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Abstract The conditions under which (m,n)−prime ideals in an ADL become weakly (m,n)−prime
ideals are studied. Additionally, we explore the direct product of weakly (m,n)−prime ideals.
Finally, we investigate whether the homomorphic images and inverse images of (m,n)−prime
(or weakly (m,n)−prime) ideals retain their status as (m,n)−prime (or weakly (m,n)−prime)
ideals.

1 Introduction

The study of prime ideals is motivated by the desire to generalize prime numbers, understand
localization, develop representation theorems, and explore order theory, all of which contribute
to a deeper and more elegant understanding of mathematical structures. Prime ideals help in
studying the properties of partially ordered sets (posets). They provide a way to understand the
ordering relations within a poset and contribute to the development of a more comprehensive
theory of ordered structures. According to Anna et al.[2] and Beddani and Messirdi [5], a
proper ideal I of a ring R is a prime ideal in R if ab ∈ I , then a ∈ I or b ∈ I , for all a, b ∈ R.
Generalizing this concept, a proper ideal I of a ring R is a weakly prime ideal in R if 0 ̸= ab ∈ I ,
then a ∈ I or b ∈ I , for all a, b ∈ R introduced in [3, 4, 6, 10]. Koc et al.[9] introduced the
concepts of 1-absorbing prime ideals which is the generalizations of weakly 1-API introduced
by [15]. Let m,n ∈ Z+ with m > n and I a proper ideal in R. Khashan and Celikel [7] and
[8] introduced (m,n)−prime (or, weakly (m,n)−prime) ideals in R if for a, b ∈ R, amb ∈ I (or,
0 ̸= amb ∈ I) implies either an ∈ I or b ∈ I . Furthermore, the concepts of weakly 2-absorbing
ideals and (m,n)−absorbing ideals have introduced by [14] and [1].

The concept of Almost Distributive Lattices (ADLs) was later introduced by Swamy and Rao
[13]. Building on this, Natnael [11] have proposed the concepts of weakly 2-absorbing ideals of
an ADL. In this paper, we introduce the notion of (m,n)−prime ideals in an Almost Distributive
Lattice. We prove every a 1-API (or, a prime ideal) is an (m,n)−prime ideal and (m,n)−prime
ideal is an n-absorbing ideal, and the converse of these results are not true, justified by counter
examples. We note that (m,n)−maximal ideal is an (m,n)−prime ideal. Mainly, we defined and
characterized the notions of weakly (m,n)−prime ideals in an ADL L. A proper ideal H is a

weakly (m,n)−prime ideal in L if 0 ̸=
m∧
i=1

hi∧g ∈ H implies that either
n∧

i=1
hi ∈ H or g ∈ H , for

all h1, h2, ..., hm, g ∈ L. We establish the relation between weakly (m,n)−prime ideal in L and
(m,n)−prime ideal in L. Also, we prove that the intersection of weakly (m,n)−prime ideals
is a (m,n)−prime ideal. Additionally, we discuss the direct product of weakly (m,n)−prime
ideals and we prove their equivalent conditions. Finally, we prove that the homomorphic images
and inverse homomorphic images of weakly (m,n)−prime ideals are again (m,n)−prime ideal.
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2 Preliminaries

In this portion, we revisit certain definitions and fundamental findings primarily sourced from
[7], [8] and [13].

Definition 2.1. An algebra R = (R,∧,∨, 0) of type (2, 2, 0) is referred to as an ADL if it meets
the subsequent conditions for all r, s and t in R.

(i) 0 ∧ r = 0

(ii) r ∨ 0 = r

(iii) r ∧ (s ∨ t) = (r ∧ s) ∨ (r ∧ t)

(iv) r ∨ (s ∧ t) = (r ∨ s) ∧ (r ∨ t)

(v) (r ∨ s) ∧ t = (r ∧ t) ∨ (s ∧ t)

(vi) (r ∨ s) ∧ s = s.

Every distributive lattice with a lower bound is categorized as an ADL.

Example 2.2. For any nonempty set A, it’s possible to transform it into an ADL that doesn’t
constitute a lattice by selecting any element 0 from A and fixing an arbitrary element u0 ∈ R.
For every u, v ∈ R, define ∧ and ∨ on R as follows:

u ∧ v =

{
v if u ̸= u0

u0 if u = u0
and u ∨ v =

{
u if u ̸= u0

v if u = u0

Then (A,∧,∨, u0) is an ADL (called the discrete ADL) with u0 as its zero element.

Definition 2.3. Consider R = (R,∧,∨, 0) be an ADL. For any r and s ∈ R, establish r ≤ s if
r = r∧ s (which is equivalent to r∨ s = s). Then ≤ is a partial order on R with respect to which
0 is the smallest element in R.

Theorem 2.4. The following conditions are valid for any r, s and t in an ADL R.

