+a) ≤ 1 and σ2 < (γ + c)µ2p−2, then the equilibrium state

(S0, V0, I0, R0) =
( p(µ+ϵ)
µ(µ+ϵ+a) ,

ap
µ(µ+ϵ+a) , 0, 0

)
of (1.1) is stochastically asymptotically stable in the

large. Per contra, when R0 > 1, the solution of (1.1) oscillates around the state (S∗, V∗, I∗, R∗) =(
µ+γ+c

β , a(µ+γ+c)
β(µ+ϵ) , p

(µ+γ+c)(1−R0
−1)

, γ
µI1
)
. This implies that the system (1.1) tends towards the

persistence case (see [39]).
The incidence function βSI in (1.1) is bilinear in accordance with the mass-action principle.
Several authors have mentioned that it can have a nonlinear mathematical shape. We cite as
examples, the saturated incidence βSI

1+mI , where m−1 is the saturation coefficient [9]. In [10], the
authors considered βSI

1+k1I+k2I2 as an incidence function, provided that k1 > −2
√
k2 to keep the

quantity 1+k1I+k2I
2 positive. Two other types of incidence functions have been used in [11, 12]

to highlight the effect of media coverage on the disease dynamics. The first one is βSIe−αI ,
where the parameter α > 0 reflects the impact of media coverage on contact transmission. The
second is written as

(
λ1 − λ2I

λ3+I

)
SI , with λi > 0, i = 1, 2, 3.

To improve the analysis of the model (1.1), we assume that the incidence function has a
general form βSI

Φ(I) , where Φ is a continuous and derivable function satisfying: Φ(0) = 1, Φ(I) ≥
1 and 0 ≤ Φ

′
(I) ≤ η, such that η is a positive constant that can depend on p and µ. We note that

the aforementioned incidence functions have the same characteristics as βSI
Φ(I) .

In this paper, we will determine threshold conditions for the following stochastic SVIR epidemic
model (1.1) with the incidence function βSI

Φ(I) :


dS(t) =

[
p− βS(t)I(t)

Φ(I(t)) − (µ+ a)S(t) + ϵV (t)
]
dt− σS(t)I(t)

Φ(I(t)) dB(t),

dI(t) =
[
βS(t)I(t)

Φ(I(t)) − (µ+ γ + c)I(t)
]
dt+ σS(t)I(t)

Φ(I(t)) dB(t),

dV (t) = [aS(t)− (µ+ ϵ)V (t)] dt,

dR(t) = [γI(t)− µR(t)] dt.

(1.2)
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For the convenience of the readers, we denote

R4
+ =

{
(x1, x2, x3, x4) ∈ R4 : xi > 0, i = 1, 2, 3, 4

}
,

⟨h(t)⟩ =
1
t

∫ t

0
h(s)ds,

RS
0 = R0

[
1 − σ2

2β
S0

]
.

The rest of the paper is organized as follows: Section 2 focuses on verifying the biological
relevance of model (1.2) by proving that it admits a singular positive solution. In Section 3, if
RS

0 > 1, we prove that the disease will persist almost surely (abbreviated as a.s.). In Section
4, we demonstrate that the disease undergoes exponential extinction with probability one when
the threshold RS

0 is less than 1, contingent upon appropriate conditions pertaining to stochastic
perturbations. To confirm the analytical findings, numerical simulations are performed with
different incidence functions in Section 5. The paper ends with the conclusion section.

2 Preliminaries

Throughout this paper, let (Ω,F , (Ft)t≥0,P) be a complete probability space with a filtration
(Ft)t≥0 satisfying the usual conditions (i.e., it is increasing and right continuous while F0 con-
tains all P-null sets). A positive invariant set for the system (1.2) is defined by

∆ =

{(
S(t), V (t), I(t), R(t)

)
∈ R4

+ : S(t) + V (t) + I(t) +R(t) ≤ p

µ
for all t ≥ 0

}
.

Henceforth, we assume that: (S(0), V (0), I(0), R(0)) ∈ ∆.
The following theorem concerns the existence of a global positive solution for the system (1.2).
Since the proof is almost identical to that in [45], we omit it here.

Theorem 2.1. System (1.2) has a unique solution belonging to ∆ with probability one.

Now, we present two lemmas that will be used in the following sections.

