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Abstract One of the useful generalization of CS notion is CLS property. If each “z-closed
submodule" of a module U is a direct summand of U , then U is stated to be CLS. In this article,
we present fully invariant CLS by ignoring all z-closed submodules and taking into only fully
invariant z-closed submodules, such a module is referred to as fully invariant CLS module. This
new module class is appropriately comprised of the class of CLS and fully invariant extending
modules. The CLS module class is closed within direct summands, not under direct sums, as is
often known As opposed to CLS modules, the category of modules with previous attributes is
demonstrated to be closed under direct sums. In doing so, we get a number of outcomes, some
of structural features with examples.

1 Introduction

All throughout this paper, every module is a unitary right R-module and all rings are associative
with unitary. In recent years, extending modules and ring theory have played an important
role in ring and module theory. Remember that a module U when each of it’s submodules is
necessary essential in a “direct summand", then U is referred to as a CS module, equivalently, U
is CS if every closed submodule of U is a “direct summand, Dung, Huynh, Smith and Wisbauer
[1]. There is an ongoing interest in CS modules and some of their generalizations. Several
generalizations of the CS property have been explored, see e.g. Enas and Davvaz [2], Kamil and
Al-Aeashi [3], Kamil also see [4]. In Akalan, Birkenmeier, and Tercan [5], the authors introduce
the relation that sets of submodules:

(i) V αW if and only if there exist Y ⩽ U satisfies V ⩽e Y and W ⩽e Y ;

(ii) V βW if and only if V ∩W ⩽e V and V ∩W ⩽e W .

It is simple to observe that U is (Goldie) extending if and only if for all submodule V of U , V αY
(V βY ), Y is a summand of U . A submodule X of U is regarded as z-closed in U if U/X is non-
singular. C-closed submodule was studied by Kamil and Davvaz [6], Kamil [7], X is c-closed
in U if whenever B/X is singular, then B = X , where B is a submodule of U . It is simple to
verify that every “z-closed submodule" is c-closed. A module U is referred to as CLS (CCLS)
module if all z-closed (c-closed) submodules of U is a summand, view Tercan [8]. In Tercan and
Yasar [9], and Yucel [10], the authors used “z-closed submodules" to generalize G-extending and
CLS, U is said to be Gz-extending if for every “z-closed submodule" V of U , there is a “direct
summand" Y of U such that V βY . If for each f ∈ End(U), V contains f(V ), then we assert
that V is “fully invariant" in U , when each submodule of U is “fully invariant", U is contacted
duo-module, Kamil and Khalid [11], Kamil [12] and [13]. An additional valuable expansion of
CS-modules is F.I- extending module, a module U is called F.I-extending if all “fully invariant
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submodules" of U is essential in a “direct summand", see, Birkenmeier, Muller and Rizvi [14].
In this paper, we search a submodule condition including z-closed property on the set of “fully
invariant submodules". We call a submodule V of a module U is “fully invariant z-closed" (for
short F.I-z-closed) submodule of U if V is “fully invariant and z-closed" in U , and U is called
“fully invariant CLS", (for short F.I-CLS) module, if every F.I-z-closed submodule of U is a “di-
rect summand" . In Section 2, we present the relationships between F.I- CLS module, extending,
CCLS, CLS, G-extending, Gz-extending and F.I-extending conditions. Furthermore, we derive
the fundamental characteristics and structural behavior of the F.I-extending module class. Sec-
tion 3 is devoted to the characterizations of F.I-CLS modules and we study the decomposition
theory of F.I-CLS. We address when a “direct summand of" F.I-CLS is also F.I-CLS.

2 Basic results

In this part, we obtain fundamental features of the F.I-z- closed submodules and we discuss
relations between the F.I-CLS condition and several different refinements of extending idea. We
begin with the subsequent lemma which is stated in, Birkenmeier, Muller and Rizvi [14].