(1) r ∧ 0 = 0 = 0 ∧ r and r ∨ 0 = r = 0 ∨ r

(2) r ∧ r = r = r ∨ r

(3) r ∧ s ≤ s ≤ s ∨ r

(4) r ∧ s = r iff r ∨ s = s

(5) r ∧ s = s iff r ∨ s = r

(6) (r ∧ s) ∧ t = r ∧ (s ∧ t) (in other words, ∧ is associative)

(7) r ∨ (s ∨ r) = r ∨ s

(8) r ≤ s ⇒ r ∧ s = r = s ∧ r
(

iff r ∨ s = s = s ∨ r
)

(9) (r ∧ s) ∧ t = (s ∧ r) ∧ t

(10) (r ∨ s) ∧ t = (s ∨ r) ∧ t

(11) r ∧ s = s ∧ r iff r ∨ s = s ∨ r

(12) r ∧ s = inf{r, s} iff r ∧ s = s ∧ r iff r ∨ s = sup{r, s}.

Definition 2.5. Let R and G be ADLs and form the set R×G by
R×G = {(r, g) : r ∈ R and g ∈ G}. Define ∧ and ∨ in R×G by,
(r1, g1) ∧ (r2, g2) = (r1 ∧ r2, g1 ∧ g2) and (r1, g1) ∨ (r2, g2) = (r1 ∨ r2, g1 ∨ g2), for all
(r1, g1), (r2, g2) ∈ R × G. Then (R × G,∧,∨, 0) is an ADL under the pointwise operations
and 0 = (0, 0) is the zero element in R×G.

Definition 2.6. Let R and G be ADLs. A mapping g : R → G is called a homomorphism if the
following are satisfied, for any r, s, t ∈ R.
(1). f(r ∧ s ∧ t) = f(r) ∧ f(s) ∧ f(t)
(2). f(r ∨ s ∨ t) = f(r) ∨ f(s) ∨ f(t)
(3). f(0) = 0.
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Definition 2.7. A non-empty subset, denoted as I in an ADL R is termed an ideal in R if it
satisfies the conditions: if u and v belong to I , then u∨ v is also in F , and for every element r in
R, the u ∧ r is in F .

Definition 2.8. A proper ideal I in R is a prime ideal if for any u and v belongs R, u∧ v belongs
F , then either u belongs F or v belongs F .

Theorem 2.9. Let I be an ideal in R. Let F be a non-empty subset in R such that r ∧ s ∈ F , for
all r and s ∈ F . Assume I ∩ F is empty set. Then there exists a prime ideal P in R containing I
and P ∩ F is empty set.

Theorem 2.10. Let P be an ideal in R. Then P a weakly prime ideal in R only if P is a prime
ideal in R.

Definition 2.11. Let R be a ring and m,n be positive integers. A proper ideal I of R is called a
(m,n)−prime in R if for a, b ∈ R, amb ∈ I implies either an ∈ I or b ∈ I..

Definition 2.12. Let R be a ring and m,n be positive integers. A proper ideal I of R is called
weakly (m,n)−prime in R if for a, b ∈ R, 0 ̸= amb ∈ I implies either an ∈ I or b ∈ I..

3 (m,n)−Prime Ideals

In this section, we define and characterize the concept of (m,n)−prime Ideals (in short, (m,n)−PIs)
in an ADL L and their properties. In particular, we study on the direct product of (m,n)−PIs
and their homomorphic images.

Definition 3.1. Let m,n ∈ Z+ with m > n. A proper ideal H in L is an (m,n)−prime ideal (in

short (m,n)−PI) in L if for all h1, h2, ..., hm, g ∈ L such that
m∧
i=1

hi ∧ g ∈ H ⇒
n∧

i=1
hi ∈ H or

g ∈ H .

Let us recall that, ⟨r] = {r ∧ s : s ∈ L}.

Lemma 3.2. Let hi, ki ∈ L, for all 1 ≤ i ≤ m. Then the following hold.

(1).
m⋂
i=1

⟨hi] = ⟨
m∧
i=1

⟨hi]

(2). ⟨
m∧
i=1

⟨hi] ∩ ⟨
m∧
i=1

⟨ki] = ⟨
m∧
i=1

(hi ∧ ki)] = ⟨
m∧
i=1

(ki ∧ hi)]

(3). ⟨
m∧
i=1

⟨hi] ∨ ⟨
m∧
i=1

⟨ki] = ⟨
m∧
i=1

(hi ∨ ki)] = ⟨
m∧
i=1

(ki ∨ hi)].

Let H be an ideal in L. We note that, H ∩ ⟨r] = {s ∈ L : r ∧ s ∈ H}.

Lemma 3.3. Let H be a proper ideal in L and m,n ∈ Z+ with m > n. Then the following
assertion hold.
(1). H is prime iff H is a (1, 1)−PI
(2). If H is a 1-absorbing prime ideal, then H is an (m,n)−PI, for all n ≥ 2
(3). If H is prime, then H is an (m,n)−PI
(4). If H is an (m,n)−PI, then H is n-absorbing ideal
(5). If H is an (m,n)−PI, then H is an (m∗, n∗)−PI, where m∗ ≤ m and n ≤ n∗

(6). H is an (m,n)−PI iff H ∩ (r] is an (m,n)−PI, for all r ∈ L−H .

Proof. (1). For m = n = 1, it is clear.

