
Palestine Journal of Mathematics

Vol 14(2)(2025) , 577–604 © Palestine Polytechnic University-PPU 2025

Eight and Sixteen Dimensional Seminormed Hopf Algebras

Jitender and Shiv Datt Kumar

Communicated by Mohammad Ashraf

MSC 2020 Classifications: 17C60, 16T05, 11R52, 16W50.

Keywords and phrases: Algebras, Hopf algebras, quasialgebra, graded algebra..

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that
improved the quality of our paper.

Jitender sincerely thanks the Council of Scientific and Industrial Research (CSIR), Government of India for research fel-
lowship (SRF: 09/1032 (0024)/2020-EMR-I).

Corresponding Author: Jitender

Abstract In this article, first we construct an eight dimensional seminormed algebra Ol

and show that its elements preserve the norm relation ∥XY∥ = ∥X∥∥Y∥. Then we construct
a sixteen dimensional associative algebra Sl , which is an even subalgebra of 25-dimensional
Clifford algebra Cl5,0 and show that its elements also preserve the norm relation. We also define
the Hopf algebra structure on these algebras and show that the algebra Ol is a Z4

2/2-graded
quasialgebra and Sl is a Z5

2/2-graded quasialgebra. Finally we give some applications of these
algebras in number theory.

1 Introduction

In quantum mechanics, the state of a system is described by a mathematical object called a
quantum state vector, denoted by ψ . This state vector encodes all the information about the
system’s properties and probabilities of various measurement outcomes and this is known as
probabilistic interpretation of quantum theory. Jordan attempted to use the algebra of octonions
and sedenions to transfer the probabilistic interpretation of quantum theory in eight and sixteen
dimensions respectively, known as the exceptional Jordan problem [14]. Dirac [10] noticed
that Jordan’s attempt to obtain a generalized quantum theory in this manner was not successful
because the nonassociative multiplication rule is not compatible with any group of transforma-
tions such as Poincare group. The associativity ensures that the Poincare groups operations on
spacetime transformations are logically consistent and predictable, supporting the formulation
of invariant physical laws and principles like conservation laws. The associativity guarantees
that the order in which transformations are applied does not affect the final result. In this article,
we construct an eight dimensional semi-normed division associative algebra. Due to associative
property it is useful in exceptional Jordan type application to quantum theory. This algebra is
different from the algebra of octonions because it is associative and have two real and six imagi-
nary basis elements while the algebra of octonions is nonassociative and has one real and seven
imaginary basis elements. Then we define two norms on this algebra and show that these norms
satisfies the condition ∥XY∥= ∥X∥∥Y∥. Subsequently we construct a 16 dimensional associative
algebra which is an even subalgebra of 32-dimensional Clifford algebra Cl5,0 [1] and define a
norm on it. This algebra is different from the algebra of sedenion as it is associative and has six
real and ten imaginary basis elements, while the algebra of sedenions has one real and fifteen
imaginary basis elements.

Hopf algebras [17] provide the algebraic framework for defining and studying quantum
groups, which have applications in mathematical physics [10], theoretical computer science
and quantum information theory [15]. Albuquerque and Majid [1] introduced the concept of
group graded quasialgebras, which involves reinterpreting certain significant non-associative
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algebras as associative algebras in suitable tensor categories, which are algebraic structures
on the direct sum of homology and cohomology groups on an H-space in algebraic topology.
Linear Gr-category [11] is the category of finite group graded vector spaces, which has applica-
tions in tensor categories [4], quantum calculus [18], cohomology of groups and representation
theory [16]. Balodi et al. [3] proved that every expression in a G-graded quasialgebra can
be reduced to a unique irreducible form and the irreducible words form a basis for the quasi-
algebra, known as Diamond lemma. In this paper, we also construct the Hopf algebra [5] and
group graded quasialgebra [2] structure on these algebras. We also provide some applications
of these algebras to construct some new admissible triplets in number theory.

Outline of the article is as follows: In section 2, we construct an eight-dimensional semi-
normed algebra Ol , while the sixteen-dimensional seminormed division algebra Sl is constructed
in section 3. The existence of inverse of basis elements and construction of Hopf algebra from
eight and sixteen dimensional seminormed algebra is presented in section 4. Group graded
quasialgebras, group graded quasialgebras structure of octonion like algebras are discussed in
section 5. In section 6, we give a new series of examples of multiplicative pairs which is obtained
from eight and sixteen dimensional seminormed division algebras.

Throughout this article, K denotes the field of characteristic zero, K∗ = K −{0}, Ol is the
eight dimensional seminormed algebra, Sl is the sixteen dimensional seminormed algebra.

2 Eight dimensional seminormed algebra Ol

The eight dimensional seminormed division algebra is an algebra over R with basis {1 =
u0, u1, u2, u3,u4, u5, u6, u7} and complete multiplication table is given by:

* 1 u1 u2 u3 u4 u5 u6 u7

1 1 u1 u2 u3 u4 u5 u6 u7

u1 u1 -1 u3 −u2 −u5 u4 u7 −u6

u2 u2 −u3 -1 u1 u6 u7 −u4 −u5

u3 u3 u2 −u1 −1 u7 −u6 u5 −u4

u4 u4 u5 −u6 u7 −1 −u1 u2 −u3

u5 u5 −u4 u7 u6 u1 −1 −u3 −u2

u6 u6 u7 u4 −u5 −u2 u3 −1 −u1

u7 u7 −u6 −u5 −u4 −u3 −u2 −u1 1

The above multiplication table is constructed by the following rules: Consider the algebra A
over R generated by four elements e0, e1, e2, e3 with product given by the following relations:

e2
i = eiei = 1 and eie j =−e jei , for i ̸= j ∈ {0, 1, 2, 3}.

