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Abstract In this paper, a new mathematical model for glucose-sensitive membrane-based
closed-loop insulin delivery systems. The analytical answers for glucose, gluconic acid, and
oxygen concentrations are provided by the model, which is based on nonlinear reaction-diffusion
equations and enzyme kinetics. These solutions are verified against simulation data. The study
compares the approximate solutions obtained using Akbar Ganji’s method with the analytical
results, providing a complete understanding of how the system behaves under different param-
eter conditions. The precision of insulin administration systems is improved by this integrated
approach, which also informs future biomedical applications that call for regulated biochemical
interactions.

1 Introduction

The glucose-insulin system, central to human metabolism, is regulated by complex interactions
involving the pancreas, liver, and peripheral tissues. These interactions can be modeled by frac-
tional calculus, reaction-diffusion equations, and numerical schemes, which capture the intricate
physical mechanisms governing glucose regulation, enzyme activity, and biochemical transport.
In nonlinear reaction-diffusion equations, common assumptions like homogeneous media, con-
stant reaction rates, simplified kinetics, and specific boundary conditions make the model solv-
able but limit its real-world applicability. These assumptions ignore spatial variability, dynamic
conditions, complex reactions, and higher-order interactions, which can reduce the model’s ac-
curacy and generalizability to more complex systems.Ozturk et al.[1] utilized fractional models
to capture memory effects in glucose-insulin dynamics, an approach that highlights how insulin
response depends not only on current glucose levels but also on historical levels due to slow-
acting metabolic feedback. Rasheed and Balasim[2] explored blow-up phenomena in reaction-
diffusion systems under Dirichlet boundary conditions, modeling scenarios where biochemical
concentrations rise rapidly, relevant to abrupt metabolic shifts or localized inflammation.

Khirsariya et al.[3] advanced fractional modeling in diabetes to include long-term glucose-
insulin interactions, emphasizing how insulin’s response is slower and distributed over time, as
opposed to instantaneous reactions. Shams et al.[4] introduced an embedding family of numeri-
cal schemes to address nonlinear equations, designed for the engineering challenges of handling
metabolic complexity and the nonlinearity of glucose responses. Soliman et al.[5] applied the
Approximate-to-Exact method to MHD heat and mass transfer around porous plates, applica-
ble to understanding nutrient and heat distribution in tissues. Iqbal et al.[6] examined soliton
structures in glycolysis-related reaction-diffusion systems, illustrating how concentration gradi-
ents drive biochemical reactions, key to understanding cellular energy production. Kemmer et
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al.[7] modeled enzyme-mediated glucose release, proposing a continuous release mechanism for
bioreactors where enzyme kinetics regulate glucose availability. Tuaimah et al.[8] developed a
D-shaped PCF sensor for glucose detection, using photonic technology to enhance sensitivity to
glucose’s optical properties, important in glucose-monitoring devices.

Shams et al.[9] introduced a Caputo-type scheme for root-finding in polynomial equations,
which facilitates biomedical applications by enabling accurate multi-root solutions in complex
biochemical networks. Reena and Swaminathan[10] modeled multiphase flow in photobiore-
actors, utilizing reaction-diffusion equations to simulate nutrient and gas transport across cell
cultures in biotechnological setups. Rajendran et al.[11] applied reaction-diffusion models in
enzymatic biofuel cells, illustrating how enzymes catalyze reactions that release electrical en-
ergy in bioelectrochemical devices. Hu et al.[12] modeled insulin distribution within the pan-
creas, highlighting the significance of localized insulin release on glucose homeostasis. Hag-
gar et al.[13] compared perturbation iteration and Euler methods to simulate glucose-insulin
dynamics during physical activity, focusing on the feedback between muscle activity and in-
sulin levels. Batool et al.[14] employed the Mittag-Leffler kernel for fractional-order effects
in glucose-insulin-glucagon dynamics, illustrating the delayed effects of glucagon on glucose
mobilization.

