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Abstract In this paper, we prove the existence of finite energy and bounded solutions for
nonlinear anisotropic elliptic problem whose prototype is −

N∑
i=1

∂xi

[
|∂xiu|pi−2∂xiu

]
+ u

N∑
i=1

|∂xiu|pi = fh(u) in Ω,

u = 0 on ∂Ω,

in a bounded domain Ω ⊂ RN (N ≥ 2) with Lipschitz boundary, 1 < pi for all i = 1, . . . , N and
satisfies 1 < p < N , the singular term h is a continuous real function that could blow up at the
origin. We show that the presence of lower-order terms has a regularizing effect on the solutions
for a nonnegative data f ∈ Lθ(Ω) where θ > N

p or θ = 1.

1 Introduction and preliminaries

1.1 Introduction

Let Ω ⊂ RN (N ≥ 2) be a bounded smooth domain, and denote ∂xi
u = ∂u

∂xi
for all i = 1, . . . , N .

In this paper, we deal with the problem of the form −
N∑
i=1

∂xi [ai(x,∇u)] +
N∑
i=1

gi(x, u,∇u) = fh(u) in Ω,

u = 0 on ∂Ω,

(1.1)

where the exponents p1, p2, · · · , pN are restricted as follows:
p− = min

1≤i≤N
{pi} , p+ = max

1≤i≤N
{pi} ,

1 < p < N, p =

(
1
N

N∑
i=1

1
pi

)−1

, p∗ =
Np

N − p
.

(1.2)

Here, we suppose that ai : Ω × RN → R, (∀i = 1, . . . , N ) are Carathéodory functions such
that

ai(x, ξ) · ξi ≥ α|ξi|pi , ∀i = 1, . . . , N, (1.3)

|ai(x, ξi)| ≤ k(x) + β|ξi|pi−1, ∀i = 1, . . . , N, (1.4)[
ai(x, ξ)− ai(x, η)

]
· (ξi − ηi) > 0, ξi ̸= ηi, ∀i = 1, . . . , N, (1.5)

for almost every x ∈ Ω and for all ξ, η ∈ RN , α, β > 0 and 0 ≤ k ∈ Lp′
i(Ω). The nonlinear

terms gi : Ω ×R×RN −→ R, (∀i = 1, . . . , N ) are Carathéodory functions and satisfying

gi(x, s, ξ)sign(s) ≥ 0, ∀i = 1, . . . , N, (1.6)

|gi(x, s, ξ)| ≤ l(|s|)|ξi|pi , ∀i = 1, . . . , N, (1.7)
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for almost every x ∈ Ω, every s ∈ R and for all ξ ∈ RN , l ∈ C (R,R+) is an increasing function
such that l(ρ) > c0 > 0 for |ρ| sufficiently large. The datum f is assumed a nonegative function
and belongs to some Lebesgue spaces. Let us emphasize that the sign condition (1.6) satisfied
by g enables to derive a priori estimates from the equation; however, if it is not met the problem
may not even have a solution. Finally, the function h :]0,∞[→]0,∞[ is continuous and satisfies
the condition

∃ c > 0, ∃ γ ∈ (0, 1] such that h(s) ≤ c

sγ
∀s > 0. (1.8)

Let also underline that in the case h(0) = lims→0+ h(s) is finite, the singular term h becomes
continuous and bounded.

The motivation for this work comes from the application of anisotropic equations in several
fields. For example, they offer a mathematical models for representing fluid dynamics when con-
ductivity varies along different directions [17]. Furthermore problem (1.1) appears in calculus
of variations when we write the Euler-Lagrange equations of appropriate functionals.

Our aim is to study the existence of energy solutions to (1.1). Specifically, we focus on the
regularizing effect on the solution of (1.1) in the presence of the natural growth term involving g
and possibly singular term h. Moreover there is no necessity to impose additional assumptions
on pi (see Theorem 2.3 in [22]).

Problem (1.1) in the isotropic case, i.e. pi = p for any i has been extensively studied by many
authors, we refer to some papers which mostly influenced us [6, 20, 21, 2]. In our recent paper
[22], we studied the problem (1.1) in the anisotropic and elliptic case when the natural growth
term does not appear, that is for problem −

N∑
i=1

∂xi

[
|∂xiu|pi−2∂xiu

(1 + u)θ

]
=

f

uγ
in Ω,

u = 0 on ∂Ω,

(1.9)

where Ω is a bounded domain in RN , 0 < γ < 1, θ ≥ 0 and pi ≥ 1, i = 1, · · · , N . We
have established in terms of the summability of the datum f and on the values of γ and θ some
existence and regularity results. In the case f ∈ L1(Ω) and θ = 0 we have proved the existence
of at least one distributional solution u ∈ W 1,−→q

0 (Ω) for (1.9), for every qi =
piN(p−1+γ)
p(N−1+γ) under

the assumption p(N+γ−1)
N(p+γ−1) < pi < p(N+γ−1)

p(N+γ−1)−N(p+γ−1) , for any i = 1, · · · , N . Furthermore, if

f ∈ Lm(Ω) with m > N
p then the solution u belongs to W 1,−→p

0 (Ω ∩ L∞(Ω). In the non-singular
case i.e, h ≡ 1, Agnese Di Castro in [4] treated the existence of solution to problem (1.1), it was
shown that if f ∈ L1(Ω) and gi satisfying the conditions (1.6)-(1.7) and there exists µ > 0 such
that |gi(x, s, ξ)| ≥ µ|ξi|pi , for any i = 1, · · ·N. Then finite energy solutions exist for problem
(1.1).

In work [12], the authors obtained existence of L∞−solutions to the problem
−
∑N

i=1 ∂xi
(ai(x, u,∇u)) =

∑N
i=1 bi(x, u,∇u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 2) is a bounded domain with Lipschitz boundary ∂Ω.
Here Au = −

∑N
i=1 ∂xi

(ai(x, u,∇u)) is a Leray-Lions operator defined on W 1,−→p
0 (Ω) and bi :

Ω×R×RN → R, i = 1, . . . , N are Carathéodory functions and satisfying a.e. x ∈ Ω, ∀(σ, ξ) ∈
R×RN the following condition

|bi(x, s, ξ)| ≤ β1|ξi|
pi(p

⋆−1)
p⋆ + β2|s|−γi + β3|s|p

⋆−1 + β4,

where βl, l = 1, . . . , 4 are positive constants, p⋆ the Sobolev conjugate of the harmonic mean
p with pi < p⋆ and 0 < γi < 1, for all i = 1, . . . , N . For anisotropic elliptic and parabolic
equations, we recommend consulting the following references [11, 10, 9].