Lemma 2.2. The class of susceptible individuals satisfies: S(t) = S0 +H0(t) +G(t).
H0 and G are defined as follows:

H0(t) =

[
p

µ
− S(0)− V (0)− I(0)

]
1 − (ϵ+ a)

ϵ+ a
e−µt + V (0)

1 − a

a
e−(µ+ϵ)t

+

[
S(0) + V (0) + I(0)− p

µ

ϵ+ a
+

ap

µ(µ+ ϵ+ a)
− V (0)

a

]
e−(µ+ϵ+a)t

=Xe−µt + Y e−(µ+ϵ)t + Ze−(µ+ϵ+a)t,

and

G(t) =− I(t)− (c+ γ)

∫ t

0
I(s)e−µ(t−s)ds+ a

∫ t

0
I(s)e−(µ+ϵ+a)(t−s)ds

+ a(c+ γ)

∫ t

0
e−(µ+ϵ+a)(t−s)

∫ s

0
I(u)e−µ(s−u)duds.

Proof. From system (1.2), we have:

S(t) + V (t) + I(t) +R(t) =
p

µ
+

[
S(0) + V (0) + I(0) +R(0)− p

µ

]
e−µt

−α

∫ t

0
e−µ(t−s)I(s)ds. (2.1)
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By taking an integration of system (1.2), we get

V (t) = V (0)e−(µ+ϵ)t + a

∫ t

0
S(s)e−(µ+ϵ)(t−s)ds, (2.2)

and

R(t) = R(0)e−µt + γ

∫ t

0
I(s)e−µ(t−s)ds. (2.3)

Injecting (2.2) and (2.3) into (2.1) gives

S(t) =
p

µ
− (α+ γ)

∫ t

0
I(s)e−µ(t−s)ds− a

∫ t

0
S(s)e−(µ+ϵ)(t−s)ds− I(t)−H1(t), (2.4)

where
H1(t) =

[
p

µ
− S(0)− V (0)− I(0)

]
e−µt + V (0)e−(µ+ϵ)t.

Now, we shall give the explicit expression of
∫ t

0 S(s)e−(µ+ϵ)(t−s)ds.
One can see that

d

[
eat

∫ t

0
S(s)e(µ+ϵ)sds

]
= eat

[
e(µ+ϵ)tS(t) + a

∫ t

0
S(s)e(µ+ϵ)sds

]
dt

=

[
eate(µ+ϵ)t p

µ
− I(t)eate(µ+ϵ)t −H1(t)e

ate(µ+ϵ)t − (c+ γ)eate(µ+ϵ)t

∫ t

0
I(s)e−µ(t−s)ds

]
dt.

Integrating the last equality leads to∫ t

0
S(s)e(µ+ϵ)sds =

p

µ

∫ t

0
e−a(t−s)e(µ+ϵ)sds−

∫ t

0
I(s)e−a(t−s)e(µ+ϵ)sds−

∫ t

0
H1(s)e

−a(t−s)e(µ+ϵ)sds

− (c+ γ)

∫ t

0
e−a(t−s)e(µ+ϵ)s

∫ s

0
e−µ(s−u)I(u)duds.

Multiplying the previous equality by e−(µ+ϵ)t, we get∫ t

0
S(s)e−(µ+ϵ)(t−s)ds =

p

µ

∫ t

0
e−(µ+ϵ+a)(t−s)ds−

∫ t

0
I(s)e−(µ+ϵ+a)(t−s)ds−

∫ t

0
H1(s)e

−(µ+ϵ+a)(t−s)ds

− (c+ γ)

∫ t

0
e−(µ+ϵ+a)(t−s)

∫ s

0
e−µ(s−u)I(u)duds

=
p

µ(µ+ ϵ+ a)

(
1 − e−(µ+ϵ+a)t

)
−
∫ t

0
I(s)e−(µ+ϵ+a)(t−s)ds

−
∫ t

0
H1(s)e

−(µ+ϵ+a)(t−s)ds− (c+ γ)

∫ t

0
e−(µ+ϵ+a)(t−s)

∫ s

0
e−µ(s−u)I(u)duds.