Li et al.[15] modeled glucose-insulin interactions with impulsive control, providing insights
into the influence of pharmaceutical agents on blood glucose levels. Alshehri et al.[16] utilized
fractional Caputo models for the glucose-insulin system, validated by experimental data, show-
ing how fractional orders capture physiological memory effects in insulin dynamics. Khalouta[17]
provided closed-form solutions for fractional PDEs, applicable in continuous glucose monitor-
ing where nonlinearity prevails. Alshehri et al[18]. examined fractional IVGTT glucose-insulin
dynamics, showing how fractional kinetics mirror physiological glucose clearance. Alalyani[19]
used predictor-corrector methods for β-cell kinetics, contributing to accurate modeling of glucose-
induced insulin release. Shams et al.[20] discussed fuzzy differential equations, suitable for sys-
tems with high uncertainty, like personalized glucose monitoring. Palumbo et al.[21] reviewed
existing models of glucose-insulin dynamics, addressing both the mathematical and physiolog-
ical complexity of blood glucose control. Mathematical modeling of glucose-insulin systems
and related biochemical processes relies on sophisticated numerical and analytical techniques to
capture the underlying physical mechanisms, from enzyme kinetics to closed-loop delivery sys-
tems. Shams et al.[22] presented a stable computational method for initial value problems with
engineering applications, illustrating how these methods support robust simulations in dynamic
biological systems. Saranya et al.[23] advanced the homotopy perturbation method (HPM) for
nonlinear equations, particularly in enzymatic glucose reactions within spherical matrices, where
enzyme-substrate interactions govern glucose breakdown rates.

Shams et al.[24] developed iterative techniques to estimate roots of nonlinear equations, crit-
ical for analyzing biochemical feedback mechanisms in differential equations. Mehala et al.[25]
provided analytical expressions for glucose, oxygen, and gluconic acid concentrations within a
composite membrane, relevant to closed-loop insulin delivery systems. This study emphasizes
the biochemical reaction diffusion occurring in non-steady states, where glucose levels con-
stantly change. Rana et al.[26] applied fractional calculus to diabetes modeling using fractional
homotopy perturbation and variational iteration methods, capturing the memory effects of insulin
responses in diabetic patients. Kausar et al.[27] explored fuzzy fractional Caputo-type schemes
for solving fuzzy nonlinear equations, which are pertinent in models with uncertain parameters,
as seen in personalized diabetes management. Mukherjee et al.[28] simulated a glucose-sensitive
composite membrane system for closed-loop insulin delivery, showing how such systems auto-
matically regulate insulin based on glucose levels. Shams et al.[29] introduced efficient iterative
methods for simultaneously finding all roots of polynomial equations, optimizing solutions in
biomedical engineering where complex biochemical networks are common.

Altun[30] analyzed nonlinear neutral differential systems with periodic coefficients and time-
varying delays, which can model insulin release patterns impacted by various physiological
delays. Joy and Rajendran[31] provided a transient analytical solution for glucose-sensitive
membranes in closed-loop insulin delivery, employing the Variational Iteration Method(VIM)
to model transient states in insulin release. Shams et al.[32] proposed numerical schemes for
root estimation in nonlinear equations, integral to refining glucose-insulin dynamic models.
Saranya et al.[33] also modeled glucose, insulin, and β-cell mass using HPM, capturing the
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growth and decline of pancreatic β-cells in response to glucose levels. Shams et al.[34] fur-
ther analyzed the stability of numerical schemes for nonlinear polynomials, ensuring accurate
predictions in engineering systems where stability is paramount. Saranya et al.[35] investigated
biodegradation in biofilters, using an analytical solution for nonlinear equations to model N-
butanol breakdown, relevant for systems where chemical breakdown plays a critical role, sim-
ilar to glucose metabolism. Swaminathan et al.[36] applied reaction-diffusion equations with
Michaelis-Menten kinetics to a microdisk biosensor, using HPM to model enzyme saturation ef-
fects critical in biosensors. Shams et al.[37] introduced an artificial hybrid neural network-based
scheme for solving nonlinear equations, showcasing the power of machine learning in simulating
biochemical reactions.

Ibrahim and Murad [38] analyzed solutions for fractional differential equations, providing
insights into their existence and stability, fundamental to fractional models of glucose-insulin
interaction which require stable solutions to simulate prolonged responses in metabolic sys-
tems.Elmoasry et al.[39] conducted a comprehensive analysis of a numerical scheme designed
to find the roots of interval-valued fuzzy nonlinear equations. Their work integrates interval
arithmetic with fuzzy logic, ensuring that the solutions capture the variability and imprecision in
input data. This approach is highly relevant in fields such as engineering design and decision-
making, where precise solutions may not always be achievable or practical, and interval-valued
fuzzy systems provide a more realistic framework for modeling.Kausar and Garg [40] explored
the Contra-harmonic Generalized Fuzzy Numerical Scheme, focusing on its application to me-
chanical engineering problems. This scheme is based on the contra-harmonic mean and incorpo-
rates generalized fuzzy logic principles to solve complex numerical problems more effectively.
By leveraging the contra-harmonic mean, the method provides enhanced stability and accuracy,
especially in scenarios with varying degrees of fuzziness in parameters. Their work demon-
strates the potential of this scheme in addressing challenges such as structural analysis, thermal
problems, and fluid dynamics, where traditional deterministic methods may fall short due to the
inherent uncertainties in mechanical systems.