In the study of problem (1.1), the main difficulty comes from the nonlinear term h which
possibly blows up on the set {u = 0}. To overcome this problem, we approximate our problem
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by another one defined through of truncations, whose existence of solution is guaranteed by
Schauder’s fixed point theorem.

We point out that, crucial tools applicable in the isotropic case cannot be applied to the
anisotropic setting (for example the strong maximum principle, see [14]), which is another com-
plication in the study of the problem (1.1). In the next section, We briefly recall some facts on
the anisotropic Sobolev space and we give some of their properties.

1.2 Preliminaries and definition

Let −→p = (p1, p2, . . . , pN ) ∈ RN . The anisotropic Sobolev spaces naturally serve as the func-
tional framework for problem (1.1) are W 1,−→p (Ω) and W 1,−→p

0 (Ω), which are defined as follows

W 1,−→p (Ω) =
{
z ∈ W 1,1(Ω) : ∂xi

z ∈ Lpi(Ω), ∀i = 1, . . . , N
}
,

W 1,−→p
0 (Ω) =

{
z ∈ W 1,1

0 (Ω) : ∂xiz ∈ Lpi(Ω), ∀i = 1, . . . , N
}
.

The space W 1,−→p
0 (Ω) can also be defined as the closure of C∞

0 (Ω) with respect to the norm

∥z∥1,−→p =
N∑
i=1

∥∂xi
z∥Lpi (Ω),

endowed with this norm ∥ · ∥1,−→p , W 1,−→p
0 (Ω) is a separable and reflexive Banach space.

The theory concerning anisotropic Sobolev spaces was developed in [23, 13, 15, 16]. In
particular, under the assumption p < N , the authors in [23] proved the following continuous
embedding

W 1,−→p
0 (Ω) ↪→ Lτ (Ω), ∀τ ∈ [1, p⋆],

additionally, this embedding is compact for τ < p⋆. Furthermore, in reference [23], the following
Sobolev type inequality is also proved

Lemma 1.1. There exists positive constants S1 and S2, which depend only on Ω, such that

∥z∥Lτ (Ω) ≤ S1

N∏
i=1

∥∂xiz∥
1
N

Lpi (Ω), ∀τ ∈ [1, p∗], ∀z ∈ W 1,−→p
0 (Ω), (1.10)

∥z∥p+
Lp∗ (Ω)

≤ S2

N∑
i=1

∥∂xi
z∥pi

Lpi (Ω), ∀z ∈ W 1,−→p
0 (Ω). (1.11)

We can replace the geometric mean on the right-hand side of (1.10) with an arithmetic mean,
This is justified by the fact that

N∏
i=1

bi
1/N ≤ 1

N

N∑
i=1

bi for all bi ≥ 0, i = 1, · · · , N.

The above inequality can be used to establish the following result

∥z∥Lq(Ω) ≤
S3

N

N∑
i=1

∥∂xiz∥Lpi (Ω), ∀τ ∈ [1, p∗], ∀z ∈ W 1,−→p
0 (Ω), (1.12)

where S3 is positive constant. Consequently, when p < N , a continuous embedding exists from
the space W 1,−→p

0 (Ω) into Lq(Ω) for all q ∈ [1, p⋆]. Moreover, for each i = 1, . . . , N , there exists
a positive constant Si > 0 (see [5, Lemma 1.1]) such that the following inequality holds:

∥z∥Lpi (Ω) ≤ Si∥∂xi
z∥1,−→p , ∀z ∈ W 1,−→p

0 (Ω). (1.13)

The proof of the L∞-estimate that we will present is founded on a technical lemma of functional
analysis.
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Lemma 1.2 (See[18]). Let M1, k0, ϱ, ρ be real positive numbers, with ρ > 1. Let Θ : (0,∞) →
(0,∞) be a non increasing function such that

Θ(h) ≤ M1

(h− k)ϱ
[Θ(k)]ρ, ∀h > k ≥ k0.

Then there exists k > 0 such that Θ(k) = 0.

Now we present the definition of weak solution to problem (1.1).

Definition 1.3. Let f be a nonegative function in Lθ(Ω), where θ ≥ 1. A function u belongs to
W 1,−→p

0 (Ω) is said to be a weak solution for problem (1.1), if ai(x,∇u) ∈ L1
loc(Ω), gi(x, u,∇u) ∈

L1
loc(Ω) for any i = 1, . . . , N and u satisfies

N∑
i=1

∫
Ω

ai(x,∇u)∂xi
φdx+

N∑
i=1

∫
Ω

gi(x, u,∇u)φdx =

∫
Ω

fh(u)φdx (1.14)

for every φ ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω).

2 Approximating problems

Let fn be the sequence of bounded functions in Ω (fn ≥ 0) that converges to f > 0 in L1(Ω).
This sequence satisfies the inequalities fn ≤ n and fn ≤ f for every n ∈ N (for instance,
fn = Tn(f)). Consider the approximation problems defined as follows −

N∑
i=1

∂xi [ai(x,∇un)] +
N∑
i=1

gni (x, un,∇un) = fnhn(un) in Ω,

u = 0 on ∂Ω,

(2.1)

where

gni (x, s, ξ) =
gi(x, s, ξ)

1 + 1
n |gi(x, s, ξ)|

, ∀i = 1, . . . , N, ∀n ∈ N,

and

hn(s) =

{
Tn(h(s)) for s ≥ 0,
min{n, h(0)} otherwise.

Notice that, for all i = 1, . . . , N

|gni (x, s, ξ)| ≤ |gi(x, s, ξ)|, |gni (x, s, ξ)| ≤ n.

Lemma 2.1. Suppose that assumptions (1.3)-(1.8) hold true. Then, the problem (2.1) has a non-
negative weak solution un ∈ W 1,−→p

0 (Ω) ∩ L∞(Ω) in the sense

N∑
i=1

∫
Ω

ai(x,∇un)∂xiφdx+
N∑
i=1

∫
Ω

gni (x, un,∇un)φdx =

∫
Ω

fnhn(un)φdx, (2.2)

for all φ ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω).