(2.5)

One can see that∫ t

0
H1(s)e

−(µ+ϵ+a)(t−s)ds =

[
p
µ − S(0)− V (0)− I(0)

ϵ+ a

]
e−µt +

V (0)
a

e−(µ+ϵ)t

−

[
p
µ − S(0)− V (0)− I(0)

ϵ+ a
+

V (0)
a

]
e−(µ+ϵ+a)t. (2.6)

Combining (2.4), (2.5) and (2.6), we will find the seeked formula.

Lemma 2.3. The temporal average of susceptible individuals satisfies

⟨S(t)⟩ = S0 −
(µ+ ϵ)(µ+ c+ γ)

µ(µ+ ϵ+ a)
⟨I(t)⟩ − φ(t),
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where

φ(t) =
(µ+ ϵ)2 (S(t) + V (t) + I(t) +R(t)− S(0)− V (0)− I(0)−R(0))− µ(µ+ ϵ)(V (t)− V (0))

µ(µ+ ϵ)(µ+ ϵ+ a)t

− (µ+ ϵ)2(R(t)−R(0))
µ(µ+ ϵ)(µ+ ϵ+ a)t

.

Proof. From system (1.2), we get

S(t) + V (t) + I(t) +R(t)− S(0)− V (0)− I(0)−R(0)
t

=p− µ⟨S(t)⟩ − µ⟨V (t)⟩ − µ⟨R(t)⟩

− (µ+ c)⟨I(t)⟩, (2.7)

V (t)− V (0)
t

= a⟨S(t)⟩ − (µ+ ϵ)⟨V (t)⟩, (2.8)

and

R(t)−R(0)
t

= γ⟨I(t)⟩ − µ⟨R(t)⟩. (2.9)

Then the desired result is obtained by injecting (2.8) and (2.9) into (2.7).

3 Persistence in mean

Definition 3.1. The disease is said to be persistent in mean if: lim inf
t→∞

⟨I(t)⟩ ≥ 0 a.s.

Theorem 3.2. If RS
0 > 1, then the disease is persistent in mean, that is,

lim inf
t→∞

⟨I(t)⟩ ≥
µ(µ+ γ + c)(Rs

0 − 1)
ηp+ β(µ+ γ + c) + σ2ϖ

a.s.,

where

ϖ = S0
a(µ+ c+ γ)

µ(µ+ ϵ+ a)
+ 4

(
p

µ
+

p(c+ γ)2

µ2 +
pa2

µ(µ+ ϵ+ a)2 +
pa2(c+ γ)2

µ3(µ+ ϵ+ a)2

)
.

Proof. By use of Itô formula and Lemma 2.2, we obtain

1
t

ln
I(t)

I(0)
= β

〈
S(t)

Φ(I(t))

〉
− (µ+ γ + c)− σ2

2

〈(
S(t)

Φ(I(t))

)2
〉
+

M(t)

t
(3.1)

≥ β⟨S(t)⟩ − σ2

2

〈
[S0 + (H0(t) +G(t))]

2
〉
− (µ+ γ + c)

− β

〈
S(t)[Φ(I(t))− Φ(0)]

Φ(I(t))

〉
+

M(t)

t

≥ βS0 − (µ+ γ + c)−
σ2S2

0
2

− η
p

µ
⟨I(t)⟩+K(t) +

M(t)

t
, (3.2)

where
K(t) =

(
β − σ2S0

)
(⟨H0(t) + ⟨G(t)⟩)− σ2 [⟨H2

0 (t)⟩+ ⟨G2(t)⟩
]
,

and

M(t) =

∫ t

0

σS(u)

Φ(I(u))
dB(u).
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The quadratic variation of M(t) is

⟨M(t),M(t)⟩ =
∫ t

0

[
σS(u)

Φ(I(t))

]2

du ≤ σ2
(
p

µ

)2

t.

By the strong law of large numbers for martingales [46], we have the limit:

lim
t→∞

M(t)

t
= 0 a.s.