Thus there are sixteen basis elements in the algebra A, which are given as {1, e0, e1, e2, e3, e0e1,
e2e0, e0e3, e1e2, e3e1, e2e3, e0e1e2, e0e1e3, e0e2e3, e1e2e3, e0e1e2e3}. An eight dimensional
seminormed division algebra Ol is a subalgebra of A with basis {1, e0e1, e2e0,e1e2, e0e3, e1e3,
e2e3, e0e1e2e3}. For simplicity writing {1, e0e1, e2e0, e1e2, e0e3, e1e3, e2e3, e0e1e2e3} as {1=
u0, u1, u2, u3,u4, u5, u6, u7} satisfying u2

i = 1, for i = 0,7 and u2
i =−1 for i = 1, 2, 3, 4, 5, 6

which implies that there are two real and six imaginary basis elements, unlike the algebra of
octonions [13], which has one real and seven imaginary basis elements. It is clear from multi-
plication table of Ol that it is associative and noncommutative. An element X ∈Ol is written as
the linear sum of all basis elements of Ol , i.e.

X = xou0 + x1u1 + x2u2 + x3u3 + x4u4 + x5u5 + x6u6 + x7u7.

Conjugate of an element X ∈ Ol , denoted by X†, is defined by changing the sign of coefficients
of imaginary basis elements i.e.

X† = xou0 − x1u1 − x2u2 − x3u3 − x4u4 − x5u5 − x6u6 + x7u7

Let X , Y ∈Ol , where
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X = xou0 + x1u1 + x2u2 + x3u3 + x4u4 + x5u5 + x6u6 + x7u7 and
Y = you0 + y1u1 + y2u2 + y3u3 + y4u4 + y5u5 + y6u6 + y7u7.

Then Z = XY = (xou0 + x1u1 + x2u2 + x3u3 + x4u4 + x5u5 + x6u6 + x7u7)

(you0 + y1u1 + y2u2 + y3u3 + y4u4 + y5u5 + y6u6 + y7u7)

= (x0y0 − x1y1 − x2y2 − x3y3 − x4y4 − x5y5 − x6y6 + x7y7)u0

+(x1y0 + x0y1 − x3y2 + x2y3 + x5y4 − x4y5 − x7y6 − x6y7)u1

+(x2y0 + x3y1 + x0y2 − x1y3 − x6y4 − x7y5 + x4y6 − x5y7)u2

+(x3y0 − x2y1 + x1y2 + x0y3 − x7y4 + x6y5 − x5y6 − x4y7)u3

+(x4y0 − x5y1 + x6y2 − x7y3 + x0y4 + x1y5 − x2y6 − x3y7)u4

+(x5y0 + x4y1 − x7y2 − x6y3 − x1y4 + x0y5 + x3y6 − x2y7)u5

+(x6y0 − x7y1 − x4y2 + x5y3 + x2y4 − x3y5 + x0y6 − x1y7)u6

+(x7y0 + x6y1 + x5y2 + x4y3 + x3y4 + x2y5 + x1y6 + x0y7)u7

= zou0 + z1u1 + z2u2 + z3u3 + z4u4 + z5u5 + z6u6 + z7u7.

Also, the product Z = XY can be written in the matrix form as Zr = MxYr, where Mx is the 8×8
matrix obtained by taking all the coefficients from left side in the above multiplication given by:

Mx =



x0 −x1 −x2 −x3 −x4 −x5 −x6 x7

x1 x0 −x3 x2 x5 −x4 −x7 −x6

x2 x3 x0 −x1 −x6 −x7 +x4 −x5

x3 −x2 x1 x0 −x7 x6 −x5 −x4

x4 −x5 x6 −x7 x0 x1 −x2 −x3

x5 x4 −x7 −x6 −x1 +x0 +x3 −x2

x6 −x7 −x4 +x5 +x2 −x3 +x0 −x1

x7 x6 x5 x4 x3 x2 x1 x0


.

Also Yr and Zr are the real coefficients of X and Y written in matrix form as:

Yr =
[
y0 y1 y2 y3 y4 y5 y6 y7

]T
,

Zr =
[
z0 z1 z2 z3 z4 z5 z6 z7

]T
.

Now we define two seminorms ∥X∥1 and ∥X∥2 on Ol as follows:

∥X∥2
1 = x0x0 + x1x1 + x2x2 + x3x3 + x4x4 + x5x5 + x6x6 + x7x7 + x7x0 − x6x1 − x5x2 − x4x3 −

x3x4 − x2x5 − x1x6 + x0x7 = ∑
7
i=0 x2

i −2∑
3
i=1 x1x7−i +2x0x7,

∥X∥2
2 = x0x0 + x1x1 + x2x2 + x3x3 + x4x4 + x5x5 + x6x6 + x7x7 − x7x0 + x6x1 + x5x2 + x4x3 +

x3x4 + x2x5 + x1x6 − x0x7 = ∑
7
i=0 x2

i +2∑
3
i=1 x1x7−i −2x0x7.

The above ∥X∥1 and ∥X∥2 are seminorms but not norms as ∥1−e7∥1 = 0 but 1−e7=/0, similarly
∥1+ e7∥2 = 0 but 1+ e7 ̸= 0. In Theorem 1, we prove that Ol is a seminormed algebra and
Theorem 2 proves that XX† is commutative in Ol .

Theorem 2.1. An element X ∈Ol has inverse in Ol if ∥X∥1 ̸= 0 and ∥X∥2 ̸= 0.

Proof. Let X−1 =Y exists in Ol . Then XY = 1 or in the matrix form, as defined above, it can be
written as

MxYr =
[
1 0 0 0 0 0 0 0

]T
.