Proof. The lemma’s proof will be carried out by employing Schauder’s fixed point argument.
Let n ∈ N∗ be fixed. We define a map P as

P : Lp(Ω) −→ Lp(Ω)

v 7−→ S(v) = w,

where w is the unique solution of the following problem −
N∑
i=1

∂xi [ai(x,∇w)] +
N∑
i=1

gni (x,w,∇w) = fnhn(|v|) in Ω,

w = 0 on ∂Ω.

(2.3)
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The map P is well defined because the existence of a unique weak solution w ∈ W 1,−→p
0 (Ω) ∩

L∞(Ω) for the problem (2.3) is guaranteed by [4]. Furthermore, a positive constant cn exists
that is independent of v and w such that

∥w∥L∞(Ω) ≤ cn. (2.4)

We claim that w is nonnegative; indeed, we choose φ = −w−e−tw as a test function in (2.1),
with t > 0 to be chosen later and w− = −min{w, 0} we obtain

−
N∑
i=1

∫
Ω

ai(x,∇w)∂xiw
−e−twdx+ t

N∑
i=1

∫
Ω

ai(x,∇w)∂xiww
−e−twdx

−
N∑
i=1

∫
Ω

gni (x,w,∇w)w−e−twdx = −
∫

Ω

fnhn(|v|)w−e−tw ≤ 0.

Using (1.3), (1.7) and the fact that −gni (x,w,∇w) > −l(cn)|∂xi
w|pi , we have

α

N∑
i=1

∫
Ω

|∂xiw
−|pie−twdx+

N∑
i=1

∫
Ω

|∂xiw|piw−e−tw(αt− l(cn))dx ≤ 0.

Choosing t > l(cn)
α in the previous inequality, we get w ≥ 0 almost everywhere in Ω.

Let us consider w as a test function in the weak formulation of (2.3). Using (1.3), (1.8), and
the fact that fn ≤ n, we obtain

α

N∑
i=1

∫
Ω

|∂xi
w|pi +

N∑
i=1

gni (x,w,∇w)wdx ≤ n1−γ

∫
Ω

wdx.

By assumption (1.7), one has

N∑
i=1

∫
Ω

|∂xi
w|pi ≤ n1−γ

α

∫
Ω

wdx.

Applying Hölder’s inequality, we can further estimate the right-hand side as follows

N∑
i=1

∥∂xiw∥
pi

Lpi (Ω) ≤
n1−γ

α
|Ω|

1
(p∗)′

(∫
Ω

wp∗
dx

) 1
p∗

. (2.5)

From the inequality (1.11), there exists a positive constant S2, such that

∥w∥p
+

Lp∗ (Ω)
≤ n1−γ

S−1
2 α

|Ω|
1

(p∗)′ ∥w∥Lp∗ (Ω).

This implies that

∥w∥Lp∗ (Ω) ≤ Cn, (2.6)

where Cn = n1−γ

S−1
2 α

|Ω|
1

(p∗)′ ∥w∥Lp∗ (Ω). Since p ≤ p∗, then

∥w∥Lp(Ω) ≤ Cn. (2.7)

Thus, equation (2.7) implies that the ball B(0, Cn) ⊂ Lp(Ω), is invariant under the map P .
Now, we will prove the continuity of the map P . Let v ∈ Lp(Ω) and let (vk) be a sequence

of functions converges to v in Lp(Ω). We denote wk = P(vk) and w = P(v). To prove that
wk −→ w in Lp(Ω), it suffices to prove that wk −→ w in W 1,−→p

0 (Ω) because the embedding
W 1,−→p

0 (Ω) ↪→ Lp(Ω) is compact. In fact, we show that for any subsequence of (wk), we can
extract further subsequence that converges to w.
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Let consider Φρ(s) = seρs
2

(ρ > 0) which satisfies

µΦ
′
ρ(s)− ν|Φρ(s)| ≥

µ

2
, ∀s ∈ R, ∀µ, ν > 0, ∀ρ ≥ ν2

4µ2 . (2.8)

Let us now consider φ = Φρ(zk) as a test function in the weak formulation of (2.3) where
zk = wk − w, we have

N∑
i=1

∫
Ω

ai(x,∇wk)∂xi
zkΦ

′
ρ(zk) = −

N∑
i=1

∫
Ω

gni (x,wk,∇wk)Φρ(zk)dx

+

∫
Ω

fnhn(|vk|)Φρ(zk)dx. (2.9)

Adding up (1.7) (since |gni (x,wk,∇wk)| ≤ |gi(x,wk,∇wk)|), (2.4) and (1.3) gives

−
N∑
i=1

∫
Ω

gni (x,wk,∇wk)Φρ(zk)dx ≤
N∑
i=1

∫
Ω

l(|wk|)|∂xi
wk|pi |Φρ(zk)|dx

≤ l(cn)
N∑
i=1

∫
Ω

|∂xiwk|pi |Φρ(zk)|dx

≤ l(cn)

α

N∑
i=1

∫
Ω

ai(x,∇wk)∂xiwk|Φρ(zk)|dx,

this gives

−
N∑
i=1

∫
Ω

gni (x,wk,∇wk)Φρ(zk)dx ≤ l(cn)

α

N∑
i=1

∫
Ω

ai(x,∇wk)∂xizk|Φρ(zk)|dx

+
l(cn)

α

N∑
i=1

∫
Ω

ai(x,∇wk)∂xiw|Φρ(zk)|dx. (2.10)

Thanks to (1.4) and (2.5), the sequence (ai(x,∇wk))k is bounded in Lp′
i(Ω) for all i = 1, . . . , N .

Then, since ∂xiw|Φρ(zk)| strongly converges to zero in Lpi(Ω) as k → ∞ for all i = 1, . . . , N ,
one has

lim
k→∞

N∑
i=1

∫
Ω

ai(x,∇wk)∂xiw|Φρ(zk)|dx = 0. (2.11)

Moreover, since vk −→ v in Lp(Ω) as k → ∞, we can extract a subsequence such that

vk
k→∞

−−−−−−→ v a.e. in Ω. (2.12)

Using (1.8) we have

|fnhn(|vk|)Φρ(zk)| ≤ c1n
1−γ∥zk∥L∞(Ω)e

ρ∥zk∥2
L∞(Ω)

≤ c1n
1−γcne

ρc2
n ∈ L1(Ω) ∀k ∈ N. (2.13)

Then, from (2.12) and (2.13), we can apply the dominated convergence theorem to conclude that

lim
k→∞

∫
Ω

fnhn(|vk|)Φρ(zk)dx = 0. (2.14)

Therefore, by combining (2.9), (2.10), (2.11) and (2.14), we obtain
N∑
i=1

∫
Ω

ai(x,∇wk)∂xi∇zkΦ
′
ρ(zk)

≤ l(cn)

α

N∑
i=1

∫
Ω

ai(x,∇wk)∂xizk|Φρ(zk)|dx+ r(k),
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where limk→∞ r(k) = 0. Hence,

N∑
i=1

∫
Ω

ai(x,∇wk)∂xizk

(
Φ

′
ρ(zk)−

l(cn)

α
|Φρ(zk)|

)
dx ≤ r(k).