On the other hand, we have

⟨H0(t)⟩ =X
1 − e−µt

µt
+ Y

1 − e−(µ+ϵ)t

(µ+ ϵ)t
+ Z

1 − e−(µ+ϵ+a)t

(µ+ ϵ+ a)t
, (3.3)

⟨H2
0 (t)⟩ ≤

3X2

2µ

(
1 − e−2µt

t

)
+

3Y 2

2(µ+ ϵ)

(
1 − e−2(µ+ϵ)t

t

)
+

3Z2

2(µ+ ϵ+ a)

(
1 − e−2(µ+ϵ+a)t

t

)
,

(3.4)

⟨ G(t) ⟩ ≥ − µ+ c+ γ

µ
⟨I(t)⟩, (3.5)

⟨ G(t) ⟩ ≤a(µ+ c+ γ)

µ(µ+ ϵ+ a)
⟨I(t)⟩, (3.6)

⟨ G2(t)⟩ ≤4⟨I2(t)⟩+ 4(c+ γ)2

〈(∫ t

0
I(s)e−µ(t−s)ds

)2〉
+ 4a2

〈(∫ t

0
I(s)e−(µ+ϵ+a)(t−s)ds

)2〉

+ 4a2(c+ γ)2

〈(∫ t

0
e−(µ+ϵ+a)(t−s)

∫ s
0 I(r)e−µ(s−r)drds

)2〉

≤4
p

µ
⟨I(t)⟩+ 4p(c+ γ)2

µ2

〈∫ t

0
I(s)e−µ(t−s)ds

〉
+

4pa2

µ(µ+ ϵ+ a)

〈∫ t

0
I(s)e−(µ+ϵ+a)(t−s)ds

〉
+

4pa2(c+ γ)2

µ2(µ+ ϵ+ a)

〈∫ t

0
e−(µ+ϵ+a)(t−s)

∫ s
0 I(r)e−µ(s−r)drds

〉
≤4
[
p

µ
+

p(c+ γ)2

µ3 +
pa2

µ(µ+ ϵ+ a)2 +
pa2(c+ γ)2

µ3(µ+ ϵ+ a)2

]
⟨I(t)⟩. (3.7)

From (3.3) and (3.4), it is easy to see that

lim
t→∞

⟨H0(t)⟩ = lim
t→∞

⟨H2
0 (t)⟩ = 0.

Injecting inequalities (3.5), (3.6) and (3.7) into (3.2), we get the desired result.

4 Stochastic extinction

In this section, we establish conditions that guarantee the extinction of the disease.

Theorem 4.1. Let us consider the two following assumptions:

(A)
β2

2σ2 < µ+ γ + c.

(B) S0 ≤ β

σ2 and Rs
0 < 1.

Then

lim sup
t→∞

ln I(t)
t

≤ β2

2σ2 − (µ+ γ + c) < 0 a.s., if (A) holds.

lim sup
t→∞

ln I(t)
t

≤ (µ+ γ + c)(RS
0 − 1) < 0 a.s., if (B) holds.
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Proof. From (3.1), we get

1
t

ln
I(t)

I(0)
≤ β2

2σ2 − (µ+ γ + c)− σ2

2

[〈
S(t)

Φ(I(t))

〉
− β2

σ2

]2

+
M(t)

t

≤ β2

2σ2 − (µ+ γ + c) +
M(t)

t
.

If β2

2σ2 < µ+ γ + c, then

lim sup
t→∞

ln I(t)
t

< 0 a.s.

On the other hand, returning to (3.1) and bearing in mind Lemma 2.3, yields

1
t

ln
I(t)

I(0)
≤ β

[〈
S(t)

Φ(I(t))

〉
+ φ(t)

]
− (µ+ γ + c)− σ2

2

[〈
S(t)

Φ(I(t))

〉
+ φ(t)

]2

− Ψ(t) +
M(t)

t

= −σ2

2

[(〈
S(t)

Φ(I(t))

〉
+ φ(t)

)
− β

σ2

]2

+
β2

2σ2 − (µ+ γ + c)− Ψ(t) +
M(t)

t
.

(4.1)

where

Ψ(t) = βφ(t)− σ2

2

[
2
〈

S(t)

Φ(I(t))

〉
φ(t) + φ2(t)

]
.

In view of the assumption S0 ≤ β
σ2 and Lemma 2.3, one has〈

S(t)

Φ(I(t))

〉
+ φ(t) ≤ ⟨S(t)⟩+ φ(t) ≤ S0 ≤ β

σ2 .