Both studies underscore the growing importance of fuzzy numerical methods in tackling non-
linearity and uncertainty across various domains, paving the way for more robust and adaptable
solutions in optimization and engineering applications.Model predictions for glucose-sensitive
membranes are influenced by buffer composition and enzyme loading. High buffer capacity
improves stability but reduces responsiveness, while low capacity enhances sensitivity but risks
pH-induced deactivation. Higher enzyme loading accelerates reactions but may cause substrate
depletion, while lower loading reduces cost but slows response. Balancing these factors through
sensitivity analysis optimizes system performance.

1.1 Advantages of Akbar Ganji’s Method

Akbar Ganji’s Method (AGM) offers a robust balance of accuracy, computational efficiency, and
ease of implementation, often outperforming other approximation techniques like the Homotopy
Perturbation Method (HPM), Adomian Decomposition Method (ADM), and Variational Itera-
tion Method (VIM) in practical scenarios. AGM provides highly accurate solutions with fewer
iterations, avoids the complexities of polynomial expansions (ADM) or auxiliary parameters
(HPM), and requires minimal trial-and-error compared to VIM. Its straightforward iterative pro-
cess makes it user-friendly and well-suited for nonlinear problems with boundary conditions or
complex geometries, such as those found in biomedical applications. While HPM and VIM offer
theoretical flexibility, AGM’s practicality and efficiency make it a preferred choice for solving
nonlinear differential equations in applied settings.The Akbar Ganji model shows high accuracy
for glucose-responsive membranes, with metrics like MAE confirming strong alignment with ex-
perimental and simulation data. It outperforms many models in efficiency and reliability, though
accuracy depends on assumptions like uniform diffusion.

1.2 Motivation of this study

The motivation behind this research lies in advancing precision in insulin delivery systems
through a novel mathematical model that incorporates a glucose-sensitive membrane. The re-
search is driven by the need to address several challenges in biomedical applications, particularly
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in the effective control of insulin delivery for individuals with diabetes.

(i) Optimize Insulin Delivery: Improve dynamic response to glucose fluctuations for better
insulin control in diabetic patients.

(ii) Mathematical Modeling: Use glucose-sensitive membranes and nonlinear equations for
accurate glucose metabolism predictions.

(iii) Incorporate Enzyme Kinetics: Enhance understanding of glucose, gluconic acid, and oxy-
gen dynamics in insulin delivery.

(iv) Efficient Solutions with Akbar Ganji’s Method: Apply efficient methods for real-time so-
lution of complex equations.

(v) Advance Therapeutic Outcomes: Improve insulin delivery systems for better blood glucose
management in diabetes.

2 Formulation of the Mathematical Modelling

Joy and Rajendran [31] conducted a brief analysis and source of the non-dimensional mass trans-
fer nonlinear equations in a glucose composite membrane, which is given here.
The glucose-sensitive enzymatic reaction is termed as:

Glucose+ 0.5O2 −→ Gluconicacid+H2O (2.1)

Using the law of Fick’s law of diffusion along with the conservation of mass, the equation
for the diffusion along with the reaction is given below[31]

∂Ci

∂t
=

∂

∂x
(Di

∂Ci

∂x
) + viR (2.2)

where Ci signifies distinct species.i = ox for oxygen, i = g for glucose along with i = a
gluconic acid, and also stoichiometric constants for the va = 1, vg = −1, vox = −1/2 denotes
Concentration and Di denotes diffusion coefficient and R implies the general reaction rate which
is stated below:

R =
VmaxCgCox

Cox(Kg + Cg) + CgCox
(2.3)

where Kg and Kox denotes the Michaelis-Menten constants for glucose and glucose oxidase
Vmax denotes maximal reaction velocity. The initial and the boundary conditions were given as
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The non-dimensional form of the equations is given as :
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Here u,v and w denotes the non-dimensional concentrations of gluconic acid, glucose, along
with oxygen respectively and also γE1,γS1 denotes the Thiele moduli values, α and β are the
non-dimensional rate constants. The equivalent initial condition becomes

u =
cosh(X)

cosh(1)
; v =

cosh(X)

cosh(1)
;w = 1 − cosh(X)

cosh(1)
; ifτ = 0 (2.12)

