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Abstract In this paper, we prove fixed point theorems for T−nonexpansive mappings and
the mappings that satisfy condition (TC) in CAT (0) metric spaces.

1 Introduction

A metric space X is said to be a CAT (0) space [4] if it is geodesically connected, and if every
geodesic triangle in X is at least as "thin" as its comparison triangle in the Euclidean plane.
For a thorough discussion of these spaces and of the fundamental role they play in various
branches of mathematics [4, 5]. In [4] a very comprehensive exposition on CAT (0) spaces
is provided. CAT (0) spaces share several good properties with Hilbert spaces, so it is not that
surprising that certain results were originally obtained for Hilbert spaces and counterparts in
CAT (0) spaces. Fixed points on CAT (0) spaces, or spaces of globally nonpositive curvature
in the sense of Gromov, have been extensively studied in the last years by different authors
[1, 2, 8, 9, 12, 15, 16, 17, 19]. One of the useful applications of the fixed point theorem in
CAT (0) spaces is in convex optimization [1].
In 2009, Beiranvand et al. [3] defined T-contraction mappings. The key point in T−contractions
is that mapping like f(x) = 2x (which does not have a Banach contraction property) can be com-
posed with mapping like Tx = 1

x , which Tof has Banach contraction property. Since by taking
Tx = x, T−contractions and contractions are equivalent, then T−contractions are vital improve-
ment. Afterward, some results dealing with other types of fixed point theorems were proved for
T-contractions [10, 13, 14, 20, 21, 22]. Similarly, in this work, we introduce T−nonexpansive
and T−Suzuki-generalized nonexpansive mappings that are vital improvements of nonexpansive
mappings.
It is natural to extend strong results for the fixed point theorem in CAT (0). Another motivation
for this research direction is the application of those results in various convex optimization prob-
lems.
The outline of the paper is as follows: In Section 2, we first define the conventions to be held
throughout the paper and then define the consequent notions, concepts, and necessary results in
the form of lemmas as required in the sequel. In section 3 we prove our main results. Section 4
is devoted to conclusion.

2 Some basic notations and definitions

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a
geodesic from x to y ) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x,
c(l) = y , and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and
d(x, y) = l. The image α of c is called a geodesic (or metric ) segment joining x and y. When
it is unique this geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space
if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if
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there is exactly one geodesic joining x and y for each x, y ∈ X . A subset Y ⊆ X is said to be
convex if Y includes every geodesic segment joining any two of its points. A geodesic triangle
△(x1, x2, x3) in a geodesic space (X, d) consists of three points x1, x2, x3 ∈ X (the vertices
of △) and a geodesic segment between each pair of vertices (the edges of △). A comparison
triangle for geodesic triangle △(x1, x2, x3) in (X, d) is a triangle △(x1, x2, x3) = △(x1, x2, x3)
in the Euclidean plane E2 such that dE2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}. The comparison
angle of the points x, y, z in the △(x, y, z) at the point x is the interior angle of any comparison
triangle △(x, y, z) = △(x, y, z) at the vertex labelled x ∈ E2. The comparison angle is denoted
∠x(y, z) and is well defined provided x ̸= y and x ̸= z.
A geodesic space is said to be a CAT (0) space if all geodesic triangles satisfy the following
comparison axiom.
CAT (0) : Let △ be a geodesic triangle in X and let △ be a comparison triangle for △. Then △
is said to satisfy the CAT (0) inequality if for all x, y ∈ △ and all comparison points x, y ∈ △,

d(x, y) ⩽ dE2(x̄, ȳ).

Given two geodesic paths c : [0, l] −→ X and c′ : [0, l] −→ X in a metric space X originating
from the same point c(0) = c′(0), the Alexandrov angle between c and c′ is defined to be:

∠(c, c′) := lim
ϵ→0

sup
0<t,t′<ε

∠c(0)(c(t), c
′(t′)).