(2). Suppose that H is a 1-absorbing prime ideal. Let h1, h2, ..., hm, g ∈ L with
m∧
i=1

hi ∧ g ∈ H

and g /∈ H . If g = 1, then
m∧
i=1

hi = h1 ∧
m−1∧
i=2

hi ∧ hm ∈ H and since H is a 1-absorbing prime

ideal, we have
n∧

i=1
hi = h1 ∧

n−1∧
i=2

hi ∈ H or hn ∈ H . Continue this process to get hn−1 ∧ hn ∈ H
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and so,
n∧

i=1
hi ∈ H , for all n ≥ 2. Thus, H is an (m,n)−PI.

(3). Assume that H is prime, and let h1, h2, ..., hm, g ∈ L with
m∧
i=1

hi ∧ g ∈ H and
n∧

i=1
hi /∈ H .

Since H is prime, we have g ∈ H . Hence the result.

(4). Suppose H is an (m,n)−PI and
m∧
i=1

hi ∧ hm+1 ∈ H , for all h1, h2, ..., hm, hm+1 ∈ L. Then

m−1∧
i=1

hi ∧ hm ∧ hm+1 ∈ H . Thus, either
n−1∧
i=1

hi ∈ H or hn ∧ hn+1 ∈ H . Continue this process to

get
n−3∧
i=1

hi ∈ H or hn−2 ∧ hn−1 ∈ H or hn ∧ hn+1 ∈ H . Thus there are n of h′
is whose meet is

in H . Hence the result.
(5). Assume that H is an (m,n)−PI and m∗ ≤ m and n ≤ n∗, for all m,n,m∗, n∗ ∈ Z+ with

m > n and m∗ > n∗. Let h1, h2, ..., hm∗ , g ∈ L with
m∗∧
i=1

hi∧g ∈ H . Since H is an ideal in L and

hm ∈ L, we have hm ∧
m∗∧
i=1

hi ∧ g ∈ H and hence
m∧
i=1

hi ∧ g ∈ H , since m ≥ m∗. Again, since H

is an (m,n)−PI, we get
n∧

i=1
hi ∈ H or g ∈ H . Consequently,

n∗∧
i=1

hi ∈ H or g ∈ H , since n∗ ≥ n;

for,
n∗∧
i=1

hi =
n∧

i=1
hi ∧ hn∗ and if

n∧
i=1

hi ∈ H , then clearly
n∗∧
i=1

hi ∈ H .

(6). Suppose H is an (m,n)−PI. Let h1, h2, ..., hm, g ∈ L. Now,
m∧
i=1

hi ∧ g ∈ H ∩ ⟨r] ⇒ r ∧
m∧
i=1

hi ∧ g ∈ H

⇒ r ∧ r ∧
m∧
i=1

hi ∧ g ∈ H

⇒ r ∧
m∧
i=1

hi ∧ r ∧ g ∈ H (by 2.4(9))

⇒ r ∧
n∧

i=1
hi ∈ H or r ∧ g ∈ H (by assumption)

⇒
n∧

i=1
hi ∈ H ∩ ⟨r] or g ∈ H ∩ ⟨r].

Hence the result. Conversely suppose H ∩ ⟨r] is an (m,n)−PI. Let h1, h2, ..., hm, g ∈ L such

that
m∧
i=1

hi ∧ g ∈ H . Since H is an ideal in L, we have r ∧
m∧
i=1

hi ∧ g ∈ H , for all r ∈ L − H .

So,
m∧
i=1

hi ∧ g ∈ H ∩ ⟨r] and by assumption to get
n∧

i=1
hi ∈ H ∩ ⟨r] or g ∈ H ∩ ⟨r]. It follows

that, r ∧
n∧

i=1
hi ∈ H or r ∧ g ∈ H . By the property of ideal and r ∈ L−H , we get

n∧
i=1

hi ∈ H or

g ∈ H .Thus H is an (m,n)−PI.

The converse of the above results (2-5) are not true; consider the following example.

Example 3.4. Let Let D = {0, u, v} be a discrete ADL with 0 as its zero element defined in 2.2
and L = {0, a, b, c, d, e, f, g, h, i, j, 1} be a lattice whose Hasse diagram is given below:

Consider D × L = {(t, s) : t ∈ D and s ∈ L}. Then (D × L,∧,∨, 0) is an ADL (note that
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D×L is not a lattice) under the point-wise operations ∧ and ∨ on D×L and 0 = (0, 0), the zero
element in D × L.
(2). Put K = {(0, 0), (u, a), (v, b), (v, d)}. Let (0, g), (u, f), (v, e), (u, d) ∈ D × L such that
(0, g)∧(u, f)∧(v, e)∧(u, d) ∈ K implies (v, e)∧(u, d) ∈ K but (0, g)∧(u, f)∧(v, e) = (0, c) /∈
K and (u, d) /∈ K. From this we can conclude that K is a (3, 2)−PI but not a 1−absorbing prime
ideal.
(3). K is a (3, 2)−PI but not prime ideal in D × L, where K is defined in above (2). Since,
(0, g) ∧ (u, f) ∧ (v, e) ∧ (u, d) ∈ K implies (0, g) ∧ (u, f) ∧ (v, e) = (0, c) /∈ K and (u, d) /∈ K,
or (u, f) ∧ (v, e) ∧ (u, d) = (u, 0) /∈ K and (0, g) /∈ K.
(4). Put Q = {(0, 0), (0, b), (u, c), (u, f)}. Then (0, d)∧(u, e)∧(v, f) ∈ Q ⇒ (0, d)∧(v, f) ∈ Q.
Thus Q is a 2−absorbing ideal. On the other hand, consider (0, d) ∧ (u, e) ∧ (v, f) ∧ (1, g) ∈ Q
implies (0, d) ∧ (u, e) = (0, a) /∈ Q, (v, f) ∧ (1, g) = (v, c) /∈ Q and (1, g) /∈ Q. Thus Q is not a
(3, 2)−PI in D × L.
(5). Let us defined Q in above (4). Let (0, d), (u, e), (v, f), (1, g), (v, h) ∈ D × L. Then (0, d) ∧
(u, e) ∧ (v, f) ∧ (1, g) ∧ (v, h) ∈ Q implies (0, d) ∧ (u, e) ∧ (v, f) = (0, 0) ∈ Q. Thus Q is a
(4.3)−PI. But Q is not a (5, 2)−PI, since (0, d) ∧ (u, e) ∧ (v, f) ∧ (1, g) ∧ (v, h) ∧ (u, i) ∈ Q
implies (0, d)∧ (u, e) = (o, a) /∈ Q, (v, f)∧ (1, g) = (v, c) /∈ Q and (v, h)∧ (u, i) = (u, e) /∈ Q.

Theorem 3.5. Let H be a proper ideal in L and m,n ∈ Z+ with m > n. Then the following are
equivalent.
(1). H is an (m,n)−PI

(2). For any ideal I1, I2, ..., Im, J ∈ L such that
m⋂
i=1

Ii ∩ J ⊆ H ⇒
n⋂

i=1
Ii ⊆ H or J ⊆ H

(3). For any ideal I1, I2, ..., Im, J ∈ L such that H =
m⋂
i=1

Ii ∩ J ⇒ H =
n⋂

i=1
Ii or H = J.

Definition 3.6. Let h ∈ L. Then h is said to be an (m,n)−meet irreducible element in L if, for

any ideals h1, h2, ..., hm, g ∈ L such that
m∧
i=1

hi ∧ g ≤ h ⇒
n∧

i=1
hi ≤ h or g ≤ h.

Theorem 3.7. Let H be a proper ideal in L. Then H is an (m,n)−PI iff H is an (m,n)−meet
irreducible element in the lattice of ideals in L.

Proof. Suppose H is an (m,n)−PI. Let I1, I2, ..., Im, J ∈ L such that
n⋂

i=1
Ii ⊈ H and J ⊈ H .

Then we can choose hi and g such that
n∧

i=1
hi ∈

n⋂
i=1

Ii,
n∧

i=1
hi /∈ H, g ∈ J and g /∈ H . Then

m∧
i=1

hi∧ g ∈
m⋂
i=1

Ii∩J and
m∧
i=1

hi∧ g /∈ H . Therefore,
m⋂
i=1

Ii∩J ⊈ H . Thus, H is an (m,n)−meet

irreducible. Conversely suppose H is an (m,n)−meet irreducible element in the lattice of ideals
in L. We are already given that H is a proper ideal in L. Let h1, h2, ..., hm, g ∈ L such that
n∧

i=1
hi /∈ H and g /∈ H . Consider the ideals ⟨

n∧
i=1

hi] and ⟨g]. Clearly, ⟨
n∧

i=1
hi] ⊈ H and ⟨g] ⊈ H .

By assumption, we get ⟨
n∧

i=1
hi] ∩ ⟨g] ⊈ H and hence ⟨

n∧
i=1

hi ∧ g] ⊈ H . Therefore, H is an

(m,n)−PI.

In the following, we extend Stone Theorem[12] on prime ideals of ADLs to (m,n)−PI.

Theorem 3.8. Let K be an ideal and G a non-empty subset in L such that
m∧
i=1

hi ∧ g ∈ G implies
n∧

i=1
hi ∈ G or g ∈ G, for all h1, h2, ..., hm, g ∈ L and K∩G = ∅. Then there exists an (m,n)−PI

H in L such that K ⊆ H and H ∩G = ∅.

Corollary 3.9. Let K be an ideal and h1, h2, ..., hm, g ∈ L such that
n∧

i=1
hi /∈ K. Then there

exists an (m,n)−PI H in L such that K ⊆ H and
n∧

i=1
hi /∈ H .
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Next, we introduce the notion of the direct product of (m,n)−PI in L1 × L2, where L1 and
L1 are ADLs. Let H and G be ideals in L1 and L2, respectively. Let (a, b), (c, d) ∈ H . Then
(a, b)∨(c, d) = (a∨c, b∨d) ∈ H×L2, since a∨c ∈ H . Also, (a, b)∧(r, s) = (a∧r, b∧s) ∈ H×L2,
since a∧r ∈ H . Thus H×L2 is an ideal. Similarly, L1×G is an ideal. In the case of (m,n)−PI,
we have the following.