Hence inverse of X ∈ Ol exists only if the matrix Mx is non-singular. Also Mx is non-singular
if and only if its all eigenvalues are nonzero. We calculate the eigenvalues of Mx using the
following Matlab code:
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syms x0 x1 x2 x3 x4 x5 x6 x7
Mx = [x0 − x1 − x2 − x3 − x4 − x5 − x6 x7;

x1 x0 − x3 x2 x5 − x4 − x7 − x6;
x2 x3 x0 − x1 − x6 − x7 x4 − x5;
x3 − x2 x1 x0 − x7 x6 − x5 − x4;
x4 − x5 x6 − x7 x0 x1 − x2 − x3;
x5 x4 − x7 − x6 − x1 + x0 + x3 − x2;

x6 − x7 − x4 + x5 + x2 − x3 + x0 − x1;
x7 x6 x5 x4 x3 x2 x1 x0]

eig(Mx),

which are given by

λ0 = λ1 = x0 + x7 + i
√
−x2

1 +2x1x6 − x2
2 +2x2x5 − x2

3 +2x3x4 − x2
4 − x2

5 − x2
6

λ2 = λ3 = x0 + x7 − i
√
−x2

1 +2x1x6 − x2
2 +2x2x5 − x2

3 +2x3x4 − x2
4 − x2

5 − x2
6

λ4 = λ5 = x0 − x7 + i
√
−x2

1 −2x1x6 − x2
2 −2x2x5 − x2

3 −2x3x4 − x2
4 − x2

5 − x2
6

λ6 = λ7 = x0 − x7 − i
√
−x2

1 −2x1x6 − x2
2 −2x2x5 − x2

3 −2x3x4 − x2
4 − x2

5 − x2
6

and the magnitude of eigenvalues is given by:

|λ0|2 = |λ1|2 = |λ2|2 = |λ3|2 =
7

∑
i=0

x2
i −2

3

∑
i=1

x1x7−i +2x0x7 = ∥X∥1,

|λ4|2 = |λ5|2 = |λ6|2 = |λ7|2 =
7

∑
i=0

x2
i +2

3

∑
i=1

x1x7−i −2x0x7 = ∥X∥2.

It is given that ∥X∥1 ̸= 0 and ∥X∥2 ̸= 0. Thus the magnitude of all eigenvalues are nonzero.
Hence the inverse of X ∈Ol exists.

Theorem 2.2. Let X ∈Ol . Then XX† = X†X and (XX†)Y = Y (XX†), for all Y ∈Ol .

Proof. Let X ∈Ol . Then

X = xou0 + x1u1 + x2u2 + x3u3 + x4u4 + x5u5 + x6u6 + x7u7,
X† = xou0 − x1u1 − x2u2 − x3u3 − x4u4 − x5u5 − x6u6 + x7u7.

and XX† = (x0x0 + x1x1 + x2x2 + x3x3 + x4x4 + x5x5 + x6x6 + x7x7)u0

+(x1x0 − x0x1 + x3x2 − x2x3 − x5x4 + x4x5 + x7x6 − x6x7)u1

+(x2x0 − x3x1 − x0x2 + x1x3 + x6x4 + x7x5 − x4x6 − x5x7)u2

+(x3x0 + x2x1 − x1x2 − x0x3 + x7x4 − x6x5 + x5x6 − x4x7)u3

+(x4x0 + x5x1 − x6x2 + x7x3 − x0x4 − x1x5 + x2x6 − x3x7)u4

+(x5x0 − x4x1 + x7x2 + x6x3 + x1x4 − x0x5 − x3x6 − x2x7)u5

+(x6x0 + x7x1 + x4x2 − x5x3 − x2x4 + x3x5 − x0x6 − x1x7)u6

+(x7x0 − x6x1 − x5x2 − x4x3 − x3x4 − x2x5 − x1x6 + x0x7)u7.

We note that all the coefficients of imaginary basis elements are zero. Therefore,

XX† = (x0x0 + x1x1 + x2x2 + x3x3 + x4x4 + x5x5 + x6x6 + x7x7)

+(x7x0 − x6x1 − x5x2 − x4x3 − x3x4 − x2x5 − x1x6 + x0x7)u7 = X†X .

It is clear from the multiplication table that u0 and u7 commute with all basis elements. Hence
(XX†)Y = Y (XX†).

Now we show that ∥·∥1 satisfies the relation ∥X ·Y∥1 = ∥X∥1 ·∥Y∥1, which is useful in number
theory for discovering admissible triplets [14].

Proposition 2.3. The norm ∥·∥1 satisfies ∥X ·Y∥1 = ∥X∥1 · ∥Y∥1, for all X , Y ∈Ol .
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Proof. By definition of ∥·∥1

∥X∥2
1 = x0x0 + x1x1 + x2x2 + x3x3 + x4x4 + x5x5 + x6x6 + x7x7 + x7x0
−x6x1 − x5x2 − x4x3 − x3x4 − x2x5 − x1x6 + x0x7.

=
7

∑
i=0

x2
i −2

3

∑
i=1

x1x7−i +2x0x7 = XX†.

Therefore

∥XY∥1 =
√

XY (XY )† =
√

XYY †X† =
√

X∥Y∥2
1X† =

√
XX†∥Y∥2

1

=
√

∥X∥2
1∥Y∥2

1 = ∥X∥1∥Y∥1.

3 The 16-dimensional algebra Sl

The sixteen dimensional seminormed algebra is an algebra over R with basis {u0, u1, u2, u3, u4,
u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15} and complete multiplication table is given by
Table 1, which is obtained by the following rules: Consider the algebra A over R generated by
{e0, e1, e2, e3, e4}, with product given by the following relations:

e2
i = eiei = 1 and eie j =−e jei , for i ̸= j ∈ {0, 1, 2, 3, 4}.

The sixteen dimensional seminormed division algebra Sl is an even subalgebra of A, i.e.