In this expression, ∠c(0)(c(t), c
′(t′)) is the comparison angle for the triple of points (c(0), c(t), c′(t′))

as defined previously. Given geodesic segments [x, y] and [x, z] we write ∠([x, y], [x, z]) to
denote the Alexandrov angle ∠(c, c′) where c and c′ are geodesic paths whose corresponding
geodesic segments are [x, y] and [x, z] respectively. Let X be the CAT (0) space. Consider two
geodesic segments [x, y] and [z, w] in a metric space X , such that z ∈ [x, y], z ̸= x and z ̸= y.
Then if [x, z] and [z, y] are geodesic segments such that [x, z] ∪ [z, y] = [x, y] it is easy to prove
that ∠([x, z], [z, w]) + ∠([z, w], [z, y]) ⩾ π. It’s mean that one of the angles ∠([x, z], [z, w]) or
∠([z, w], [z, y]) is greater or equal π

2 .
Let {xn} be a bounded sequence in a CAT (0) space X . For x ∈ X , we set

r(x, {xn}) = lim sup
n→∞

d(x, {xn}).

The asymptotic radius r(x, {xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of xn is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known from Proposition 7 of [8] that in a CAT (0) space, A({xn}) consists of exactly one
point.

Lemma 2.1. [7] If K is a closed convex subset of a complete CAT (0) space and if {xn} is a
bounded sequence in K, then the asymptotic center of {xn} is in K.

Lemma 2.2. [6] Let (X, d) be a CAT (0) space.
(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y).

We use the notation (1 − t)x⊕ ty for the unique point z satisfying latest equalities.
(ii) For x, y, z ∈ X and t ∈ [0, 1], we have

d((1 − t)x⊕ ty, z) ⩽ (1 − t)d(x, z) + td(y, z).

Lemma 2.3. [11] Let {xn} and {yn} be bounded sequences in a CAT (0) space X and let
{αn} ⊆ [0, 1) such that Σ∞

n=1αn = ∞ and lim supn αn < 1 . Suppose that xn+1 = αnyn ⊕
(1 − αn)xn and d(yn+1, yn) ⩽ d(xn+1, xn) for all n ∈ N. Then limn→∞ d(yn, xn) = 0.
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Definition 2.4. [3] Let (X, d) be a metric space. A mapping T : X → X is said sequentially
convergent if for every sequence {yn} such that {Tyn} be convergent, then {yn} also is conver-
gence.

Definition 2.5. [3] Let (X, d) be a metric space. A mapping T : X → X is said subsequentially
convergent if for every sequence {yn} such that {Tyn} is convergent, then {yn} has a convergent
subsequence.

Proposition 2.6. [3] If (X, d) is a compact metric space, then every function T : X → X is sub-
sequentially convergent and every continuous function T : X → X is sequentially convergent.

Definition 2.7. Let (X, d) be a metric space. Let T be the set of all functions T : X −→ X are
satisfying the following conditions:

(i) T is subsequentially convergent;

(ii) T is one-to-one;

(iii) T is onto;

(iv) T is continuous.

Definition 2.8. Let K be a nonempty subset of a metric space X . A mapping f : K −→ K is
said to T−nonexpansive if for some T ∈ T we have

d(Tfx, Tfy) ⩽ d(Tx, Ty).

for all x, y ∈ K.

Definition 2.9. Let K be a nonempty subset of a metric space X . A mapping f : K −→ K
is said to satisfy condition (TC) (Suzuki-generalized T−nonexpansive) if for some T ∈ T we
have

1
2
d(Tx, Tfx) ⩽ d(Tx, Ty) implies d(Tfx, Tfy) ⩽ d(Tx, Ty).

for all x, y ∈ K.

Definition 2.10. Let K be a nonempty subset of a metric space X . For a mapping f : K −→ K
and ϵ > 0 the ϵ−set of (T, f) is the set

Fϵ(T, f) = {x ∈ X : d(Tx, Tfx) < ϵ}.