Returning to (4.1), it follows that

1
t

ln
I(t)

I(0)
≤ −σ2

2

[
β

σ2 − S0

]2

+
β2

2σ2 − (µ+ γ + c)− Ψ(t) +
M(t)

t

= βS0 −
σ2

2
S2

0 − (µ+ γ + c)− Ψ(t) +
M(t)

t

= (µ+ γ + c)
[
RS

0 − 1
]
− Ψ(t) +

M(t)

t
.

Since
lim
t→∞

φ(t) = 0 a.s.,

then
lim
t→∞

Ψ(t) = 0 a.s.

Assuming RS
0 < 1, we conclude that

lim sup
t→∞

ln I(t)
t

< 0 a.s.

5 Numerical confirmation

In this section, we will combine several common types of incidence functions to check our an-
alytical results. Using the classical high-order discrete method developed by Desmond Higham
[47], the corresponding discretization equation of system (1.2) is given by

Sj+1 = Sj +
(
p+ ϵVj − (µ+ a)Sj + β

Sj Ij
Φ(Ij)

)
∆t− σ

Sj Ij
Φ(Ij)

√
∆t π,

Vj+1 = Vj +
(
− (µ+ ϵ)Vj + aSj

)
∆t,

Ij+1 = Ij +
(
− (µ+ γ + c)Ij + β

SjIj
Φ(Ij)

)
∆t+ σ

SjIj
Φ(Ij)

√
∆t π,

Rj+1 = Rj +
(
γIj − µRj

)
∆t,
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where ∆t > 0 is the time increment, and π is a white noise process with intensity σ.
Now, we will plot the figures corresponding to the extinction and persistence of the disease, for
the following three cases:

(i) The saturated incidence: Φ(I) = 1 +mI .

(ii) The non-monotone incidence: Φ(I) = 1 + k1I + k2I
2 .

(iii) The exponential media alert incidence: Φ(I) = eαI .

5.1 Persistence of the disease

The initial value and parameters are assumed as follows:(
S(0), V (0), I(0), R(0)

)
=
(
50, 50, 20, 50

)
, p = 0.3, β = 0.2, µ = 0.1, a = 0.2, γ = 0.1, ϵ =

0.2, c = 0.1,
σ = 0.1,m = 1.25, k1 = k2 = 0.1 and α = 0.2.
A simple calculation shows that RS

0 = 1.146 > 1. According to Theorem 3.2, the disease
persists almost surely as it is depicted in Figure 1.
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Figure 1. The path of I(t) for the model (1.2), with different incidence functions.

5.2 Extinction of the disease

Here, we make the following choice:(
S(0), V (0), I(0), R(0)

)
=
(
20, 20, 50, 20

)
, p = 0.4, β = 0.5, µ = 0.3, a = 0.2, γ = 0.1, ϵ =

0.2, c = 0.1,
σ = 0.7,m = 0.5, k1 = k2 = 0.1 and α = 0.8. Then, we have

β2

2σ2 − (µ+ γ + c) = −0.2449, S0 −
β

σ2 = −0.0680 and Rs
0 = 0.5079 < 1,

which means that the conditions (A) and (B) hold. From Theorem 4.1, the disease will die out
exponentially almost surely, as shown in Figure 2.
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Figure 2. The path of I(t) for the model (1.2), with different incidence functions.

6 Conclusion

By adopting a nonlinear form of the incidence function that generalizes saturation effects, non-
monotone behavior, and the influence of media coverage, this research presents an analytical
and numerical framework to investigate the dynamics of a stochastic epidemic model. More
precisely, we defined the threshold RS0 for the model (1.2), a pivotal parameter that discrimi-
nates between the potential for stochastic extinction or persistence of the disease. Our findings
indicate that, subject to additional conditions, if RS0 < 1, the disease is almost inevitably driven
to exponential extinction. On the other hand, if RS

0 > 1, the disease is likely to persist. Nu-
merical simulations demonstrate that the intensity of white noise exerts a significant influence
on the model’s dynamics: with sufficiently low noise intensity, the disease tends towards extinc-
tion, whereas higher noise intensity favors persistence. Moreover, the simulations underscore
that enhanced media awareness campaigns lead to a rapid decrease in the number of infected
individuals.
In pursuit of further refining our study of the stochastic model (1.2), future research efforts will
involve introducing an additional noise component to the parameter µ, following the approach
utilized by the authors in [13].
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