Lemma 2.1. Fix U be R-module. Then

(i) Every intersection or sum of “fully invariant submodules" of U again is “fully invariant
submodule" of U .

(ii) If X ⩽ Y ⩽ U with X is “fully invariant submodule of Y " and Y is “fully invariant
submodule" of U , then X is “fully invariant submodule" of U .

(iii) If U =
⊕n

i=1 Ui and V is a “fully invariant submodule of U", then V =
⊕n

i=1(V ∩Ui), and
V ∩ Ui is “fully invariant submodule" of U .

Definition 2.2. Let V be a “fully invariant submodule" of a module U , we say that V is a “fully
invariant z-closed submodule" of U (for short F.I-z-closed), if U/V is nonsingular.

Demonstrating that each F.I-z-closed is a “z-closed submodule of U" is simple. When U is
duo-module, the converse is true.

Next, we give some properties of this type of submodules.

Proposition 2.3. Take U be an R-module.

(i) If X ⩽ Y and X is F.I- z-closed in U , then X is F.I-z-closed in Y .

(ii) If X ⩽ Y and Y/X is F.I-z-closed in U/X , then Y is F.I-z-closed in U .

(iii) If X ⩽ Y ⩽ U and X is F.I-z-closed in Y and Y is F.I-z-closed in U , then X is F.I-z-closed
in U .

(iv) If X and Y are both F.I-z-closed submodules of U , then X ∩ Y is F.I-z-closed submodule
of U .

(v) Let U = U1 ⊕ U2 and let X and Y be F.I-z-closed submodules of U1 and U2, respectively,
then X ⊕ Y is F.I-z-closed in U .

Proof. (i) Take X be F.I-z-closed in U . Since Y/X ⩽ U/X is nonsingular, then X is F.I-z-closed
in Y .

(ii) Since Y/X is F.I-z-closed in U/X , to show that Y is “fully invariant submodule" of U ,
let f ∈ End(U), then f(y +X) ∈ Y/X , y ∈ Y and hence f(y) +X ∈ Y/X implies f(y) ∈ Y ,
therefore Y is “fully invariant" in U . It is simple to demonstrate that Y is “z-closed submodule"
of U .

(iii) For an F.I-z-closed submodule X of Y and Y be an F.I-z-closed submodule of U , then X
is “fully invariant in U", by Lemma 2.1. From Proposition 1.2 in Sahib and AL-Bahraany [15],
X is z-closed in U . Thus, X is F.I-z-closed in U .

(iv) Let’s say X and Y are F.I-z-closed submodules of U . By Lemma 2.1, X ∩ Y is “fully
invariant" in U , and X ∩ Y is z-closed in U , by Sahib and AL-Bahraany (Proposition 1.1, [15] ).

(v) Let U = U1 ⊕U2 and let X and Y be F.I-z-closed submodules of U1 and U2, respectively.
Then U1/X and U2/Y are nonsingular, (U1/X)⊕(U2/Y ) is nonsingular, and so (U1⊕U2)/(X⊕
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Y ) is nonsingular. By Lemma 2.1, X ⊕ Y is “fully invariant submodule of U". Thus, X ⊕ Y is
F.I-z-closed in U .

Corollary 2.4. Let U be an R-module and let {Yα | α ∈ Λ} be an independent family of submod-
ules of U and Xα ⩽ Yα, for every α ∈ Λ, if Xα is “fully invariant submodule" of Yα,for every
α ∈ Λ, then

⊕
α∈Λ

Xα is F.I-z-closed in
⊕

α∈Λ
Yα.

There are submodules which are “fully invariant" but not F.I-z-closed, nZ is “fully invariant
submodule" of Z as Z-module while nZ is not z-closed in Z.

Definition 2.5. A module U is claimed to be “fully invariant CLS-module" if every “fully invari-
ant z-closed submodule" of U is a “direct summand" (for short F.I-CLS).

We now locate the F.I-CLS condition with regard to a number of the extending conditions
known generalizations.