∂u

∂X
= 0;

∂v

∂X
= 0;

∂w

∂X
= 0; ifX = 0 (2.13)

u = 1; v = 1;w = 0ifX = 1 (2.14)

3 Approximate analytic expressions for concentration of gluconic acid,
glucose, and oxygen under unsteady conditions by a Variational Iterative
method (VIM)

Eqns.(2.7 to 2.11) denotes the system of the non-linear equations for unsteady state orders. we
have attained the analytic expression for the concentrations of oxygen, glucose along with glu-
conic acid via a Variational Iterative method[30]

The above equation is valid for insignificant values of time. The dimensionless form of the
equations is given as
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From the outcomes the above analytical term for the concentrations becomes

u(X) =
cosh

√
k(X)

cosh
√
k

; (3.4)

v(X) =
γS1

2ηγS1

cosh
√
k(X)

cosh
√
k

− γS1

2ηγS1
− 1; (3.5)

w(X) =
γS1

µγE1

cosh
√
k(X)

cosh
√
k

− γE
µγE1

(3.6)

Where k = γE1
1+ 1

α+ 1
β

4 Approximate analytic expressions of concentration of gluconic acid,
glucose, and oxygen under steady conditions by Akbar Ganji’s Method
(AGM)

Here are the trial solutions for Equation 2.9 using the new analytical method

u(X) = A0sinh(mx) +B0cosh(mx) (4.1)

where A0,B0,mare constants. Using the boundary conditions (12) and (13), we obtain
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A0 = 0;B0 =
1

coshm
(4.2)

Now,Eqn.4.1 reduces to

u(X) =
cosh(mx)

cosh(m)
(4.3)

where m is constant.Eqn. (8) can be rewritten as
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When x = 1, the above results becomes
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Substituting α = 0.1,β = 0.01,γE1 = 10, to get m = 0.3133 and from the outcomes the
above analytical term for the concentrations becomes

We have derived the approximate analytical solution for nonlinear equations using a mathe-
matical programme (maple) to determine the Figures.

5 Numerical Simulation

The nonlinear differential equations (2.9-2.11) along with boundary conditions (2.13 and 2.14)
were solved using MATLAB function for numerical solutions, and analytically using Akbar
Ganji’s method. Tables 1, 2, and 3, as well as Fig. 1(a–c), compare these numerical and ana-
lytical solutions. The maximum mean errors between analytical and the numerical solutions for
glucose, oxygen, along with gluconic acid concentrations are 0.0051%, 0.0052%, and 0.1322%,
respectively. Furthermore, the steady-state analytical results are compared with steady-state so-
lutions, revealing an excellent agreement between the two, as depicted in Fig. 2.The metrics used
include MAE to measure average deviation and accuracy, computational efficiency to evaluate
time and resource usage. These metrics effectively validate analytical results, ensuring accuracy,
consistency, and practicality.

5.1 Comparative Analysis

Maximum mean errors of 0.0051% for glucose concentration, 0.0052% for oxygen concentra-
tion, and 0.1322% for gluconic acid concentration were found when comparing numerical and
analytical answers, demonstrating good precision. Fig. 2 illustrates the high consistency of
steady-state data. Minimal deviations were validated by validation metrics such as Mean Ab-
solute Error (MAE), and Akbar Ganji’s method’s resource optimisation and practicality were
shown by computing efficiency. When compared to numerical solutions, these results validate
the analytical approach’s accuracy, dependability, and efficacy.

6 Results and Discussion

Equations (4.3-4.7) provide analytical equation for the non-dimensional concentrations of glu-
cose (u), gluconic acid (w) and oxygen (v) applicable for curt times and across all parameter
values studied. The Thiele modulus can be adjusted by varying the membrane thickness or
concentrations of oxygen and also glucose in the exterior solution. Tables 1, 2, and 3 shows
the non-dimensional concentration values of glucose (u), gluconic acid (w) along with oxygen
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(v) and for specific parameter settings. Analysis of these tables reveals that the profiles of glu-
cose and oxygen concentrations about the membrane are predominantly constant and increase,
reaching maximum values at X = 1. However, gluconic acid exhibits a continuous decrease in
concentration instead of an increase. The results obtained via the AGM (Akbar Ganji’s Method)
and VAM (Variational Iterative Method) are nearly identical, illustrating a consistent depiction.
The rate of decreasing in the glucose and the oxygen concentrations steepens with higher Thiele
modulus or membrane thickness. Conversely, gluconic acid concentration increases with in-
creasing Thiele modulus, as glucose along with oxygen combine to form gluconic acid in the
membrane’s center.