Theorem 3.10. Let L = L1 × L2. Then the following assertion hold. If H is an (m,n)−PI in
L1, then H × L2 is an (m,n)−PI in L. Also, if G is an (m,n)−PI in L2, then L1 × G is an
(m,n)−PI in L.

Proof. Suppose H is an (m,n)−PI in L1 and h1, h2, ..., hm, g ∈ L1 such that
m∧
i=1

(hi, h
∗
i ) ∧

(g, g∗) ∈ H×L2, for all h1, h2, ..., h
∗
m, g ∈ L2. Then

m∧
i=1

(hi, h
∗
i )∧(g, g∗) =

m∧
i=1

(hi∧g, h∗
i ∧g∗) ∈

H ×L2 and by assumption to get
m∧
i=1

(hi, h
∗
i ) ∈ H ×L2 or (g, g∗) ∈ H ×L2, since

m∧
i=1

hi ∧ g ∈ H

implies either
n∧

i=1
hi ∈ H or g ∈ H . Thus, H × L2 is an (m,n)−PI in L. Similarly, L1 ×G is an

(m,n)−PI in L if G is an (m,n)−PI in L2.

In the following, we establish that both the image and pre-image of any (m,n)−PI is again
(m,n)−PI.

Theorem 3.11. Let L1 and L2 be ADLs and k : L1 → L2 be a lattice homomorphism. then the
following hold. Let k be a monomorphism and if G is an (m,n)−PI in L2, then k−1(G) is an
(m,n)−PI in L1. Also, if H is an (m,n)−PI in L1, then k(H) is an (m,n)−PI in L2 if K is an
epimorphism.

Proof. (1). Suppose G is an (m,n)−PI in L2. Let h1, h2, ..., hm, g ∈ L1 such that
m∧
i=1

hi ∧ g ∈

k−1(G). Then k(
m∧
i=1

hi∧g) ∈ G, and hence k(
m∧
i=1

hi)∧k(g) ∈ G. It follows that,
m∧
i=1

k(hi)∧k(g) ∈

G. By assumption to get
m∧
i=1

k(hi) ∈ G or k(g) ∈ G. So,
m∧
i=1

hi ∈ k−1(G) or g ∈ k−1(G). Thus,

k−1(G) is an (m,n)−PI in L1.
(2). Suppose k−1(G) is an (m,n)−PI in L1. Let h1, h2, ..., hm, g ∈ L1 such that k(h1) = a1,

k(h2) = a2, ..., k(hm) = am, k(g) = b, for some a1, a2, ..., am, b ∈ L2. Let
m∧
i=1

k(hi) ∧ k(g) ∈

k(H). As k is a lattice homomorphism, k(
m∧
i=1

hi ∧ g) =
m∧
i=1

k(hi) ∧ k(g) ∈ k(H) and hence

k(
m∧
i=1

hi ∧ g) ∈ k(H). So,
m∧
i=1

hi ∧ g ∈ k−1(k(H)). By assumption to get
n∧

i=1
hi ∈ k−1(k(H)) or

g ∈ k−1(k(H)). Which implies that, k(
n∧

i=1
hi) =

n∧
i=1

k(hi) ∈ k(H) or k(g) ∈ k(H). Hence the

result.

Definition 3.12. Let m,n ∈ Z+ with m > n. A proper ideal H in L is an (m,n)−maximal ideal

in L if, for any h1, h2, ..., hm ∈ L such that H ⊆
m⋂
i=1

hi ⇒ H =
n⋂

i=1
hi or

n⋂
i=1

hi = L.

Lemma 3.13. Let H be a proper ideal in L and m,n ∈ Z+ with m > n. Then H is an

(m,n)−maximal ideal iff
n∧

i=1
hi ∈ L−H and g ∈ L ⇒ g = (

m∧
i=1

hi ∧ g) ∨ r, for some r ∈ L.

Finally, we discuss the relationship between (m,n)−PI and (m,n)−maximal ideal.

Theorem 3.14. Every (m,n)−maximal ideal is an (m,n)−PI, where m,n ∈ Z+ with m > n.
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Proof. Suppose H is an (m,n)−maximal ideal. Let h1, h2, ..., hm, g ∈ L and
m∧
i=1

hi ∧ g ∈ H .

Assume
n∧

i=1
hi ∈ L−H . By the above lemma, we get g = (

m∧
i=1

hi∧ g)∨ r, for some r ∈ L. Since
m∧
i=1

hi ∧ g ∈ H , it follows that, g ∈ H . Therefore, H is an (m,n)−PI.

Example 3.15. Let L = {0, a, c, e, 1} be the lattice represented by the Hasse diagram given be-
low:

�
�
�

@
@

@

@
@

@

�
�
�

d
d d

d
d

0

a c

e

1

Put Q = {0, a}. Clearly Q is a (1, 1)−PI but not (1, 1)−maximal ideal.

4 Weakly (m,n)−Prime Ideals

In this section, we introduce the concepts of weakly (m,n)−PI, generalize the notion of weakly
prime ideals and (m,n)−PIs. We justify several properties and characterizations of weakly
(m,n)−PIs with supportive examples. Furthermore, we investigate the direct product, homo-
morphic images and pre-images of weakly (m,n)−PIs.