Sl= span{1, e0e1, e0e2, e0e3, e1e2, e3e1, e2e3, e0e1e2e3, e0e4,
e1e4, e2e4, e3e4, e0e2e1e4, e0e1e3e4, e0e3e2e4, e1e2e3e4}.

The algebra Sl has six {1, e0e1e2e3, eoe2e1e4,eoe1e3e4, eoe3e2e4, e1e2e3e4}- real basis el-
ements and ten {eoe1, eoe2, eoe3, e1e2, e3e1,e2e3, eoe4, e1e4, e2e4, e3e4} imaginary basis
elements, while the algebra of sedenion has one real and fifteen imaginary basis elements. For
simplicity writing {1, e0e1, e0e2, e0e3, e1e2, e3e1, e2e3, e0e1e2e3, e0e4, e1e4,
e2e4, e3e4, e0e2e1e4, e0e1e3e4, e0e3e2e4, e1e2e3e4} as {1 = u0, u1, u2, u3,u4, u5, u6, u7,
u8, u9, u10,u11, u12, u13, u14, u15} in the multiplication table of Sl .

Proposition 3.1. The algebra Sl is closed under multiplication.

Proof. Let S, T ∈ Sl . Then S and T can be written as

S = s0 + s1eoe1 + s2eoe2 + s3eoe3 + s4e1e2 + s5e3e1 + s6e2e3 + s7eoe1e2e3 + s8eoe4 + s9e1e4 +
s10e2e4 + s11e3e4 + s12eoe2e1e4 + s13eoe1e3e4 + s14eoe3e2e4 + s15e1e2e3e4,

T = t0 + t1eoe1 + t2eoe2 + t3eoe3 + t4e1e2 + t5e3e1 + t6e2e3 + t7eoe1e2e3 + t8eoe4 + t9e1e4 +
t10e2e4 + t11e3e4 + t12eoe2e1e4 + t13eoe1e3e4 + t14eoe3e2e4 + t15e1e2e3e4,

where si, ti ∈ K, ∀ i = 0, 1, . . . ,15. It is evident from the multiplication table that Sl is closed
under multiplication, i.e. there exists U = ST ∈ Sl such that

U = u0 +u1eoe1 +u2eoe2 +u3eoe3 +u4e1e2 +u5e3e1 +u6e2e3 +u7eoe1e2e3 +u8eoe4 +
u9e1e4 +u10e2e4 +u11e3e4 +u12eoe2e1e4 +u13eoe1e3e4 +u14eoe3e2e4 +u15e1e2e3e4.

Clearly every S ∈ Sl can be written as dual of Ol , i.e. S = Sr +Sdε , where Sr, Sd ∈ Ol and
ε =−e1e2e3e4, such that ε2 = 1 and ε† = ε († is the reverse operation defined in [8], [9] ),

Sr = s0 + s1eoe1 + s2eoe2 + s3eoe3 + s4e1e2 + s5e3e1 + s6e2e3 + s7eoe1e2e3,

Sd =−s15 + s14eoe1 + s13eoe2 + s12eoe3 + s11e1e2 + s10e3e1 + s9e2e3 + s8eoe1e2e3.

Hence Sdε = s8eoe4 + s9e1e4 + s10e2e4 + s11e3e4 + s12eoe2e1e4 + s13eoe1e3e4 + s14eoe3e2e4
+s15e1e2e3e4.