6.1 Impact of Membrane Thickness on Glucose(u) Concentration Dynamics

The membrane’s texture significantly influences the transport of reactants and products in en-
zymatic reactions within a composite membrane, with glucose concentration affected by the
membrane’s porosity and thickness. As shown in Fig 1(a) the Thiele modulus, which depends
on membrane thickness, increases, glucose concentration decreases, indicating that thicker mem-
branes reduce glucose levels; at sufficiently high Thiele modulus values, glucose concentration
approaches zero. Figure 2 illustrates how various parameters affect the non-dimensional glucose
concentration across a non-dimensional distance (X). In Fig. 2(a), varying the parameter (k),
which could represent reaction rate constants or diffusion coefficients, shows that higher values
result in steeper concentration gradients, indicating faster reactions or diffusion. Fig. 2(b) de-
picts the effect of a time constant-like parameter, with larger values indicating slower dynamics
and more gradual concentration changes. In Fig. 2(c), changes in an enzymatic reaction rate
parameter affect the speed of glucose consumption or production, while Fig. 2(d) shows that
higher diffusion coefficients lead to more uniform concentration profiles due to faster diffusion.

6.2 Influence of Maximum Reaction Velocity on Oxygen Concentration Dynamics

In the enzymatic reaction-diffusion process, the maximum reaction velocity Vmax directly re-
lated to the enzyme concentration within the membrane, dictating the overall reaction kinetics.
As shown in Fig. 1(b), an increase in the reaction-diffusion parameter, which depends on Vmax,
causes the oxygen concentration to decrease and eventually approach zero at higher reaction
velocities. Conversely, at low reaction velocities, the oxygen concentration remains uniform or
reaches a steady state. Fig. 3 demonstrates how oxygen concentration varies with distance and
different parameters. In Fig. 3(a), oxygen concentration increases with distance from the source
due to diffusion and also increases with higher diffusion coefficients (k). Fig. 3(b) shows that a
higher dimensionless reaction parameter leads to a faster decrease in oxygen concentration as it
is consumed more rapidly, reaching a steady-state when the rate of reaction matches the rate of
diffusion. In Fig. 3(c), a higher dimensionless oxygen consumption rate results in lower oxygen
concentration at any given distance, with a maximum concentration occurring where diffusion
rate equals consumption rate. Fig. 3(d)-(f) depict oxygen diffusion away from the source, with
faster diffusion rates corresponding to steeper concentration gradients and more rapid decreases
in oxygen concentration. Overall, these Figures highlight the intricate balance between diffusion,
reaction rates, and enzyme kinetics in determining oxygen distribution in the membrane.

6.3 Impact of External Glucose Concentration on the Distribution of Gluconic
Acid(w)

The concentration of gluconic acid is influenced by glucose concentration, membrane permeabil-
ity, and enzymatic reaction rate. As Fig. 1(c) indicates, a decrease in the Thiele modulus, which
is affected by the initial glucose concentration, results in higher gluconic acid levels; lower initial
glucose concentrations increase diffusion rates across the membrane, enhancing the conversion
of glucose to gluconic acid. Fig. 4(a) shows that with a small k, gluconic acid diffuses slowly
relative to its production rate, leading to high concentrations near the production site and a grad-
ual decline with distance. Fig. 4(b) demonstrates that gluconic acid concentration decreases with
distance due to diffusion, with higher parameter values corresponding to faster diffusion rates. In
Fig. 4(c), an increased diffusion coefficient ratio raises the concentration of gluconic acid at the
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surface and steepens the concentration gradient, leading to a higher steady-state concentration.
Fig. 4(d) shows that gluconic acid concentration increases with distance from the air-medium
interface due to diffusion but decreases with higher parameter values that slow diffusion. Fig.
4(e) reveals that when the parameter is low, gluconic acid concentration is nearly constant, while
higher parameter values cause a steeper decline due to increased consumption rates. Fig. 4(f)
illustrates that a higher reaction-to-diffusion ratio leads to a sharper decrease in gluconic acid
concentration, highlighting the balance between diffusion, which evens out concentration differ-
ences, and reaction kinetics, which determine the concentration profile based on production or
consumption rates.