Definition 4.1. Let m,n ∈ Z+ with m > n. A proper ideal H in L is an weakly (m,n)−PI in L

if for all h1, h2, ..., hm, g ∈ L such that 0 ̸=
m∧
i=1

hi ∧ g ∈ H ⇒
n∧

i=1
hi ∈ H or g ∈ H .

In the following, we introduce the relationship between (m,n)−PI and weakly (m,n)−PI.

Theorem 4.2. Every (m,n)−PI is a weakly (m,n)−PI and the converse of this is not true.

Example 4.3. Let L = {0, a, b, c, d, e, f, 1} be a lattice whose Hasse diagram is given below:

Put G = {0}. Clearly G is a weakly (m,n)−PI but not an (m,n)−PI, since d∧e∧f ∈ G implies
d ∧ e /∈ G, e ∧ f /∈ G, d /∈ G and f /∈ G.

Lemma 4.4. Let H be a proper ideal in L and m,n ∈ Z+ with m > n. Then the following
assertion hold.
(1). H is a weakly prime ideal iff H is a weakly (1, 1)−PI
(2). If H is a weakly 1-absorbing prime ideal, then H is a weakly (m,n)−PI
(3). If H is a weakly prime ideal, then H is a weakly (m,n)−PI
(4). If H is a weakly (m,n)−PI, then H is a weakly n-absorbing ideal
(5). H is a weakly (m,n)−PI iff H ∩ ⟨r] is a weakly (m,n)−PI, for all r ∈ L−H .



558 Natnael Teshale Amare

Theorem 4.5. Let H be a proper ideal in L with H = ⟨
k∧

i=1
hi], where n ≥ k. Then H is a weakly

(m,n)−PI iff n ≥ k. Also, H is a weakly (m,n)−PI iff H is (m,n)−PI.

Lemma 4.6. Let S ⊆ L, we define S = {g ∈ L :
m∧
i=1

hi ∧ g = 0, }, for all h1, h2, ..., hm ∈ L.

Then S is an ideal in L.

Proof. Clearly S ̸= ∅, since 0 ∈ S. Let r, s ∈ S. Then
m∧
i=1

hi ∧ r = 0 and
m∧
i=1

hi ∧ s = 0, for all

h1, h2, ..., hm ∈ L. Consider,
m∧
i=1

hi ∧ (r ∨ s) = (
m∧
i=1

hi ∧ r) ∨ (
m∧
i=1

hi ∧ s) (by 2.1(3))

= 0.
Thus, r∨s ∈ S. Also, for all a ∈ L, by 2.4(4), we have

m∧
i=1

hi∧(r∧a) = (
m∧
i=1

hi∧r)∧a = 0∧a = 0

and hence r ∧ a ∈ S. Thus, S is an ideal.

Lemma 4.7. Let H be an ideal in L. Define H∗ = {g ∈ L :
m∧
i=1

hi ∧ g ∈ H}. Then H∗ is an

ideal in L.

Proof. Clearly H∗ ̸= ∅, since 0 ∈ H∗ and H is an ideal. Let g, k ∈ G. Then
m∧
i=1

hi ∧ g ∈ H and
m∧
i=1

hi∧ ∈ H , for all h1, h2, ..., hm ∈ L. Consider,
m∧
i=1

hi∧(g∨k) = (
m∧
i=1

hi∧g)∨(
m∧
i=1

hi∧k) ∈ H ,

(by 2.1(3)) and since H is an ideal. Thus, g ∨ k ∈ H∗. Also, for all t ∈ L, by by 2.4(4) to get
m∧
i=1

hi ∧ (g ∧ t) = (
m∧
i=1

hi ∧ g) ∧ t ∈ H , since H is an ideal. So, g ∧ t ∈ H∗. Therefore, H∗ is an

ideal.

Next, we characterize weakly (m,n)−PIs in the following.

Theorem 4.8. Let H be a proper ideal in L, and H∗ and S are defined above. Then the following
are equivalent.
(1). H is a weakly (m,n)−PI

(2). H∗ ⊆ H ∨ S, for all h1, h2, ..., hm ∈ L such that
n∧

i=1
hi /∈ H

(3). H∗ = H or H∗ = S, for all h1, h2, ..., hm ∈ L such that
n∧

i=1
hi /∈ H

(4). Whenever h1, h2, ..., hm ∈ L and G is an ideal in L with 0 ̸= ⟨
m∧
i=1

hi] ∩ G ⊆ H , then
n∧

i=1
hi ∈ H or G ⊆ H .

Proof. (1) ⇒ (2) : Suppose H is a weakly (m,n)−PI. Let h1, h2, ..., hm ∈ L such that
n∧

i=1
hi /∈

H . Let g ∈ H∗. Then
m∧
i=1

hi ∧ g ∈ H . By assumption to get g ∈ H and clearly g ∈ H ∨ S, since

g = g ∨ 0 = g ∨ (
m∧
i=1

hi ∧ g). Thus, H∗ ⊆ H ∨ S.

(2) ⇒ (3) : Assume (2) hold. Then H∗ ⊆ H or H∗ ⊆ S. Next, we prove that either H ⊆ H∗ or
S ⊆ H∗. Assume H ⊈ H∗ and S ⊈ H∗. Then there exists h ∈ H , h /∈ H∗, g ∈ S and g /∈ H∗.