3 MAIN RESULTS

Lemma 3.1. Let K be a bounded subset of a CAT (0) space X , suppose f : K −→ K is
T−nonexpansive mappings for some T ∈ T , and suppose x, y ∈ Fϵ(T, f) with d(Tx, Ty) = r.
Let m ∈ [x, y] ∩K. Then Tf(m) ∈ Fϕ(ϵ)(T, f), where ϕ(ϵ) =

√
ϵ2 + 2rϵ.

Proof. Let m ∈ K be the point of [x, y] such that d(Tx, Tm) = αd(Tx, Ty). We have,

d(Tx, Tfm)) ⩽ d(Tx, Tfx) + d(Tfx, Tfm)

⩽ d(Tx, Tfx) + d(Tx, Tm)

⩽ ϵ+ αr.

Similarly we can prove that
d(Ty, Tfm)) ⩽ ϵ+ (1 − α)r.

At least one of the angels ∠Tm(Tfm, Tx) and ∠Tm(Tfm, Ty) is greater than or equal π
2 . If

∠Tm(Tfm, Tx) ⩾ π
2 then in the comparison triangle △(Tm, Tx, Tfm) the angle at Tm is also

greater than or equal π
2 . By the law of cosines we have,

(ϵ+ αr)2 ⩾ d(Tx, Tfm)2 ⩾ (αr)2 + d(Tm, Tfm)2.
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Similarly, if ∠Tm(Tfm, Ty) ⩾ π
2 we have,

(ϵ+ (1 − α)r)2 ⩾ d(Ty, Tfm)2 ⩾ (1 − αr)2 + d(Tm, Tfm)2.

Therefore

d(Tm, Tfm)2 ⩽ max{ϵ2 + 2αrϵ, ϵ2 + 2(1 − α)rϵ}

⩽ ϵ2 + 2rϵ.

Theorem 3.2. Let K be a nonempty subset of a CAT (0) space X . Also, suppose
(i) K is bounded closed convex subset of X ,
(ii) T : K −→ K and T ∈ T ;
(iii) f : K → K is an T−nonexpansive such that;

inf{d(Tx, Tfx) : x ∈ K} = 0.

Then f has a fixed point in K.

Proof. Let x0 ∈ X be fixed. Define

ρ0 = inf{ρ > 0 : inf{d(Tx, Tfx) : Tx ∈ B(Tx0, ρ) ∩K} = 0},

and we have ρ0 < ∞. If ρ0 = 0 there exists sequence {xn} and ρn such that Txn ∈ B(Tx0, ρn)∩
K, ρn → 0 and d(Txn, T fxn) → 0. Since T is subsequentially convergent, by passing to
subsequence if necessary, xn has a subsequence convergent to x0. Without losing the generality
of the proof, assume that xn → x0. Since {xn} ⊆ K then x0 ∈ K. By the continuity of T
we have d(Tx0, T fxn) → 0. Therefore, Tfxn → Tx0 as n → ∞. Since T is subsequentially
convergent, by passing to subsequence if necessary, fxn has a subsequence convergent to x0.
Without losing the generality of the proof, assume that fxn → x0. On the other hand, we have

d(Tfxn, T fx0) ⩽ d(Txn, Tx0).

Then we have Tfxn → Tfx0. Since T is subsequentially convergent, by passing to subsequence
if necessary, fxn has a subsequence convergent to fx0. Without losing the generality of the
proof, assume that fxn → fx0. So we have x0 = fx0.
Now we suppose that ρ0 > 0. We choose {Txn} ⊆ K such that

d(Txn, Tfxn) → 0, d(Tx0, Txn) → ρ0, as n → ∞.