Thus, by (4.2) with ρ = [l(cn)]
2

4α2 , we have

N∑
i=1

∫
Ω

ai(x,∇wk)∂xi
zkdx ≤ r(k),

Then,

N∑
i=1

∫
Ω

(ai(x,∇wk)− ai(x,∇w)) (∂xiwk − ∂xiw) dx

≤ −
N∑
i=1

∫
Ω

ai(x,∇w)∂xi
zkdx+ r(k). (2.15)

It follows from (1.4) that the sequence ai(x,∇w) is bounded in Lp′
i(Ω) and by (2.5) we have zk

is weakly converges to 0 in W 1,−→p
0 (Ω). From (2.15) and (1.5) we deduce that

lim
k→∞

N∑
i=1

∫
Ω

(ai(x,∇wk)− ai(x,∇w)) (∂xi
wk − ∂xi

w) dx = 0.

We can then use the same arguments as in [8, Lemma 2.4] to prove that up to subsequences wk

strongly converges to w in W 1,−→p
0 (Ω). This establishes the continuity of P .

Using equations (2.5) and (2.6), we can deduce that

N∑
i=1

∫
Ω

|∂xi
w|pidx =

N∑
i=1

∫
Ω

|∂xi
P(v)|pidx ≤ Cn, ∀v ∈ Lp(Ω).

By Sobolev embedding, P(Lp(Ω)) can be shown to be compact in Lp(Ω). As a result, by
Schauder’s fixed point theorem on P , we establish the existence of a nonnegative fixed point
un ∈ W 1,−→p

0 (Ω). This fixed point is identified as a weak solution to (2.3). Furthermore, for a
fixed n we have un belongs to L∞(Ω) (by [7, Theorem 4.2]) because the right-hand side of (2.1)
is in L∞(Ω) and this concludes the proof.

3 Existence result for θ > N
p

In this section we prove the existence of nonnegative weak solutions to problem (1.1) when the
datum f is an element of Lθ(Ω), with θ > N

p .

Theorem 3.1. Assume (1.3)-(1.8) with

f ∈ Lθ(Ω), θ >
N

p
.

Then problem (1.1) has at least a weak solution u such that u ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω).

Remark 3.2. 1) In the isotropic case (i.e., pi = p for every i = 1, . . . , N ), Theorem 3.1 surpasses
the results in [24, Theorem 3.3].
2) Theorem (3.1) improves Theorem 3.2 in [22].
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3.1 A priori estimates when θ > N
p

In this step of the proof, we want to establish some a priori estimates in L∞(Ω) and in W 1,−→p
0 (Ω)

for the sequence of approximate solutions (un)n, As pointed out, by these estimates, we deduce
that un converges up to subsequences, to a function u which is the sought solution. Moreover,
we prove the boundedness of gni in L1(Ω) and fnhn in L1

loc(Ω).
In the following, we denote by C a constant (independent of n) that may change from one

line to another.

Lemma 3.3. Assume that the assumptions of Theorem 3.1 hold. Then for every solution un of
(2.1), there exists a positive constant C independent of n such that

∥un∥L∞(Ω) ≤ C, (3.1)

∥un∥1,−→p ≤ C. (3.2)

Proof. Le us take Gk(un) as a test function in (2.1), we have

N∑
i=1

∫
Ω

ai(x,∇un)∂xi
Gk(un)dx+

N∑
i=1

∫
Ω

gni (x, un,∇un)Gk(un)dx

=

∫
Ω

fnhn(un)Gk(un)dx.

which, using (1.3) and (1.6) implies that

∥∂xi
Gk(un)∥pi

Lpi (Ω) ≤
∫
An

k

fnhn(un)Gk(un)dx

≤ 1
α

c

kγ

∫
An

k

fGk(un)dx, ∀i = 1, . . . , N,

where An
k = {un > k}, k ≥ 1. The previous inequality yield to

N∏
i=1

∥∂xiGk(un)∥
1
N

Lpi (Ω) ≤ Ck−
γ
p

(∫
An

k

fGk(un)dx

) 1
p

.

Hence we can apply inequality (1.10) with τ = p∗, p < N , on the left-hand side and using
Hölder’s inequality with exponent p∗ in the right one, we obtain∥∥Gk(un)

∥∥
Lp∗ (Ω)

≤ Ck−
γ
p ∥f∥

1
p

Lp∗′ (An
k )

∥∥Gkun)
∥∥ 1

p

Lp∗ (An
k )
.

Hence ∫
Ω

Gk(un)
p∗
dx ≤ Ck−

γp∗
p−1 ∥f∥

p∗
p−1

Lp∗′ (An
k )
. (3.3)

Recalling that 1 − 1
p > 0 (since p > 1) and considering the fact that f ∈ Lθ(Ω) where θ > N

p ≥
p∗′, this allows to apply Hölder’s inequality with exponents θ

p∗′ , deducing

∥f∥
p∗
p−1

Lp∗′ (An
k )

≤ ∥f∥
p∗
p−1

Lθ(An
k )
|An

k |
1

p−1
θ(p∗−1)−p∗

θ

≤ C|An
k |

1
p−1

θ(p∗−1)−p∗
θ . (3.4)

which thanks to (3.3) and (3.4), implies∫
Ω

Gk(un)
p∗
dx ≤ Ck−

γp∗
p−1 |An

k |
1

p−1
θ(p∗−1)−p∗

θ



Anisotropic singular elliptic problems 629

Notice that, for every r > k ≥ k0 one has Gk(un) ≥ r − k on the set {un > r}, we arrive at