As, h /∈ H∗, then
m∧
i=1

hi ∧ h /∈ H , which gives a contradiction, since H is an ideal, h ∈ H and
n∧

i=1
hi /∈ H . Therefore, H ⊆ H∗. Also, if g /∈ H∗, then

m∧
i=1

hi ∧ g /∈ H , gives a contradiction,

since g ∈ S and hence
m∧
i=1

hi ∧ g = 0 ∈ H . Hence the result.

(3) ⇒ (4) : Assume (3) hold. Let h1, h2, ..., hm ∈ L and G is an ideal with 0 ̸= ⟨
m∧
i=1

hi]∩G ⊆ H



Weakly (m,n)−PIs 559

and
n∧

i=1
hi /∈ H . Then G ⊆ H∗ − S and by hypothesis, we have G ⊆ H∗ = H . Thus, G ⊆ H .

(4) ⇒ (1) : Let h1, h2, ..., hm, g ∈ L such that 0 ̸=
m∧
i=1

hi ∧ g ∈ H . Put G = ⟨g]. Then

0 ̸= ⟨
m∧
i=1

hi] ∩ G ⊆ H and by (4), we have
n∧

i=1
hi ∈ H or g ∈ G ⊆ H . Thus, H is a weakly

(m,n)−PI in L.

Theorem 4.9. Let {Hα}α∈∆ be a family of weakly (m,n)−PI. Then
⋂
α∈∆

Hα is a weakly (m,n)−PI.

Proof. Suppose {Hα}α∈∆ is a family of weakly (m,n)−PI. Let Let h1, h2, ..., hm, g ∈ L with

0 ̸=
m∧
i=1

hi ∧ g ∈
⋂
α∈∆

Hα. Thus,
m∧
i=1

hi ∧ g ∈ Hα, for all α ∈ ∆. By assumption, we have

n∧
i=1

hi ∈ Hα or g ∈ Hα, for all α ∈ ∆. Thus,
n∧

i=1
hi ∈

⋂
α∈∆

Hα or g ∈
⋂
α∈∆

Hα. Hence the

result.

Next, we characterize weakly (m,n)−PIs in direct product of ADLs.

Theorem 4.10. Let H (̸= {0}) be a proper ideal in L = L1 ×L2. Then H is a weakly (m,n)−PI
in L iff H is an (m,n)−PI in L.

Theorem 4.11. Let H and G be proper ideals of L1 and L2. If H ×G is a weakly (m,n)−PI in
L1 × L2, then H are G are weakly (m,n)−PIs in L1 and L2, respectively.

Proof. Suppose H × G is a weakly (m,n)−PI in L1 × L2. Let h1, h2, ..., hm, g ∈ L1 and

h∗
1 , h

∗
2 , ..., h

∗
m, g∗ ∈ L2 such that 0 ̸=

m∧
i=1

hi ∧ g ∈ H and 0 ̸=
m∧
i=1

h∗
i ∧ g∗ ∈ G. Then

(0, 0) ̸=
( m∧
i=1

hi ∧ g,
m∧
i=1

h∗
i ∧ g∗

)
∈ H ×G ⇒

( m∧
i=1

hi,
m∧
i=1

h∗
i

)
∧
(
g, g∗

)
∈ H ×G

⇒
( m∧
i=1

hi,
m∧
i=1

h∗
i

)
∈ H ×G or (g, g∗) ∈ H ×G

⇒
m∧
i=1

hi ∈ H or g ∈ H , and
m∧
i=1

h∗
i ∈ G or g∗ ∈ G.

Thus, H are G are weakly (m,n)−PIs.

If there are weakly (m,n)−PIs, then their direct product may not weakly (m,n)−PI; consider
the following example.

Example 4.12. Let L1 = {0, r, s, t, 1} be the lattice and L2 = {0, a, b, 1} be a chain respectively
represented by the Hasse diagram given below:

�
�
�

@
@

@

@
@

@

�
�
�

d
d d

d

d
r

s t

1

0

d

d
d

d
0

a

b

1

Consider L1 × L2 = {(x, y) : x ∈ L1 and y ∈ L2}. Put H = {0} and G = {0, a}. Then
H × G = {(0, 0), (0, a)}. Clearly H and G are weakly (m,n)−PIs in L1 and L2, respectively.
But, H ×G is not a weakly (m,n)−PI in L1 ×L2, since (0, 0) ̸= (0, 1)∧ (r, b)∧ (s, a) ∈ H ×G
implies (0, 1) ∧ (r, b) /∈ H ×G and (s, a) /∈ H ×G.

Theorem 4.13. Let L1 and L2 be ADLs and H (̸= {0}) be a proper ideal in L1. Then the
following are equivalent.
(1). H × L2 is a weakly (m,n)−PI in L1 × L2
(2). H × L2 is an (m,n)−PI in L1 × L2
(3). H is an (m,n)−PI in L1.
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Proof. (1) ⇔ (2) : It is clear.