582 Jitender and Shiv Datt Kumar

·
u 1

u 2
u 3

u 4
u 5

u 6
u 7

u 8
u 9

u 1
0

u 1
1

u 1
2

u 1
3

u 1
4

u 1
5

u 1
−

1
−

u 4
u 5

u 2
−

u 3
u 7

−
u 6

−
u 9

u 8
−

u 1
2

u 1
3

u 1
0

−
u 1

1
u 1

5
−

u 1
4

u 2
u 4

−
1

−
u 6

-u
1

u 7
u 3

−
u 5

−
u 1

0
u 1

2
u 8

−
u 1

4
−

u 9
u 1

5
u 1

1
−

u 1
3

u 3
−

u 5
u 6

−
1

u 7
u 1

−
u 2

−
u 4

−
u 1

1
−

u 1
3

u 1
4

u 8
u 1

5
u 9

−
u 1

0
−

u 1
2

u 4
−

u 2
u 1

u 7
−

1
u 6

−
u 5

−
u 3

−
u 1

2
−

u 1
0

u 9
u 1

5
u 8

u 1
4

−
u 1

3
−

u 1
1

u 5
u 3

u 7
-u

1
−

u 6
−

1
u 4

−
u 2

−
u 1

3
u 1

1
u 1

5
−

u 9
−

u 1
4

u 8
u 1

2
−

u 1
0

u 6
u 7

−
u 3

u 2
u 5

−
u 4

−
1

u 1
−

u 1
4

u 1
5

−
u 1

1
u 1

0
u 1

3
−

u 1
2

u 8
−

u 9

u 7
−

u 6
−

u 5
−

u 4
−

u 3
−

u 2
-u

1
1

−
u 1

5
−

u 1
4

−
u 1

3
−

u 1
2

−
u 1

1
−

u 1
0

−
u 9

−
u 8

u 8
u 9

u 1
0

u 1
1

−
u 1

2
−

u 1
3

−
u 1

4
u 1

5
−

1
-u

1
−

u 2
−

u 3
u 4

u 5
u 6

−
u 7

u 9
−

u 8
u 1

2
−

u 1
3

u 1
0

−
u 1

1
u 1

5
u 1

4
u 1

−
1

−
u 4

u 5
−

u 2
u 3

−
u 7

−
u 6

u 1
0

−
u 1

2
−

u 8
u 1

4
−

u 9
u 1

5
u 1

1
u 1

3
u 2

u 4
−

1
−

u 6
u 1

−
u 7

−
u 3

−
u 5

u 1
1

u 1
3

−
u 1

4
−

u 8
u 1

5
u 9

−
u 1

0
u 1

2
u 3

−
u 5

u 6
−

1
−

u 7
-u

1
u 2

−
u 4

u 1
2

u 1
0

−
u 9

−
u 1

5
u 8

u 1
4

−
u 1

3
u 1

1
u 4

−
u 2

u 1
u 7

1
−

u 6
u 5

−
u 3

u 1
3

−
u 1

1
−

u 1
5

u 9
−

u 1
4

u 8
u 1

2
u 1

0
u 5

u 3
u 7

-u
1

u 6
1

−
u 4

−
u 2

u 1
4

−
u 1

5
u 1

1
−

u 1
0

u 1
3

−
u 1

2
u 8

u 9
u 6

u 7
−

u 3
u 2

−
u 5

u 4
1

-u
1

u 1
5

u 1
4

u 1
3

u 1
2

−
u 1

1
−

u 1
0

−
u 9

u 8
u 7

−
u 6

−
u 5

−
u 4

u 3
u 2

u 1
1

M
ul

tip
lic

at
io

n
ta

bl
e

of
th

e
al

ge
br

a
Sl .



Eight and Sixteen Dimensional Seminormed Hopf Algebras 583

4 Norm on Sl

In this section, we define a norm on Sl and show that this norm preserves the condition ∥ST∥=
∥S∥∥T∥ and S ·S† is commutative [i.e. S ·S† = S† ·S and (S ·S†) ·T = T (S ·S†)], ∀ S, T ∈ Sl . If
S ∈ Sl , then norm of S = ∑

15
i=0 s2

i , which is equal to the square root of SS† with non scalar of SS†

set to zero. Let S = Sr +Sdε . Then S† = (Sr +Sdε)† = S†
r +S†

dε , since ε† = ε . Hence

SS† = (Sr +Sdε)(S†
r +S†

dε)

= (SrS†
r +SdS†

d)+(SrS
†
d +SdS†

r )ε

= (∥Sr∥2 +∥Sd∥2)+(SrS
†
d +SdS†

r )ε ,

which implies that ∥S∥2 = ∥Sr∥2 +∥Sd∥2, if Sr and Sd are orthogonal in Ol i.e. SrS
†
d +SdS†

r = 0.
Then we define Sl as

Sl = {S := Sr +Sdε | ∥S∥2 = ∥Sr∥2 +∥Sd∥2}.

Example 4.1. Let S = 1+ e0e1e2e3 + e0e4 + e1e2e3e4. Then Sr = 1+ e0e1e2e3 and Sd = −1+
e0e1e2e3, since (−1+e0e1e2e3) ·ε =(−1+e0e1e2e3) ·e1e2e3e4 = e0e4+e1e2e3e4, which implies
that S = Sr +Sdε . Hence

Sr = S†
r = 1+ e0e1e2e3,

Sd = S†
d =−1+ e0e1e2e3, which implies that

SrS
†
d +SdS†

r = (−1+ e0e1e2e3 − e0e1e2e3 +1)

+(−1− e0e1e2e3 + e0e1e2e3 +1) = 0.

Now in order to use the condition (SrS
†
d + SdS†

r )ε = 0, we must ensure that it is closed under
multiplication.

Lemma 4.2. The normed algebra Sl = {S := Sr +Sdε | ∥S∥2 = ∥Sr∥2 +∥Sd∥2} is closed under
multiplication.

Proof. Let S = Sr+Sdε and T = Tr+Tdε are in Sl . Then (SrS
†
d +SdS†

r ) = 0 and (TrT
†

d +TdT †
r ) =

0. Now we prove that (ST )r(ST )†
d +(ST )d(ST )†

r = 0. Here

ST = (Sr +Sdε)(Tr +Tdε)

= (SrTr +SdTd)+(SrTd +SdTr)ε

(ST )r = (SrTr +SdTd) and (ST )d = (SrTd +SdTr)

(ST )†
r = (SrTr +SdTd)

† = T †
r S†

r +T †
d S†

d

(ST )†
d = (SrTd +SdTr)

† = T †
d S†

r +S†
dT †

r .

Therefore,

(ST )r(ST )†
d +(ST )d(ST )†

r = (SrTr +SdTd)(T
†

d S†
r +S†

dT †
r )+(SrTd +SdTr)(T †

r S†
r +T †

d S†
d)

= SrTrT
†

d S†
r +SrTrS

†
dT †

r +SdTdT †
d S†

r +SdTdS†
dT †

r +SrTdT †
r S†

r

+SrTdT †
d S†

d +SdTrT †
r S†

r +SdTrT
†

d S†
d

= (SrTrT
†

d S†
r +SrTdT †

r S†
r )+(SrTrS

†
dT †

r +SdTrT †
r S†

r )

+(SdTdT †
d S†

r +SrTdT †
d S†

d)+(SdTdS†
dT †

r +SdTrT
†

d S†
d)

= SrS†
r (TrT

†
d +TdT †

r )+TrT †
r (SrS

†
d +SdS†

r )

+TdT †
d (SdS†

r +SrS
†
d)+SdS†

d(TdT †
r +TrT

†
d )

= 0, for (SrS
†
d +SdS†

r ) = 0 and (TrT
†

d +TdT †
r ) = 0.

Hence normed Sl is closed under multiplication.
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Definition 4.3. Let G be a group, KG be its group algebra and A,B are two subsets of G. Then
(A,B) is called a multiplicative pair if it satisfies

∥ab∥= ∥a∥∥b∥, ∀ a ∈ span(A), b ∈ span(B).

The span of A is defined as span(A) =∑αiai, ∀αi ∈K, ai ∈A and norm of an element a=∑αiai
is given by ∥a∥= ∑α2

i .