(r − k)p
∗
|An

r | ≤
∫
An

r

Gk(un)
p∗
dx

≤ Ck
− γp∗

p−1
0 |An

k |
1

p−1
θ(p∗−1)−p∗

θ

≤ C|An
k |

1
p−1

θ(p∗−1)−p∗
θ ,

this allows to deduce that

Θn(r) ≤
C

(r − k)p∗ Θn(k)
1

p−1
θ(p∗−1)−p∗

θ , ∀r > k ≥ k0,

where Θn(k) = |An
k |. Thus, since θ > N

p and by Lemma 1.2, applied to

ϱ = p∗, and ρ =
1

p− 1
θ(p∗ − 1)− p∗

θ
> 1,

there exists a positive constant k achieves Θn(k) = 0. By the fact that |Θn(k)| ≤ |Ω| (see the
proof of Lemma A.1 of [18]), there exists a positive constant ω independent of n such that k ≤ ω,
satisfying

Θn(ω) = 0. (3.5)

Hence (3.5) yields to (3.1).
Now we prove the a priori estimates in W 1,−→p

0 (Ω) given by (3.2). Let 0 < γ ≤ 1. To show the
estimate (3.2) we choose φ = un as a test function in (2.1); we have

N∑
i=1

∫
Ω

ai(x,∇un)∂xiundx+
N∑
i=1

∫
Ω

gni (x, un,∇un)undx =

∫
Ω

fnhn(un)undx.

Using (1.3), (1.6) and (1.8), one has

α

N∑
i=1

∫
Ω

|∂xi
un|pidx ≤

∫
Ω

fu1−γ
n dx.

Hölder’s inequality and assumption f ∈ Lθ(Ω) on the right-hand side then gives

α

N∑
i=1

∥∂xi
un∥pi

Lpi (Ω) ≤ ∥f∥
L

N
p (Ω)

(∫
Ω

u
(1−γ) N

N−p
n dx

)N−p
N

≤ ∥f∥Lθ(Ω)|Ω|
(N−p)(p−1+γ)

Np

(∫
Ω

up∗

n dx

) 1−γ
p∗

≤ C∥un∥1−γ

Lp∗ (Ω)
.

Using Young’s inequality on the right-hand side we arrive at

α

N∑
i=1

∥∂xiun∥pi

Lpi (Ω) ≤ CS1−γ
2

(
1 − γ

p+

)
ε

p+

1−γ ∥un∥p
+

Lp∗ (Ω)

+ C

(
p+ − 1 + γ

p+

)
ε
− p+

p+−1+γ ,

where ε is any positive constant. Inequality (1.11) implies that

α

N∑
i=1

∥∂xiun∥pi

Lpi (Ω) ≤ CS1−γ
2

(
1 − γ

p+

)
ε

p+

1−γ

N∑
i=1

∥∂xiun∥pi

Lpi (Ω)

+ C

(
p+ − 1 + γ

p+

)
ε
− p+

p+−1+γ .
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Choosing ε > 0 in the previous inequality, such that

CS1−γ
2

(
1 − γ

p+

)
ε

p+

1−γ <
α

2
,

we get

N∑
i=1

∥∂xi
un∥pi

Lpi (Ω) ≤ C. (3.6)

Hence, by (3.6) the proof of (3.2) is concluded.

Lemma 3.4. Assume that the assumptions of Theorem 3.1 hold. Let un be a nonnegative solution
to problem (2.2). Then

N∑
i=1

∫
Ω

gni (x, un,∇un)dx ≤ C, (3.7)

∫
Ω

hn(un)fnφdx ≤ C, ∀φ ∈ C1
c (Ω). (3.8)

Proof. We choose T1(un) as test function in (2.2) obtaining

N∑
i=1

∫
Ω

ai(x,∇un)∂xi
T1(un)dx+

N∑
i=1

∫
Ω

gni (x, un,∇un)T1(un)dx

=

∫
Ω

fnhn(un)T1(un)dx. (3.9)

Now for λ > 0, using (1.3) and (1.8) we can write

N∑
i=1

∫
{un≥1}

gni (x, un,∇un)T1(un)dx ≤ C

∫
{un≤λ}

u1−γ
n fn+

∫
{un>λ}

hn(un)fndx

≤ C

(
λ1−γ + sup

s∈[λ,∞)

h(s)

)
∥f∥L1(Ω). (3.10)

In the other hand remark that, by (1.7) one has

N∑
i=1

∫
{un<1}

gni (x, un,∇un) ≤ C

n∑
i=1

∫
Ω

|∂xiun|pidx ≤ C. (3.11)

According to (3.10) and (3.11) it follows that gni (x, un,∇un) is bounded in L1(Ω).
Finally, we show that hn(un)fn is bounded in L1

loc(Ω), we consider a nonnegative φ ∈ C1
c (Ω)

as a test function in (2.2), we have∫
Ω

hn(un)fnφdx =
N∑
i=1

∫
Ω

ai(x,∇un)∂xi
φdx+

N∑
i=1

∫
Ω

gni (x, un,∇un)φdx.

In view of (1.4) and (3.2), it easy to check that ai(x,∇un) is bounded in Lp′
i(Ω) with respect to

n, and by the fact that gni (x, un,∇un) is bounded in L1(Ω) we conclude that (3.8) holds. This
finishes the proof of the Lemma 3.4.

3.2 Convergence of gradients almost everywhere

Let un be a nonegative solutions to (2.1), then according to the Lemma 3.3 there exists a subse-
quence of un (still denoted un) and a function u in W 1,−→p

0 (Ω) such that

un ⇀ u weakly in W 1,−→p
0 (Ω) and a.e. in Ω, (3.12)
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Lemma 3.5. Assume that the assumptions of Theorem 3.1 hold. Let (un) be a no-negative solu-
tions to problem (2.1), then we have up to sub sequence,

∀k > 0, Tk(un) → Tk(u) strongly in W 1,−→p
0 (Ω) and a.e. in Ω. (3.13)

Moreover ∂xiun converge to ∂xiu almost everywhere.

Proof. Let us consider for any k > 0 the function vn,k = Tk(un) − Tk(u), taking Φρ(vn,k) =

vn,ke
ρv2

n,k (which satisfies (4.2)) as a test function in the weak formulation (2.2), obtaining

N∑
i=1

∫
Ω

ai(x,∇un)∂xi
(vn,k)Φ

′
ρ(vn,k)dx+

N∑
i=1

∫
Ω

gni (x, un,∇un)Φρ(vn,k)dx,

=

∫
Ω

fnhn(un)Φρ(vn,k)dx, (3.14)

The result will derive from applying Lemma 5 in [19] once we establish that for any for any
k > 0

lim
n→∞

N∑
i=1

∫
Ω

[ai(x,∇Tk(un))− ai(x, Tk(u)] ∂xi
(Tk(un)− Tk(u))dx = 0.