6.4 Parameter Sensitivity Evaluation through Differential Methods

The Fig.5 presents sensitivity analysis results for glucose, gluconic acid, and oxygen concentra-
tions, showing the influence percentages of specific parameters on these concentrations. Fig.5(a)
shows that glucose concentration, parameters α, β each have the highest influence at 49.5%,
indicating that changes in these parameters significantly affect glucose levels. The parameter
γE1 has a minor influence at 1% at all. Fig.5(b) shows that oxygen concentration α, β remain
the most influential parameters, each contributing 45%, highlighting their critical role in de-
termining oxygen levels. The parameter η has a small influence at 9%, and γE1 and γS1 have
very minimal influences, at 0.4% and 0.6%, respectively. Fig.5(c) shows that gluconic acid con-
centration, α, β again show the highest influence, each contributing 45.2% and 45.4%, which
suggests their substantial impact on gluconic acid levels. The parameter µ has a moderate in-
fluence at 4.9%, whereas γE1,γE and γS1 have minor influences, contributing 1.4% ,0.8% and
2.3%, respectively. Overall,α, β are consistently the most significant parameters across all three
concentrations, while γE1,γE and γS1 have varying degrees of lesser influence.

7 Conclusion remarks

A comprehensive theoretical analysis was performed to investigate glucose sensitivity in a com-
posite membrane consisting of glucose oxidase, catalase, an anionic polymer, and a hydrophobic
matrix. Utilizing the mathematical model of nonlinear reaction-diffusion equations was analyt-
ically solved under steady-state conditions. This model effectively predicted the concentration
profiles and diffusivity of key components, including oxygen, glucose, and gluconic acid, within
the membrane. The analytical results were further validated through numerical simulations,
confirming the model’s accuracy. The study also examined the influence of enzyme loading
and buffer composition on membrane formation, providing crucial insights into optimizing the
membrane’s performance for glucose sensing. These findings offer significant implications for
the design and enhancement of glucose-sensitive membranes in both biomedical applications,
such as glucose biosensors, and industrial processes where precise glucose detection is required.

7.1 Limitations and Critical Findings

The Akbar Ganji model’s robustness is limited by assumptions like steady-state kinetics and
idealized reactions, which may not hold under complex conditions like substrate inhibition or
cooperative binding. Variations in kinetic parameters (e.g., pH, temperature) and geometry-
specific boundary conditions can further affect its accuracy. Non-linearities, such as enzyme
saturation, may reduce its applicability unless higher-order corrections are applied. Regular ex-
perimental validation and model updates are necessary to improve reliability. Factors like pH,
temperature, inhibitors, membrane fouling, and changes in ionic strength should be considered in
future models for better real-world applicability.The Akbar Ganji study ensures biocompatibility
and long-term stability of glucose-sensitive membranes by optimizing materials and enzyme sta-
bility to minimize immune response and maintain functionality under fluctuating physiological
conditions.
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7.2 Future Scope

The Akbar Ganji technique, especially through approaches like the Homotopy Perturbation
Method (HPM), is highly effective for solving complex nonlinear problems across various bio-
logical and industrial domains, such as drug delivery, biofilm formation, enzyme kinetics, pol-
lution management, and chemical reactor design. It provides accurate solutions that advance
scientific research, engineering, and medical practices. This method helps deepen our under-
standing of biological systems, optimize industrial processes, and improve both environmental
and health outcomes. Its practical applications support sustainability, personalized healthcare,
and greater efficiency in industry, ultimately enhancing quality of life and driving innovation.

Figure 1. Comparison of analytic expression for the concentration of glucose , oxygen and
gluconic acid and with numerical results for different parameters (a) vg = −1, α = 0.01, β =
1.15 (b) vox = −1/2, α = 0.01, β = 1.15, γE1 = 10 (c) vg = −1, α = 0.01, γE1 = 5 dash
dotted lines , spotted lines signify the New iterative solution ,New analytical solution along with
solid lines signify the numerical results.
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Figure 2. Plot for the concentration profiles for glucose u(X) and non-dimensional distance X
calculated via 3.4 for the values of: (a) parameter k (b) α = 0.01, β = 1.15 (c)β = 1.15, γE1 =
10 (d)γE1 = 10, α = 1