As an application, in order to find some admissible triplets on the algebra Sl , it is very
important to show that ∥ST∥= ∥S∥∥T∥.

Theorem 4.4. The norm defined in (1) satisfies ∥ST∥= ∥S∥∥T∥, for all S,T ∈ Sl .

Proof. Since every number in Sl can be written as dual of Ol , then we write S and T as dual of
Ol . Let

S = s0 + s1eoe1 + s2eoe2 + s3eoe3 + s4e1e2 + s5e3e1 + s6e2e3 + s7eoe1e2e3 + s8eoe4 + s9e1e4 +
s10e2e4 + s11e3e4 + s12eoe2e1e4 + s13eoe1e3e4 + s14eoe3e2e4 + s15e1e2e3e4,

T = t0 + t1eoe1 + t2eoe2 + t3eoe3 + t4e1e2 + t5e3e1 + t6e2e3 + t7eoe1e2e3 + t8eoe4 + t9e1e4
+t10e2e4 + t11e3e4 + t12eoe2e1e4 + t13eoe1e3e4 + t14eoe3e2e4 + t15e1e2e3e4.

Then S = Sr +Sdε and T = Tr +Tdε , where Sr, Sd , Tr, Td are elements of Ol given by

Sr = s0 + s1eoe1 + s2eoe2 + s3eoe3 + s4e1e2 + s5e3e1 + s6e2e3 + s7eoe1e2e3,

Sd =−s15 + s14eoe1 + s13eoe2 + s12eoe3 + s11e1e2 + s10e3e1 + s9e2e3 + s8eoe1e2e3 and
Tr = t0 + t1eoe1 + t2eoe2 + t3eoe3 + t4e1e2 + t5e3e1 + t6e2e3 + t7eoe1e2e3,

Td =−t15 + t14eoe1 + t13eoe2 + t12eoe3 + t11e1e2 + t10e3e1 + t9e2e3 + t8eoe1e2e3.

Therefore ST = (Sr +Sdε)(Tr +Tdε) = (SrTr +SdTd)+(SrTd +SdTr)ε ,

(ST )† = ((SrTr +SdTd)+(SrTd +SdTr)ε)
† = (SrTr +SdTd)

† +(SrTd +SdTr)
†ε

∥ST∥2 = (ST )(ST )†

= {(SrTr +SdTd)+(SrTd +SdTr)ε}{(SrTr +SdTd)
† +(SrTd +SdTr)

†ε}
= {(SrTr +SdTd)(SrTr +SdTd)

† +(SrTd +SdTr)(SrTd +SdTr)
†}

+{(SrTr +SdTd)(SrTd +SdTr)
† +(SrTd +SdTr)(SrTr +SdTd)

†}ε .

In the above sum the coefficient of ε is zero by Lemma 2. Hence

∥ST∥2 = {(SrTr +SdTd)(SrTr +SdTd)
† +(SrTd +SdTr)(SrTd +SdTr)

†}

= SrTrT †
r S†

r +SrTrT
†

d S†
d +SdTdT †

r S†
r +SdTdT †

d S†
d +SrTdT †

d S†
r +SrTdT †

r S†
d

+TrSdT †
d S†

r +TrSdT †
d S†

d .

In the above sum, second and sixth terms are cancelled as (TrT
†

d +TdT †
r ) = 0, third and seventh

terms are cancelled as (SrS
†
d +SdS†

r ) = 0, which implies that

∥ST∥2 = SrTrT †
r S†

r +SdTdT †
d S†

d +SrTdT †
d S†

r +TrSdT †
d S†

d

= ∥Sr∥2∥Tr∥2 +∥Sd∥2∥Td∥2 +∥Sr∥2∥Td∥2 +∥Sd∥2∥Tr∥2.

Hence ∥ST∥= ∥S∥∥T∥.

It is clear from the multiplication table of Sl that SS† for all S ∈ Sl contains only real basis
elements, which are commutative. Hence SS† = S†S and (SS†)T = T (SS†).
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5 Hopf algebra structure on the algebras Ol and Sl

In this section we construct Hopf algebra structure on Ol . A Hopf algebra is a six-tuple (H, µ, η ,
△, ε, S), where H is a vector space over K, the product µ : H ⊗H → H and unit η : H → k
satisfy the commutativity of the following diagrams:

H ⊗H ⊗H H ⊗H

H ⊗H H

id ⊗µ

µ
⊗

id

µ

µ

K ⊗H H ⊗H K ⊗H

H

η ⊗ id

µ

id ⊗η

The coproduct △ : H → H ⊗H and counit ε : K → H are such that the following diagrams
commutes.

C C⊗C

C⊗C C

△

△

id
⊗
△

△⊗ id

F⊗C C⊗C F⊗C

C

ε ⊗ id

△

id ⊗ ε

The antipode S : H → H, satisfies the commutativity of following diagram:

A⊗A A

A⊗A A

A⊗A

A⊗A

µ

id
⊗

S

η
⊗

ε

△

µ

△

S
⊗

id

Lemma 5.1, Lemma 5.2 gives the existence of inverse of basis elements in Ol , Sl respectively,
which is used in the existence of antipode on Ol and Sl .

Lemma 5.1. All basis elements ui, i = 0, 1, 2, 3, 4, 5, 6, 7 in Ol have unique inverse Ol .

Proof. Since for basis elements ui, i = 0, 1, 2, 3, 4, 5, 6, 7,∥ui∥1 = 1 and ∥ui∥2 = 1. Therefore
both norms are non-zero for all basis elements ui, hence inverse of ui exists, by Theorem 2.1.

Lemma 5.2. All basis elements in Sl have unique inverse Sl .