Step 1 : We will estimate the quantity

N∑
i=1

∫
Ω

[ai(x,∇Tk(un))− ai(x, Tk(u)] ∂xi
(Tk(un)− Tk(u))dx.

First, observe that in the set {un > k}, one has ∂xi
(vn,k) = −∂xi

(Tk(u)), using (1.4), we deduce
that

N∑
i=1

∫
Ω

ai(x,∇un)∂xi
(vn,k)Φ

′
ρ(vn,k)dx

=
N∑
i=1

∫
{un≤k}

ai(x,∇un)∂xi
(vn,k)Φ

′
ρ(vn,k)dx

−
N∑
i=1

∫
{un>k}

ai(x,∇un)∂xi
(Tk(u))Φ

′
ρ(vn,k)dx

≥
N∑
i=1

∫
Ω

ai(x,∇Tk(un))∂xi(vn,k)Φ
′
ρ(vn,k)dx

−
∫
{un>k}

(
k(x) + β|∂xi

un|pi−1) |∂xi
(Tk(u))||Φ′

ρ(vn,k)|dx.

Combining the previous inequality into (3.14) we get

N∑
i=1

∫
Ω

ai(x,∇Tk(un)∂xi
(vn,k)Φ

′
ρ(vn,k)dx

≤ −
N∑
i=1

∫
Ω

gni (x, un,∇un)Φρ(vn,k)dx+

∫
Ω

fnhn(un)Φρ(vn,k)dx

−
∫
{un>k}

(
k(x) + β|∂xiun|pi−1) |∂xi(Tk(u))||Φ′

ρ(vn,k)|dx. (3.15)
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Concerning the last term in (3.15), we use the boundedness of the sequence (un) in W 1,−→p
0 (Ω),

we see that
(
k(x) + β|∂xiun|pi−1

)
|∂xi(Tk(u))||Φ′

ρ(vn,k)| is bounded in Lp′
i(Ω), i = 1, · · · , N

with respect to n and by the fact that ∂xi
(Tk(u))χ{un>k} −→ 0 strongly in Lpi(Ω) as n → 0, we

conclude

lim
n→∞

∫
{un>k}

(
k(x) + β|∂xi

un|pi−1) |∂xi
(Tk(u))||Φ′

ρ(vn,k)|dx = 0.

For the first integral of the right hand side of (3.15), observe that Φρ(vn,k) = 0 on the set
{un > k}, and by (1.3), (1.7) we can derive

−gni (x, un,∇un) ≤ l(un)
ai(x,∇un)∂xi

un

α
, for any i = 1, · · · , N.

Hence, for any i = 1, · · ·N (since maxs∈[0,k] l(s) = l(k)) one has

−
∫

Ω

gni (x, un,∇un)Φρ(vn,k)dx ≤
∫
{un≤k}

gni (x, un,∇un)|Φρ(vn,k)|dx

≤ l(k)

α

∫
Ω

ai(x,∇Tk(un))∂xi
(Tk(un))|Φρ(vn,k)|dx.

Notice that ai(x,∇Tk(un)) is bounded in Lp′
i(Ω) for any i = 1, · · · , N , and ∂xi

(Tk(u))|Φρ(vn,k)| →
0 strongly in Lp′

i(Ω) as n goes to ∞, as a result

lim
n→∞

∫
Ω

ai(x,∇Tk(un))∂xi
(Tk(u))|Φρ(vn,k)|dx = 0.

Now, we can write

−
∫

Ω

gni (x, un,∇un)dx

≤ l(k)

α

∫
Ω

ai(x,∇Tk(un))∂xi
(vn,k)|Φρ(vn,k)|dx+ ε1(n)

where ε1(n) is a quantity that tends to 0 as n → 0. The above estimate combining with (3.15)
gives

N∑
i=1

∫
Ω

ai(x,∇Tk(un)∂xi
(vn,k)Φ

′
ρ(vn,k)dx

≤ l(k)

α

N∑
i=1

∫
Ω

ai(x,∇Tk(un))∂xi
(vn,k)|Φρ(vn,k)|dx

+

∫
Ω

fnhn(un)Φρ(vn,k)dx+ ε2(n). (3.16)

Applying now (4.2) with µ = 1, ν = l(k)
α and ρ = l2(k)

4α2 which implies that

N∑
i=1

∫
Ω

ai(x,∇Tk(un)∂xi(vn,k)dx ≤ 2
∫

Ω

fnhn(un)Φρ(vn,k)dx+ ε2(n). (3.17)

By virtue of (1.5) and (3.12), we can affirm that

ai(x,∇Tk(un))∂xi
(Tk(un)− Tk(u)) −→ 0, in L1(Ω), ∀i = 1, · · · , N.

Then by adding and subtracting this quantity into (3.17), we get

N∑
i=1

∫
Ω

[ai(x,∇Tk(un))− ai(x, Tk(u)] ∂xi(Tk(un)− Tk(u))dx

≤ 2
∫

Ω

fnhn(un)Φρ(vn,k)dx+ ε2(n). (3.18)
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Step 2 : We prove that

lim
n→∞

∫
Ω

fnhn(un)Φρ(vn,k)dx = 0, (3.19)

for any fixed k > 0.
If h(0) is finite notice that

|hn(un)fnΦρ(vn,k)| ≤ Cf∥hΦρ∥L∞(Ω),

since Φρ(vn,k) converges to 0 a.e in Ω, so by Lebesgue’s dominated convergence theorem we
easily pass to the limit to achieve the result. Otherwise, if h(0) = +∞ using (3.8), (3.12), and
Fatou’s lemma, we obtain ∫

Ω

h(u)fφdx ≤ C, (3.20)

where C is a positive constant independent of n, then we have∫
{x∈Ω, u(x)=0}

h(u)fφ dx < +∞,

so that, fφ = 0 a.e. on {x ∈ Ω, u(x) = 0} for all nonnegative φ ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω), which

yield to

f ≡ 0 a.e. on the set {x ∈ Ω, u(x) = 0}. (3.21)

Now, for δ > 0 small enough, using (1.8), we write∫
Ω

fnhn(un)Φρ(vn,k)dx =

∫
{un≤δ}

fnhn(un)Φρ(vn,k)dx

+ sup
s∈[δ,∞)

h(s)

∫
{un>δ}

fnΦρ(vn,k)dx = I1
n,δ + I2

n,δ.