Figure 3. Plot for the concentration profiles of oxygen v(X) and non-dimensional distance X
calculated via Eqn. 21 for values of: (a)γS1 = 10, γE1 = 10, η = 0.1 (b)γE1 = 10, η = 0.1, α =
0.01, β = 1 (c)γS1 = 30, η = 0.1, α = 0.01, β = 1 (d)γS1 = 10, γE1 = 1, η = 0.1, β = 0.01
(e)γS1 = 4, γE1 = 1, η = 0.1, α = 0.1 (f)γS1 = 3, γE1 = 3, β = 1, α = 0.01
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Figure 4. Plot for the concentration profiles of gluconic acid w(X) and non-dimensional distance
X calculated via Eqn. 22 for values of: (a)γS1 = 10, γE1 = 10, µ = 0.1 (b)γE1 = 10, µ = 1, α =
0.05, β = 0.01 (c)γS1 = 100, µ = 1, α = 0.05, β = 0.01 (d)γS1 = 100, γE1 = 10, µ = 1, β =
0.01 (e)γS1 = 32, γE1 = 10, µ = 1, α = 0.1 (f)γS1 = 10, γE1 = 1, β = 0.01, α = 0.01

Figure 5. Impact proportion of the parameters in various concentrations (a)u,(b)v,(c)w
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Figure 6. Dimensionless Concentration of u, v, w versus Dimensionless Distance X and solid
line, dash lines, and dotted lines represent the Analytical solution for Concentration of glu-
cose(Eqn.3.4), oxygen(Eqn.3.5), and gluconic acid(Eqn.3.6) respectively.

Figure 7. Flow Chart for the Mathematical Model for closed loop Insulin Delivery System
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Table 1. Validation for standardized steady state of Glucose Concentration v

R Glucose Concentration u
γE1 = 10 γE1 = 210 γE1 = 350
Num.
Soln
Eq.4.3

VIM
[30]

AGM
Eq.4.3

VIM
er-
ror%

AGM
er-
ror%

Num.
Soln
Eq.4.3

VIM
[30]

AGM
Eq.4.3

VIM
er-
ror%

AGM
er-
ror%

Num.
Sol
Eq.4.3

VIM
[30]

AGM
Eq.4.3

VIM
er-
ror%

AGM
er-
ror%

0 0.9528 0.9528 0.9538 0.0000 0.0010 0.4479 0.4503 0.4493 0.0053 0.0053 0.3029 0.3058 0.3008 0.0095 0.0069
0.2 0.9546 0.9547 0.9532 0.0001 0.0014 0.4666 0.4690 0.4660 0.0051 0.0051 0.3242 0.3271 0.3221 0.0089 0.0089
0.4 0.9602 0.9603 0.9593 0.0001 0.0009 0.5246 0.5267 0.5227 0.0040 0.0012 0.3912 0.3938 0.3928 0.0066 0.0040
0.6 0.9696 0.9697 0.9627 0.0001 0.0071 0.6264 0.6280 0.6240 0.0025 0.0038 0.5132 0.5153 0.5053 0.0040 0.0153
0.8 0.9829 0.9829 0.9809 0.0000 0.0020 0.7806 0.7815 0.7805 0.0011 0.0001 0.7071 0.7084 0.7004 0.0018 0.0094
1 1.0010 1.0000 1.0000 0.0009 0.0009 0.9999 1.0000 1.0000 0.0001 0.0001 0.9999 1.0000 1.0000 0.0001 0.0001

Mean Error 0.0002 0.0133 Mean Error 0.0030 0.0156 Mean Error 0.0051 0.0446

Table 1 shows that the validation for standardized steady state Concentration of glucose u
along with numerical solutions for numerous values of γE1 and for the values of α = 0.1,β =
0.01 using Akbar Ganji’s Method.

Table 2. Validation for standardized steady state of Oxygen Concentration v

R Oxygen Concentration v
γS1 = 10 γS1 = 30 γS1 = 35
Num.
Soln
Eq.4.6

VIM
[30]

AGM
Eq.4.6

VIM
er-
ror%

AGM
er-
ror%

Num.
Soln
Eq.4.6

VIM
[30]

AGM
Eq.4.6

VIM
er-
ror%

AGM
er-
ror%

Num.
Soln
Eq.4.6

VIM
[30]