Proof. Since all real basis elements ui, i = 0, 7, 12, 13, 14, 15 satisfy u2
i = 1 and all imaginary

basis elements v j, j = 1, 2, 3, 4, 5, 6, 8, 9, 10, 11 satisfy v2
i = −1. Therefore u−1

i = ui and
v−1

j = v j.

Theorem 5.3. The algebras Ol and Sl are Hopf algebras with suitable coproduct, counit and
antipode.

Proof. The algebra Ol is closed under multiplication and has basis elements ui as given in the
multiplication table. Define the coproduct △(x) : Ol →Ol ⊗Ol and counit ε : Ol → R by

△(x) =△(∑aiui) = ∑ai(ui ⊗ui). ε(ui) = 1,
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If x = ∑aiui ∈ Ol , then (id ⊗△)△ (x) = (id ⊗△)△ (∑aiui) = (id ⊗△)(∑ai(ui ⊗ ui)) =
∑ai(ui ⊗ (ui ⊗ ui)) = ai((ui ⊗ ui)⊗ ui) = (△⊗ id)(ai(ui ⊗ ui)) = (△⊗ id)△ (∑aiui) = (△⊗
id)△(x). Therefore (id⊗△)△(ui)= (△⊗id)△(ui) and (ε⊗id)△(x)= (ε⊗id)△(∑aiui)(ε⊗
id)(ai(ui ⊗ ui)) = ai(1⊗ ui). Similarly (id ⊗ ε)△ (x) = (id ⊗ ε)△ (∑aiui) = (id ⊗ ε)(ai(ui ⊗
ui)) = ai(ui ⊗1). Since u1 ⊗1 = 1⊗u1 ∈Ol implies that (ε ⊗ id)△= (id ⊗ ε)△ which proves
that it is a coalgebra. Define the antipode S as

S(x) = S(∑aiui) = ∑aiu−1
i ,

for all x ∈Ol , where x = ∑aiui and u−1
i (inverse of ui) exists by Lemma 5.1 . Now we prove that

id ∗S = S∗ id for basis elements of Ol and apply linearity to get the result for general elements.
For any basis element ui ∈Ol ,

id ∗S(ui) = µ ◦ (id ⊗S)◦△(ui) = µ ◦ (id ⊗S)(ui ⊗ui) = µ(ui ⊗u−1
i ) = 1 = η ◦ ε(ui),

S∗ id(ui) = µ ◦ (S⊗ id)◦△(ui) = µ ◦ (S⊗ id)(ui ⊗ui) = µ(u−1
i ⊗ui) = 1 = η ◦ ε(ui).

Thus id ∗ S = S ∗ id = η ◦ ε . For the algebra Sl define △, ε, S same as for the algebra Ol .
The existence of inverse of basis elements are given in Lemma 5.2. Hence Ol and Sl are Hopf
algebras.

6 Zn
2-Graded Quasialgebra structure on the algebras Ol and Sl

Group graded quasialgebra [12] structure on Ol helps to find some multiplicative pairs on it.
Therefore it is useful to construct the group graded quasialgebra structure on Ol . A G-graded
vector space means a vector space V which can be written as V =⊕g∈GVg and Vg ·Vh ⊆Vgh, for
all g, h ∈ G, the elements of Vg are called homogeneous elements of degree g, denoted by |v|. A
normalized 3-cocycle on G is a map φ : G⊗G⊗G → K∗ satisfying the following conditions:

φ(ab,c,d)φ(a,b,cd) = φ(a,b,c)φ(a,bc,d)φ(b,c,d)

φ(a,e,b) = 1, ∀ a,b,c,d ∈ G.

A G-graded quasialgebra is a G-graded vector space V , a product map V ⊗V → V preserving
the total degree and associativity in the sense that

(u · v) ·w = u · (v ·w)φ(|u|, |v|, |w|), ∀ u,v,w ∈V .

Let x = (x1, x2, .... xn)∈Zn
2, define a group homomorphism f : Zn

2 →Z2 by f (x) = ∑
n
i=1 xi. Then

Ker( f ) is a subgroup of Zn
2, denoted by Zn

2/2 and called the even subgroup of Zn
2.

Example 6.1. An even subalgebra of Z4
2 is Z4

2/2 = {(0,0,0,0), (0,0,1,1), (0,1,0,1),
(0,1,1,0),(1,0,0,1),(1,0,1,0),(1,1,0,0),(1,1,1,1)}. Define Z4

2/2-grading on the basis ele-

ments {1, e0e1, e0e2, e0e3, e1e2, e2e3, e3e1,e0e1e2e3} of the algebra Ol as follows: |eie jekel |=
(a3, a2, a1, a0), where am = 1 if m = i, j, k, l, otherwise am = 0. Therefore we have

|1|= (0,0,0,0); |e0e1|= (0,0,1,1);

|e0e2|= (0,1,0,1); |e1e2|= (0,1,1,0);

|e0e3|= (1,0,0,1); |e3e1|= (1,0,1,0);

|e2e3|= (1,1,0,0); |e1e2e3e4|= (1, 1, 1, 1).

If uiu j = uk, then clearly |ui|+ |u j|= |uk|, for all ui,u j,uk ∈ {1, e0e1, e0e2, e0e3,e1e2,e2e3,
e3e1,e0e1e2e3}. Define

φ : Z4
2/2×Z4

2/2×Z4
2/2 → K∗ by φ(x,y,z) = 1, for all x,y,z ∈ Z4

2/2.

For ui ∈ Ol , |ui| ∈ Z4
2/2, then (uiu j)uk = ui(u juk)φ(|ui|, |u j|, |uk|). Hence Ol is a Z4

2/2-graded
quasialgebra.