We treat I1
n,δ, by Lebesgue’s dominated convergence theorem with respect to n, the crucial result

(3.21) and f ∈ L1(Ω) it follows that,

lim sup
δ→0+

lim sup
n→∞

I1
n,δ = lim sup

δ→0+
lim sup
n→∞

(
Cδ1−γ

∫
{un≤δ}

feρv
2
n,kdx

)

= lim sup
δ→0+

(
Cδ1−γ

∫
{u≤δ}

fdx

)
= 0. (3.22)

For I2
n,δ, we note that

Φρ(vn,k) ⇀ 0, weakly* in L∞(Ω), as n → ∞,

Recalling that fn converges to f in L1(Ω), thus

lim
n→∞

I2
n,δ = 0. (3.23)

By (3.22) and (3.23) we affirm (3.19), which is sufficient to apply Lemma 5 in [19] to obtain

Tk(un) → Tk(u) strongly in W 1,−→p
0 (Ω).

The above strong convergence implies, for some subsequence still indexed by n, that

∇un → ∇u, a.e. x ∈ Ω. (3.24)

Remark 3.6. In Lemma 1.2, we have shown that gi(x, un,∇un) is bounded in L1(Ω), from this
fact and by (3.24), we can apply the Fatou’s Lemma to conclude that gi(x, u,∇u) ∈ L1(Ω) for
any i = 1, · · ·N..
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3.3 Strong convergence of gn
i in L1(Ω)

Lemma 3.7. Suppose that the hypotheses of Theorem 3.1 are satisfied, let un be a weak solution
of (1.1). Then

gni (x, un,∇un) −→ gi(x, u,∇u), in L1(Ω) as n → ∞. (3.25)

Proof. Recalling that, gi is a Caratheodory function. Hence, (3.12) and (3.24) allows to conclude

gni (x, un,∇un) −→ gi(x, u,∇u), a.e. in Ω as n → ∞,

So, it remains to prove the equi-integrability of the sequence {gni (x, un,∇un)}n for any i =
1, · · · , N . For k > 0 fixed, let us consider the following function

Vλ,k(s) :=


0, s ≤ k,
s−k
λ k < s < k + λ,

1 s ≥ k + λ.

Choosing Vλ,k(un) as a test function in (2.2) obtaining

N∑
i=1

∫
Ω

ai(x,∇un)∂xi
unV

′
λ,n(un)dx+

N∑
i=1

∫
Ω

gni (x, un,∇un)Vλ,k(un)dx

=

∫
Ω

fnhn(un)Vλ,n(un)dx,

using (1.3), (1.6) and dropping the nonegative first term in the previous estimate, implies (since
Vλ,k(·) ≤ 1)

N∑
i=1

∫
{un>k}

gni (x, un,∇un)Vλ,k(un)dx ≤
N∑
i=1

∫
Ω

gni (x, un,∇un)Vλ,k(un)dx

≤ sup
s∈[k,∞)

h(s)

∫
{un>k}

fdx,

Applying Fatou Lemma (since Vλ,k(un)χ{un>k} goes to 1 as λ → 0) we obtain

N∑
i=1

∫
{un>k}

gni (x, un,∇un)dx ≤ sup
s∈[k,∞)

h(s)

∫
{un>k}

fdx. (3.26)

Since (un) is bounded in L1(Ω), we see that

lim
k→∞

sup
n∈N

meas{un > k} = 0.

Moreover f ∈ L1(Ω), yielding to

lim
k→∞

sup
n∈N

∫
{un>k}

fdx = 0. (3.27)

On the other hand, for any measurable subset E ⊂ Ω and for all k > 0, we can write for any
i = 1, · · · , N ∫

E

gni (x, un,∇un)dx =

∫
E∩{un>k}

gni (x, un,∇un)dx (3.28)

+ l(k)

∫
E∩{un≤k}

|∂xiTk(un)|pidx, (3.29)

Since ∂xiTk(un) strongly converges to ∂xiTk(u) in Lpi(Ω) for all i, the inequality (3.28) com-
bined with (3.26) and (3.27) gives the equi-integrability of the sequence {gni (x, un,∇un)}n for
any i = 1, · · · , N . By Vitali’s Theorem we get the sought result (3.25).
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3.4 Strong convergence of the singular term in L1(Ω)

To achieve the aim of this step of the proof, we argue similarly as in [22, Lemma 5.2] and we
use the compactness arguments obtained in previous subsections.

Lemma 3.8. Under the assumptions of Theorem 3.1, let un be a weak solution of (1.1). Then

lim
n→+∞

∫
Ω

hn(un)fnφdx =

∫
Ω

h(u)fφdx, (3.30)

for all φ ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω).

Proof. If h(0) is finite, we easily obtain (3.30) by Lebesgue’s dominated convergence theorem.
In the sequel, we deal the case h(0) = +∞. For every fixed σ > 0, we can write∫

Ω

fnhn(un)φdx =

∫
{x∈Ω, un(x)>σ}

fnhn(un)φdx

+

∫
{x∈Ω, un(x)≤σ}

fnhn(un)φdx. (3.31)

For the first term on the right-hand of (3.31), one has

0 ≤ hn(un)fnχ{x∈Ω, un(x)>σ}φ ≤ sup
s∈[σ,+∞)

[h(s)]fφ ∈ L1(Ω).

Applying Lebesgue’s dominated convergence theorem with respect to n, and using the fact that
that

χ{x∈Ω, un(x)>σ} −→ χ{x∈Ω, u(x)≥σ}, a.e. in Ω,

we get

lim
n→∞

∫
{x∈Ω, un(x)>σ}

fnhn(un)φdx =

∫
{x∈Ω, u(x)≥σ}

h(u)fφdx.