If {Txn} has a convergent subsequence then similarly we can prove that f has a fixed point. So
we suppose there exist ϵ > 0 and subsequences {uk} and {vk} of {xn} such that d(Tuk, T vk) ⩾
ϵ. By passing to a subsequence if necessary, we may also suppose d(Tuk, T vk) ⩽ ρ0 +

1
k . So

for any k ∈ N we have

ϵ ⩽ d(Tuk, T vk) ⩽ ρ0 +
1
k
. (3.1)

Let us to consider geodesic triangle △(Tx0, Tuk, T vk). Suppose that zk is the midpoint of the
segment [Tuk, T vk]. So there exist mk ∈ [uk, vk] such that Tmk = zk. Also suppose that
Tmk is the point corresponding to Tmk on the comparison triangle △(Tx0, Tuk, T vk). Then by
CAT (0) inequality we have

d(Tx0, Tmk) ⩽ d(Tx0, Tmk) ⩽

√
(ρ0 +

1
k
)2 − (

ϵ

2
). (3.2)

Clearly d(Tx0, Tmk) ⩽ ρ∗ < ρ0 for k sufficiently large. On the other hand, by Lemma 3.1, we
have

d(Tmk, T fmk) ⩽
√
ϵ2 + 2rϵ.

That’s mean, d(Tmk, T fmk) → 0 as k → ∞. This contradicts the definition of ρ0.
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Example 3.3. Let X = R, K = [ 1
9 , 1]. Let us define f : K −→ K and T : K −→ K as following

f(x) =
√
x, T (x) =

1
9x

.

It is easy to prove that T ∈ T and f is T−nonexpanisive mapping. Also, it is easy to prove that
f is not nonexpansive mappings. Then all conditions of Theorem 3.2 are satisfied for f . x = 1
is a fixed point of f .

Lemma 3.4. Let X be a metric space, T : X −→ X and T ∈ T . Also suppose {xn} is a bounded
sequence of X . Then
(i) r({xn}) is the asymptotic radius of {xn} if and only if r({Txn}) is the asymptotic radius of
{Txn},
(ii) A({xn}) is the asymptotic center of {xn} if and only if r({Txn}) is the asymptotic center of
{Txn}.

Proof. (i) Let {xnk
} be a convergent sequence of {xn}. By the continuity of T , {Txn} is

bounded and Txnk
is convergent. If limk→∞ xnk

= x∗, then limk→∞ Txnk
= Tx∗. On the

other hand, if Txn is convergent to Tx∗, since T is subsequentially convergent, {xn} has a
convergent subsequence to x∗. So we have

r(x, {xn}) = lim sup
n→∞

d(x, xn) ⇐⇒ r(Tx, {Txn}) = lim sup
n→∞

d(Tx, Txn), (3.3)

and the proof of (i) is complete.
(ii) It is easily proved by (i) and the definition of asymptotic center.

Lemma 3.5. Let K be a nonempty subset of a CAT (0) space X and suppose f : K −→ K
satisfies condition (TC) for some T ∈ T . Then for x, y ∈ K, the following hold:
(i) d(Tfx, Tf2x) ⩽ d(Tx, Tfx).
(ii) Either 1

2d(Tx, Tfx) ⩽ d(Tx, Ty) or 1
2d(Tfx, Tf

2x) ⩽ d(Tx, y) holds.
(iii) Either d(Tfx, Tfy) ⩽ d(Tx, Ty) or d(Tf2x, Tfy) ⩽ d(Tfx, Ty) holds.

Proof. (i) Follows from 1
2d(Tx, Tfx) ⩽ d(Tx, Tfx) and the (TC) property of f .

(ii) Assume that

1
2
d(Tx, Tfx) > d(Tx, Ty) and

1
2
d(Tfx, Tf2x) > d(Tfx, fy).

Then we have by (i),

d(Tx, Tfx) ⩽ d(Tx, Ty) + d(Tfx, Ty)

<
1
2
d(Tx, Tfx) +

1
2
d(Tfx, Tf2x)

⩽
1
2
d(Tx, Tfx) +

1
2
d(Tx, Tfx)

⩽ d(Tx, Tfx).

This is a contradiction. Therefore we obtain the desired result. (iii) Follows from (ii).

Lemma 3.6. Let K be a nonempty subset of a CAT (0) space X . Suppose f : K −→ K satisfies
condition (TC) for some T ∈ T . Then

d(Tx, Tfy) ⩽ 3d(Tfx, Tx) + d(Tx, Ty),

holds for all x, y ∈ K.