(2) ⇒ (3) : Assume (2) hold. Let h1, h2, ..., hm, g ∈ L1 with
m∧
i=1

hi ∧ g ∈ H . Since H × L2

is an (m,n)−PI in L1 × L2, we have (
m∧
i=1

hi ∧ g, r) ∈ H × L2, for some r ∈ L2, implies that

(
m∧
i=1

hi, r)∧ (g, r) ∈ H×L2 and hence (
m∧
i=1

hi, r) ∈ H×L2 or (g, r) ∈ H×L2. Thus,
m∧
i=1

hi ∈ H

or g ∈ H . Hence the result.

(3) ⇒ (2) : Assume (3) hold. Let h1, h2, ..., hm, g ∈ L1 and u ∈ L2 with (
m∧
i=1

hi∧g, u) ∈ H×L2.

Then (
m∧
i=1

hi ∧ g, u) = (
m∧
i=1

hi, u) ∧ (g, u) ∈ H × L2. Which implies that (
m∧
i=1

hi, u) ∈ H × L2 or

(g, u) ∈ H × L2, by assumption. Thus, H × L2 is an (m,n)−PI in L1 × L2.

(3) ⇒ (1) : Assume (3) hold. Let h1, h2, ..., hm, g ∈ L1 such that (0, 0) ̸= (
m∧
i=1

hi∧g, t) ∈ H×L2,

for some t ∈ L2. Then (0, 0) ̸= (
m∧
i=1

hi, t) ∧ (g, t) ∈ H × L2 and hence (
m∧
i=1

hi, t) ∈ H × L2 or

(g, t) ∈ H × L2. Hence the result.
(3) ⇒ (1) : It is clear.

The following Theorem is an immediate consequence of 4.11 and 4.13.

Theorem 4.14. Let H (̸= {0}) and G(̸= {0}) be proper ideals in L1 and L2, respectively. Then
the following are equivalent.
(1). H ×G is a weakly (m,n)−PI in L1 × L2
(2). G = L2 and H is an (m,n)−PI in L1, or G is an (m,n)−PI in L2 and H is an (m,n)−PI
in L1
(3). H ×G is an (m,n)−PI in L1 × L2.

If H and G are weakly (m,n)−PI in L1 and L2, respectively, then H×G is weakly (m,n)−PI
in L1 × L2, where H ̸= {0} and G ̸= {0}. In general, we have the following characterization.

Theorem 4.15. Let L = L1 × L2 × ... × Lk and H (̸= {0}) be proper ideal in L. Then the
following are equivalent.
(1). H is a weakly (m,n)−PI in L
(2). H = L1×L2× ...×Hj× ...×Lk, where Hj is an (m,n)−PI in Lj , for some j ∈ {1, 2, ..., k}
(3). H is an (m,n)−PI in L.

Finally, we discuss the homomorphism of weakly (m,n)−PIs.

Theorem 4.16. Let L1 and L2 be ADLs and k : L1 → L2 be a lattice homomorphism. Then the
following hold.
(1). If k is a monomorphism and G is a weakly (m,n)−PI in L2, then k−1(G) is a weakly
(m,n)−PI in L1
(2). If k is an epimorphism and H is a weakly (m,n)−PI in L1 containing ker(k), then k(H) is
a weakly (m,n)−PI in L2.

Proof. (1). Suppose G is a weakly (m,n)−PI in L2. Let h1, h2, ..., hm, g ∈ L1 such that 0 ̸=
m∧
i=1

hi∧g ∈ k−1(G) and g /∈ k−1(G). Since ker(k) = 0, we have 0 ̸= k(
m∧
i=1

hi∧g) =
m∧
i=1

k(hi)∧

k(g) ∈ G and k(g) /∈ G implies that
n∧

i=1
k(hi) = k(

n∧
i=1

hi) ∈ G and hence
n∧

i=1
hi ∈ k−1(G). Thus

k−1(G) is an (m,n)−PI in L1.
(2). Suppose H is a weakly (m,n)−PI in L1. Let b1, b2, ..., bm, s ∈ L2 such that k(a1) = b1,

k(a2) = b2,...,k(am) = bm and k(r) = s, for some a1, a2, ..., am, r ∈ L1. Suppose 0 ̸=
m∧
i=1

bi∧s ∈

k(H) and s /∈ k(H). Then 0 ̸= k(
m∧
i=1

ai ∧ r) ∈ k(H) and since k(H) ⊆ H, we conclude

0 ̸=
m∧
i=1

ai ∧ r ∈ H . By assumption to get
n∧

i=1
ai ∈ H or t ∈ H . Thus,

n∧
i=1

bi = k(
n∧

i=1
ai) ∈ k(H)

or s = k(r) ∈ k(H). Hence the result.
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5 Conclusion

We define the notions of (m,n)−PIs and weakly (m,n)−PIs in an ADL and discuss their prop-
erties. Also, we introduce the concept of weakly (m,n)−PIs, generalizing weakly prime ideals
and (m,n)−PIs. Furthermore, we explore the properties of (m,n)−PIs and weakly (m,n)−PIs
for various lattice-theoretic construction such as direct products, homomorphism images, and
homomorphic inverse images. In future work, we plan to focus on the concepts of L-fuzzy
(m,n)−PIs and their prime spectrum.
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