AGM
Eq.4.6VIM
er-
ror%

AGM
er-
ror%

0 0.9762 0.9764 0.9742 0.0002 0.0020 0.5291 0.5292 0.5262 0.0001 0.0054 0.5169 0.5174 0.5164 0.0005 0.0009
0.2 0.9771 0.9773 0.9743 0.0002 0.0028 0.6312 0.6320 0.6310 0.0008 0.0003 0.6201 0.6207 0.6197 0.0006 0.0006
0.4 0.9800 0.9801 0.9791 0.0001 0.0009 0.7401 0.7405 0.7385 0.0040 0.0021 0.7301 0.7305 0.7295 0.0004 0.0008
0.6 0.9832 0.9848 0.9818 0.0016 0.0014 0.8542 0.8546 0.8506 0.0004 0.0042 0.8469 0.8470 0.8452 0.0001 0.0020
0.8 0.9909 0.9914 0.9901 0.0005 0.0008 0.9742 0.9744 0.9714 0.0002 0.0028 0.9700 0.9701 0.9691 0.0001 0.0009
1 1.0010 1.0000 1.0000 0.0001 0.0001 1.0000 1.0000 1.0000 0.0001 0.0001 1.0000 1.0000 1.0000 0.0001 0.0001

Mean Error 0.0002 0.0133 Mean Error 0.0030 0.0156 Mean Error 0.0051 0.0446

Table 2 shows that the validation for standardized steady-state Concentration of oxygen v
along with numerical solutions for different solutions of γS1 and for values of α = 0.1,β =
0.01,γE1 = 10 and vox = −1/2.

Table 3. Validation for standardized steady state of Gluconic acid Concentration w

R Gluconic acid Concentration w
γS1 = 5 γS1 = 20 γS1 = 40
Num.
Soln
Eq.4.7

VIM
[30]

AGM
Eq.4.7

VIM
er-
ror%

AGM
er-
ror%

Num.
Soln
Eq.4.7

VIM
[30]

AGM
Eq.4.7

VIM
er-
ror%

AGM
er-
ror%

Num.
Soln
Eq.4.7

VIM
[30]

AGM
Eq.4.7

VIM
er-
ror%

AGM
er-
ror%

0 0.1820 0.1774 0.1764 0.0252 0.0307 0.7063 0.7096 0.7054 0.0046 0.0012 1.3333 1.4192 1.3992 0.0644 0.0494
0.2 0.1749 0.1705 0.1724 0.0251 0.0142 0.6790 0.6821 0.6811 0.0045 0.0030 1.2828 1.3643 1.3243 0.0635 0.0323
0.4 0.1536 0.1498 0.1400 0.0247 0.0885 0.5967 0.5993 0.5932 0.0043 0.0058 1.1305 1.1986 1.1586 0.0602 0.0248
0.6 0.1177 0.1149 0.1100 0.0237 0.0654 0.4579 0.4597 0.4532 0.0039 0.0141 0.8709 0.9195 0.9025 0.0558 0.0362
0.8 0.0668 0.0652 0.0621 0.0538 0.0683 0.2601 0.2610 0.2600 0.0034 0.0004 0.4969 0.5221 0.5021 0.0507 0.0104
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean Error 0.0254 0.0445 Mean Error 0.0034 0.0245 Mean Error 0.0491 0.1322
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Table 3 discussed the Validation of standardized steady state concentration of gluconic acid
w along with numerical solutions for multiple values of γS1 and for fixed values of α = 0.1,β =
0.01 and γE = 5.

Table 4. Nomenclature
Parameter Description Units

Cg Concentration of Glucose mol/cm3

Dg Diffusion Coefficient of Glucose cm2/s

Cox Concentration of Oxygen mol/cm3

Dox Diffusion Coefficient of Oxygen cm2/s

Ca Concentration of Gluconic acid mol/cm3

Da Diffusion Coefficient of Gluconic acid cm2/s

Kg Glucose’s Michaelis Menten Constant mol/cm3

Kox Oxygen’s Michaelis Menten Constant mol/cm3

Vmax Maximal reaction rate mol/cm3

t Time s

x Distance mm

Cg
∗ Glucose’s Concentration in external solution mol/cm3

Cox
∗ Concentration of the glucose in oxygen solution mol/cm3

l The half-thickness of the membrane None

u Non-Dimensional Concentration of the Glucose None

v Non-Dimensional Concentration of the Oxygen None

w Non-Dimensional Concentration of the Gluconic acid None

X Non-Dimensional Distance None

τ Non-Dimensional time None

γE1, γS1, γE , α, β Non-Dimensional reaction-diffusion parameters None
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