Proof. By Lemma 3.5, either

d(Tfx, Tfy) ⩽ d(Tx, Ty) or d(Tf2x, Tfy) ⩽ d(Tfx, Ty),
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holds. In the first case, we have

d(Tx, Tfy) ⩽ d(Tx, Tfx) + d(Tfx, Tfy)

⩽ d(Tx, Tfx) + d(Tx, Ty)

⩽ 3d(Tx, Tfx) + d(Tx, Ty).

In the second case, we have by Lemma 3.5

d(Tx, Tfy) ⩽ d(Tx, Tfx) + d(Tfx, Tf2x) + d(Tf2x, Tfy)

⩽ d(Tx, Tfx) + d(Tfx, Tfx) + d(Tf2x, Tfy)

⩽ 2d(Tx, Tfx) + d(Tfx, Tfy) + d(Tf2x, Tfx)

⩽ 2d(Tx, Tfx) + d(Tfx, Tfy) + d(Tfx, Tx)

⩽ 3d(Tx, Tfx) + d(Tx, Ty).

Therefore we obtain the desired result in both cases.

Lemma 3.7. Let K be a nonempty bounded and convex subset of a complete CAT (0) space X
and suppose f : K −→ K satisfies condition (TC) for some T ∈ T . Define a sequence {xn} by
x1 ∈ K and

Txn+1 = αnTfxn ⊕ (1 − αn)Txn,

for all n ∈ N, where {αn} ⊂ [ 1
2 , 1) such that lim supn αn < 1. Then

lim
n→∞

d(Tfxn, Txn) = 0.

Proof. It follows from Lemma 2.2 (i) that

1
2
d(Txn, Tfxn) ⩽ αnd(Txn, T fxn) = d(Txn, Txn+1),

for all n ∈ N. By condition (TC), we have

d(Tfxn, Tfxn+1) ⩽ d(Txn, Txn+1),

for all n ∈ N. Hence limn→∞ d(Tfxn, Txn) = 0 by Lemma 2.3.

Theorem 3.8. Let K be a nonempty bounded closed convex subset of a complete CAT(0) space
X . Suppose f : K −→ K satisfies condition (TC) for some T ∈ T . Then T has a fixed point in
K.

Proof. Let x1 ∈ K. By Lemma 2.2 and since T is onto, we can define sequence {xn} such that

Txn+1 =
1
2
Tfxn ⊕ 1

2
Txn.

By Proposition 7 of [15], there exist z ∈ X such that A({xn}) = {z}. By (i) of Lemma 3.4,
A({xn}) = {z} if and only if A({Txn}) = {Tz}. It follows from Lemma 2.1 that z ∈ K and so
Tz ∈ K. By Lemma 3.7 we have limn→∞ d(Txn, xn) = 0 and by Lemma 3.7, we have

d(Txn, Tfz) ⩽ 3d(Tfxn, Txn) + d(Txn, T z).

Taking lim sup on both sides in the above inequality, we obtain

lim sup
n→∞

d(xn, T fz) ⩽ lim sup
n→∞

d(Txn, T z).

That is
r(Tfz, {Txn}) ⩽ r(Tz, Txn).

By the uniqueness of asymptotic centers, we have Tz = Tfz. since T is one to one we have
fz = z. This completes the proof.
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4 Conclusion

By weakening condition nonexpansivity and considering the family of a certain class of func-
tions, we define so called T−nonexpansive and the mappings with condition (TC). For such
mappings, some fixed point theorems are also proved. In this way, we obtain a very large class
of operators which include not only some of the aforementioned-conditions but even mappings
that need not be nonexpansive. Due to the authors’ knowledge, fixed points of such operators
have not been examined so far.

Remark 4.1. It is proposed to investigate the fixed point property for multivalued nonexpansive
mappings ([24]) in CAT (0) spaces. Another interesting topic could be the generalization of
convergence theorems, as proved in [18] and [23] in CAT (0) spaces.
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