Proposition 2.6. Given a module U , take consideration subsequence requirements.

(i) U is extending.

(ii) U is G-extending.

(iii) U is CCLS.

(iv) U is CLS.

(v) U is Gz-extending.

(vi) U is F.I-CLS.

(vii) U is F.I-extending.

Then (i)⇒(ii)⇒(iii)⇒(iv)⇒(v)⇒(vi) and (i)⇒(ii)⇒(vii)⇒(vi). The opposite implications are
false, in general.

Proof. (i)⇒(ii): It is obvious what this implies.
(ii)⇒(iii): Let U be a G-extending module and let X be a c-closed submodule of U . There is a

“direct summand" D of U such that X∩D is essential in each X and D. Note that, D/(X∩D) ∼=
(X +D)/X is singular. But X is c-closed in U , hence X ∩D = D, and so X = D. Thus, U is
CCLS-module.

(iii)⇒(iv): It is Clear.
(iv)⇒(v): It follows from Tercan et al. [9].
(v)⇒(vi): Let X be an F.I-z-closed submodule of U , then there is a “direct summand" D of U

such that X∩D ⩽e X and X∩D ⩽e D, then D/(X∩D) ∼= (D+X)/X ⩽ U/X is nonsinguar,
which implies that X = D. Thus, U is F.I-CLS-module.

(ii)⇒(vii): It follows from Proposition 1.6 in Akalan et al. [5].
(vii)⇒(vi) Let X be an F.I-z-closed submodule of U , then X is essential in a “direct sum-

mand" D of U . But X is z-closed in U , therefore X = D.
(ii)̸⇒(i): Give U = Q ⊕ Zp, as Z-module, p is a prime, U has G-extending property but not

CS, see, Akalan et al. [5], Example 3.20.
(iv)̸⇒(iii): For a field F and a vector space V with dim(VF) = 2, take R be the trivial

extension of F with V ,

R =

[
F V

0 F

]
=

{ [
f v

0 f

]
| f ∈ F, v ∈ V

}
.

Then RR is CLS and not CCLS see Tercan et al. [9], Proposition 2.3. This example also shows
that (vi) ̸⇒(vii), because RR is CLS, RR is F.I-CLS. Since R is commutative ring, then every
ideal is “fully invariant" in RR but not all ideals are essential in RR. Thus, RR not satisfy
F.I-extending condition.

(v)̸⇒(iv): Looking to view of Tercan et al. (Proposition 2.3, [9]).
(vi)̸⇒(v): Consider a “2-by-2 upper triangular" matrix ring on integers, denoted by R, R =[
Z Z
0 Z

]
, then RR is F.I-CLS. But RR is not Gz-extending because it is not CS and nonsingu-

lar. This example also shows that (vii)̸⇒(ii).
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The diagram in Fig. 1 summarizes the relation between F.I-CLS and some generalizations of
extending property.

Singular module

F.I-Extending module

Extending module

G-extending module

CCLS module

CLS module

Gz-extending module

F.I-CLS module

Figure 1. The relation between F.I-CLS and some generalizations of extending property

Proposition 2.7. Let U be a module.

(i) If U is a duo module, then U is CLS if and only if U is F.I-CLS.

(ii) If U is a nonsingular, then U is F.I-extending if and only if U is F.I-CLS.

(iii) If U is a complement bounded, then U is CLS if and only if U is F.I-CLS module.

Proof. (i) It is easy to check.
(ii) Assume that U is an F.I- CLS and let X is a “fully invariant submodule" of U , let Y be a

closure of X , then X ⩽e Y . Since U is nonsingular, then Y is “z-closed submodule" of U . It is
simple to demonstrate that Y is “fully invariant submodule" of U . But U is F.I-CLS, therefore Y
is a “direct summand of" U . Thus, U is F.I-extending. The converse is in Proposition 2.6.