Recalling that h(u)fφ ∈ L1
loc(Ω), and applying again Lebesgue’s dominated convergence theo-

rem, with respect to σ, it follow

lim
σ→0+

lim
n→∞

∫
{x∈Ω, un(x)>σ}

fnhn(un)φdx =

∫
{x∈Ω, u(x)≥0}

h(u)fφdx

=

∫
Ω

h(u)fφdx. (3.32)

Now we focus on the second term on the right-hand of (3.31). For σ > 0 sufficiently small, let
us take Sσ(un)φ as a test function in (2.2) where Sσ is defined by

Sσ(s) :=


1, s ≤ σ,
2σ−s
σ σ < s < 2σ,

0 s ≥ 2σ,

and φ is a nonnegative W 1,−→p
0 (Ω) ∩ L∞(Ω) function, we obtain∫

{un≤σ}
fnhn(un)φdx ≤

∫
Ω

fnhn(un)φdx

≤
N∑
i=1

∫
Ω

ai(x,∇un)∂xi
φSσ(un)dx+

N∑
i=1

∫
Ω

gni (x, un,∇un)Sσ(un)φdx

− 1
σ

N∑
i=1

∫
{x∈Ω, σ<un(x)<2σ}

ai(x,∇un)φ∂xi
undx

≤
N∑
i=1

∫
Ω

ai(x,∇un)∂xi
φSσ(un)dx+

N∑
i=1

∫
Ω

gni (x, un,∇un)Sσ(un)φdx

≤ I1
σ,n + I2

σ,n.
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By (1.4) and (3.2) one has that ai(x, ,∇un) is bounded in Lp′
i(Ω), moreover by (3.13), (3.24)

and the fact that Sσ ≤ 1, we deduce up a sub-sequence that

ai(x, ,∇un)Sσ(un) ⇀ ai(x,∇u)Sσ(u),

weakly in Lp′
i(Ω) as n tends to infinity. This implies that

lim sup
n→∞

I1
σ,n ≤

N∑
i=1

∫
Ω

ai(x,∇u)∂iφSσ(u)dx.

For I2
σ,n, using (3.25) result we derive

lim sup
n→∞

I2
σ,n ≤

N∑
i=1

∫
Ω

gi(x, u,∇u)Sσ(u)φdx.

Thanks to (1.4), and that {Sσ(u)}σ converges to χ{x∈Ω, u(x)=0} a.e. in Ω as σ tends to 0, applying
the Lebesgue Theorem, deducing that

lim sup
σ→0

lim sup
n→∞

∫
{x∈Ω,un(x)≤σ}

fnhn(un)φdx (3.33)

≤
N∑
i=1

∫
{x∈Ω, u(x)=0}

ai(x,∇u)∂xi
φdx+

N∑
i=1

∫
{x∈Ω,u(x)=0}

gi(x, u,∇u)Sσ(u)φdx,

for all nonnegative φ ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω), and it follows from (1.3), (1.6) and (1.7) that

ai(x, 0) = 0, gi(x, 0, 0) = 0 for almost every x ∈ Ω and for any i = 1, · · · , N . It allows to
deduce

lim sup
σ→0

lim sup
n→∞

∫
{x∈Ω,un(x)≤σ}

fnhn(un)φdx = 0. (3.34)

By (3.32) and (3.34) we deduce that, for all nonnegative φ ∈ W 1,−→p
0 (Ω) ∩ L∞(Ω),

lim
n→∞

∫
Ω

fnhn(un)φdx =

∫
Ω

fh(u)φdx. (3.35)

Moreover, in the general case (the function φ has any sign) we can write φ = φ+−φ− with φ+ =

max{φ, 0} and φ− = −min{φ, 0}, we conclude that (3.35) holds for every φ ∈ W
1,(pi)
0 (Ω) ∩

L∞(Ω). This achieves (3.30).

Finally, It yields from (3.2) and (1.8) that

ai (x,∇un) ⇀ ai(x,∇u) weakly in Lp′
i(Ω),∀i = 1, · · · , N. (3.36)

According to the last convergence and (3.25), (3.35) we can pass to the the limit in the approxi-
mate problem (2.2) to obtain (1.14).

4 Existence result for θ = 1

In the present section, we consider the problem (1.1) where the datum f belongs to L1(Ω). Our
goal is to prove the existence of finite energy solutions to problem (1.1) without any additional
condition on pi. To obtain an a priori estimate in the energy space W 1,−→p

0 (Ω), we need to assume
a kind of coercivity condition on gi.

Theorem 4.1. Let f ∈ L1(Ω), assume that hypotheses (1.3)-(1.5) and (1.8) hold true, we also
assume for all i = 1, · · ·N , gi be a Caratheodory function satisfying the conditions (1.6)-(1.7)
and

|gi(x, s, ξ)| ≥ µ|ξi|pi , ∀i = 1, . . . , N, (4.1)

where µ > 0, for almost every x ∈ Ω and for all ξ ∈ RN . Then there exists a weak solution u for
problem (1.1) in the sens of definition 1.3.
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Remark 4.2. The natural growth term satisfying (4.1) provide a supplementary regularity to the
solutions for the problem (1.1) with L1-data (see theorem 3.5 in [1]). Moreover, in this case we
do not need to added more assumptions on pi (see theorem 2.3 in [4]).

Remark 4.3. Notice that we have assumed an additional hypothesis in comparison with Theorem
3.1. Therefore, the process of passing to the limit remains similar to that in Theorem 3.1 when
we prove the compactness result.

4.1 A priori estimates when θ = 1

Lemma 4.4. Assume that the assumptions of Theorem 4.1 hold. let un be a nonnegative solution
to problem (2.2). Then there exists a positive constant C independent of n such that

∥un∥1,−→p ≤ C, (4.2)

Proof. We choose Tk(un) as test function in (2.2), obtaining

N∑
i=1

∫
Ω

ai(x,∇un)∂xi
(Tk(un))dx+

N∑
i=1

∫
Ω

gni (x, un,∇un)Tk(un)dx

=

∫
Ω

fnhn(un)Tk(un)dx,

which implies by virtue of (1.3) and (1.8)

α

N∑
i=1

∫
{un≤k}

|∂xi
un|pidx+

N∑
i=1

∫
{un≤k}

gni (x, un,∇un)undx

+ k

N∑
i=1

∫
{un>k}

gni (x, un,∇un)dx

≤
∫
{un≤k}

hn (un) fnundx+ k

∫
{un>k}

hn (un) fndx

≤ 2k1−γ

∫
Ω

fdx ≤ Ck1−γ . (4.3)

Thanks to (1.6), (4.1) and (4.3) we deduce

α

N∑
i=1

∫
{un≤k}

|∂xiun|pidx+ kµ

N∑
i=1

∫
{un>k}

|∂xiun|pidx ≤ C.

From the previous estimate it follows

min(α, kµ)
N∑
i=1

∫
Ω

|∂xi
un|pidx ≤ C.

Consequently, un is bounded in W 1,−→p
0 (Ω) with respect to n.
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