Example 6.2. Z5
2/2-grading on the basis elements of the algebra Sl as follows: |eie jekelem|

= (a4, a3, a2, a1, a0), where an = 1 if n = i, j, k, l, m, otherwise an = 0. Therefore we have
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|1|= (0,0,0,0,0); |e0e1|= (0,0,0,1,1);

|e0e2|= (0,0,1,0,1); |e0e3|= (0,1,0,0,1);

|e1e2|= (0,0,1,1,0); |e3e1|= (0,1,0,1,0);

|e0e4|= (1,0,0,0,1); |e1e4|= (1,0,0,1,0);

|e2e4|= (1,0,1,0,0); |e3e4|= (1,1,0,0,0);

|e2e3|= (0,1,1,0,0); |e0e1e2e3|= (0,1,1,1,1);

|e0e2e1e4|= (1,0,1,1,1); |e0e1e3e4|= (1,1,0,1,1);

|e0e3e2e4|= (1,1,1,0,1); |e1e2e3e4|= (1,1,1,1,0),

Clearly, for ui, u j, uk ∈ { 1, e0e1, e0e2, e0e3, e1e2, e3e1, e2e3, e0e4, e1e4, e2e4, e3e4,
e0e1e2e3, e0e2e1e4, e0e1e3e4, e0e3e2e4, e1e2e3e4,} the above grading satisfies that if uiu j = uk,
then |ui|+ |u j|= |uk|. Define φ :Z5

2/2×Z5
2/2×Z5

2/2→K∗ by φ(x,y,z) = 1 for all x,y,z∈Z5
2/2.

Since Sl is associative, therefore φ = 1 preserve the condition

(uiu j)uk = ui(u juk)φ(|ui|, |u j|, |uk|), ∀ ui, u j, uk ∈ Sl .

Hence Sl is a Z5
2-graded quasialgebra.

7 Application

In number theory, Hurwitz problem [14] asks for the description of all admissible triples of
positive integers [r, s, N], in the sense that there exists a sum of squares formula of the type
(a2

1 + a2
2 + ...+ a2

r )(b
2
1 + b2

2 + ...+ b2
s ) = c2

1 + c2
2 + ...+ c2

N , where a = (a1,a2, ...,ar) and b =
(b1,b2, ...,bs). Also each ck is a linear combination of aib j with coefficients 1 or −1. The
identity (x2

1 + x2
2 + ...x2

n) · (y2
1 + y2

2 + ...y2
n) = (z2

1 + z2
2 + ...z2

n) is known as the n-square identity.
An admissible triplet of size [n, n, n] is known as n square identity. Hurwitz found 1, 2, 4, 8-
square identities by using the Yuzvinsky’s novel method [19] on the algebra of real numbers R,
complex numbers C, quaternions H and octonions O respectively. As an application, we apply
the Yuzvinsky’s novel method on the algebra Sl to get some admissible triplets. First we describe
the Yuzvinsky method to find square identities. Let V be a Zn

2 graded algebra. Then an element
u ∈ V can be written as u = ∑x∈Zn

2
axux, where ux denotes the x degree element of V . A pair of

subsets (A,B) of Zn
2 is called a multiplicative pair if it satisfies

∥a∥ · ∥b∥= ∥a ·b∥, ∀ a = ∑
x∈A

axux, b = ∑
y∈B

ayuy. (7.1)

The idea of Yuzvinsky is that there exists an admissible triplet of size [r, s, N] corresponding to a
multiplicative pair (A, B), where r = card(A), s = card(B) and N = card(A+B). This square
identity is given by(

∑
x∈A

a2
x

)
·

(
∑
y∈B

b2
y

)
= ∑

z∈A+B
c2

z , where cz = ∑
z=x+y

Sign(ux,uy)axby, (7.2)

where A+B = {a+b | a ∈ A, b ∈ B} and Sign(ux,uy) is defined as follows:

Sign(ux,uy) = (−1)∑i xiyi+∑i< j xiy j , for all x = (x1,x2, ...xn),y = (y1,y2, ...yn) ∈ Zn
2.

Example 7.1. Let A = B = {(0,0,0,0,0), (0,0,0,1,1), (0,0,1,0,1), (0,0,1,1,0)} are two sub-
sets of Z5

2/2. Since by theorem 4.4, A and B satisfies the equation (2). Therefore by applying
Yuzvinsky method on A and B, we get an admissible triplet of size [4, 4, 4] as card(A) = 4,
card(B) = 4 and card(A+B) = 4. Hence we obtain the well known square identity given by:

(a2
1 +a2

2 +a2
3 +a2

4) · (b2
1 +b2

2 +b2
3 +b2

4) = (a1b1 −a2b2 −a3b3 −a4b4)
2

+(a1b2 +a2b1 +a3b4 −a4b3)
2

+(a1b3 −a2b4 +a3b1 +a4b2)
2

+(a1b4 +a2b3 −a3b2 +a4b1)
2.
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Example 7.2. Let A = {(0,0,0,0,0), (0,0,0,1,1), (0,0,1,0,1), (0,0,1,1,0)} and B = {(0,0,0,
0,0), (0,0,0,1,1), (0,1,0,0,1), (0,1,0,1,0)} are two subsets of Z5

2/2. Clearly A and B satisfy
the equation (2), card(A) = card(B) = 4 and card(A+B) = 14. Now by applying the Yuzvinsky
method on A and B we get an admissible triplet of size [4, 4, 14], which is given as follows:

(a2
1 +a2

2 +a2
3 +a2

4) · (b2
1 +b2

2 +b2
3 +b2

4) = (a1b1 −a2b2)
2 +(a1b2 +a2b1)

2 +(a1b3)
2+

(a1b4)
2 +(a2b3)

2 +(a2b4)
2 +(a3b1)

2 +(a3b2)
2 +(a3b3)

2+

(a3b4)
2 +(a4b1)

2 +(a4b2)
2 +(a4b1)

2 +(a4b2)
2.
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