(iii) Let X be a z-closed in U . Since U is complement bounded, then X is an essential
extension of a “fully invariant submodule" B of U , Akalan et al. [5]. One can easily prove that
X is “fully invariant" in U . But U is F.I-CLS, therefore X is a “direct summand of" U . Thus, U
is CLS.

This section concludes with the following illustration.
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Example 2.8. There exists a module that is not F.I-CLS module. Let V be a simple domain

which is not division ring. Take R =

[
V V ⊕ V

0 V

]
, by Akalan et al. ([5], Example 4.11, RR

is not F.I-extending. Since RR is nonsingular, then RR is not F.I-CLS, by Proposition 2.7.

3 Characterizations of F.I-CLS modules

In this part, We give several examples of situations that are similar to weak F.I- extending ,
Yasar et al. [10] modules in. We handle “direct summand of" F.I-CLS modules. It is widely
acknowledged that each “direct summand of" CLS-module again CLS but in case of F.I-CLS,
whether the “direct summand" of F.I.-CLS is F.I.-CLS is unknown. In this direction, we put
some conditional “direct summand" properties on the module to give some affirmative answers
to the inquiry. Also, characterizations of F.I-CLS are given in this section.

Proposition 3.1. A module U is F.I- CLS if and only if every F.I-z-closed submodule of U is
essential in a “direct summand of" U .

Proof. The proof is routine.

Proposition 3.2. A module U is F.I-CLS if and only if for each submodule V of U , V αY , for
some summand Y of U .

Proposition 3.3. An R-module U is F.I-CLS if and only if for every F.I-z-closed submodule V of
U , there is a decomposition U = U1 ⊕ U2 such that V ⩽ U1 and U2 is a complement of V in U .

Proof. Let V be an F.I-z-closed submodule of U , then there is a decomposition U = U1⊕U2 such
that V ⩽ U1, U2 is a complement of V in U , hence V⊕U2 ⩽e U , and (U1⊕U2)/(V⊕U2) ∼= U1/V
is singular. But V is “z-closed submodule" of U , therefore V = U1. Thus, U is F.I-CLS. The
reverse implication is clear.

Proposition 3.4. A module U is F.I-CLS if and only if for every F.I-z-closed submodule V of U ,
there is a complement W of V in U such that each homomorphism f : V ⊕ W −→ U able to
lifts to a homomorphism g : U −→ U .

Proof. This equivalency results directly from Smith and Tercan (Lemma 2, [16]).

Proposition 3.5. A module U is F.I-CLS if and only if for each F.I-z-closed submodule V of U ,
there exists e2 = e ∈ End(U) such that V ⩽e eU .

Theorem 3.6. For a module U , the statements that follows are equivalent.

(i) U is F.I-CLS.

(ii) For every F.I-z-closed submodule V of U , there is a decomposition U = U1 ⊕ U2 so that
V ⩽ U1 and U2 ⊕ V ⩽e U .

(iii) For every F.I-z-closed submodule V of U , there is a decomposition U/V = (U1/V )⊕(K/V )
such that U1 is a “direct summand" of U and K ⩽e U .

Proof. (i)⇒(ii): By Proposition 3.3.
(ii)⇒(iii): Put V be F.I-z-closed submodule of U . By (ii), there is a decomposition U =

U1⊕U2 such that V ⩽ U1 and U2⊕V ⩽e U . It is simple to verify U/V = (U1/V )⊕(U2+V )/V .
Take K = U2 + V , we get the result.

(iii)⇒(i): Let V be an F.I-z-closed submodule of U . By (iii), U/V = (U1/V ) ⊕ (K/V ), U1
is a summand of U and U1/(U1 ∩K) ∼= (U1 +K)/K = U/K is singular. One can easily show
that U1 ∩ K = V , hence U1/V is singular, but V is z-closed in U , then U1 = V . Hence, U is
F.I-CLS.

Proposition 3.7. Every F.I-z-closed submodule of F.I-CLS is F.I-CLS.

Proof. Let U be F.I-CLS, V be F.I-z-closed in U and X be F.I-z-closed in V . By Proposition
2.3, X is F.I-z-closed in U , but U is F.I-CLS, then X is “direct summand of" U , so X is “direct
summand" of V . Thus, V is F.I-CLS.
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Proposition 3.8. If the module U = U1 ⊕ U2 has F.I-CLS property and U1 is “fully invariant
z-closed" in U then both U1 and U2 have F.I.CLS property.

Proof. It is clear that U1 is F.I-CLS. Let V be F.I-z-closed submodule of U2. As U1 is “fully
invariant" in U , Hom(U1, U2) = 0, hence U1 ⊕ V is “fully invariant submodule" of U . Now,
U/(U1 ⊕ V ) = (U1 ⊕U2)/(U1 ⊕ V ) ∼= U2/V is nonsingular, so U1 ⊕ V is F.I-z-closed in U . But
U is F.I-CLS, therefore U1 ⊕ V is “direct summand of" U , hence V is a “direct summand of"
U2.

Theorem 3.9. A module U = U1⊕U2, U1 is F.I-CLS if and only if there exists a “direct summand"
W of U with U2 ⩽ W , W ∩ C = 0 and W ⊕ C ⩽e U , for every “fully invariant z-closed
submodule" C of U1.

Proof. Take U1 be F.I-CLS and C be a “fully invariant z-closed submodule" of U1, there is a
“direct summand" L of U1 such that L ∩ C = 0, L⊕ C ⩽e U1, by characterization 3.6. Clearly
L⊕ U2 is a “direct summand of" U , (L⊕ U2) ∩ C = 0 and (L⊕ U2)⊕ C ⩽e U .

Conversely, Suppose that U1 possesses the mentioned asset. Let S be a F.I-z-closed submod-
ule of U1, there exists a “direct summand" W of U such that U2 ⩽ W , W ∩S = 0 and W ⊕S ⩽e

U . Note that W = W ∩ (U1 ⊕ U2) = U2 ⊕ (W ∩ U1), by modularity, so W ∩ U1 ⩽⊕ W ⩽⊕ U
and hence W ∩ U1 ⩽⊕ U1, S ∩ (W ∩ U1) = 0 and S ⊕ (W ∩ U1) = U1 ∩ (S ⊕ W ) which is
essential in U1.

Theorem 3.10. Any direct sum of modules having F.I-CLS property again is F.I-CLS module.

Proof. For Uλ (λ ∈ Λ) be a nonempty set of modules that have F.I-CLS and let U =
⊕

λ∈Λ
Uλ.

Let S be a “fully invariant z-closed submodule" of U , then S = S ∩ U = S ∩ (
⊕

λ∈Λ
Uλ) =⊕

λ∈Λ
(S∩Uλ) and each S∩U is “fully invariant", by 2.1. Note that Uλ/(S∩Uλ) ∼= (S+Uλ)/S ⩽

U/S is nonsingular, hence S∩Uλ is “fully invariant z-closed submodule" of Uλ, for every λ ∈ Λ.
Since Uλ is F.I-CLS, for every λ ∈ Λ, it follows that S is a “direct summand of" U .

Corollary 3.11. If U is a direct sum of CLS modules, then U is F.I-CLS.

Example 3.12. The Z-module U = Z⊕ Z2, whereas Z2 = {a/b | a, b ∈ Z and b is odd}, both Z
and Z2 are CLS, hence U is F.I-CLS, while U is not CLS, see Tercan [8].

Proposition 3.13. The quotient of F.I-CLS is F.I-CLS.

Proof. Fix S is a submodule of F.I-CLS module U , let V/S be a “fully invariant z-closed sub-
module" of U/S, then V is “fully invariant z-closed submodule" of U , by Proposition 2.3. Since
U is F.I-CLS, it follows that V is a “direct summand of" U . One can easily show that V/S is a
summand of U/S.
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