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Abstract This study analyzes diffusion kinetics at a polyphenol oxidase (PPO)-modified mi-
croplanar biosensor using the Akbari Ganji Method (AGM) and the Homotopy Perturbation
Method (HPM) as analytical techniques. The diffusion process is governed by Fick’s law, and
numerical simulations using MATLAB serve as a benchmark for validation. The results indicate
that both AGM and HPM provide highly accurate predictions that closely align with numeri-
cal solutions, demonstrating their effectiveness in modeling biosensor diffusion. Quantitative
comparisons reveal minimal deviations, which confirms the reliability of these methods in refin-
ing the diffusion behavior. The analytical approaches not only offer precise forecasts but also
provide computational efficiency over numerical simulations, making them suitable for real-time
biosensor modeling. Validation against numerical results underscores their robustness in predict-
ing sensor performance, ensuring practical applicability in biosensor design. The findings have
significant implications for biomedical applications, where diffusion properties play a crucial
role in sensor accuracy and response time. Improved understanding and modeling of diffusion
kinetics can improve the performance of biosensors used in medical diagnostics, environmental
monitoring, and glucose detection in the management of diabetes. These insights contribute to
the optimization of biosensor technology, facilitating advances in real-time biochemical sensing
and improving sensor reliability in healthcare applications.

1 Introduction

As valuable instruments for various biomedical applications, including disease diagnosis, medi-
cation research, and environmental monitoring, biosensors have recently attracted a lot of atten-
tion. These instruments depend on accurate target analyse detection, which is frequently accom-
plished through surface modification with functional materials. Poly phenol oxide (PPO) is one
such substance with a high degree of stability, great sensing capabilities, and bio-compatibility.
Microplanar biosensors modified with PPO have become a potentially sensitive and focused de-
tection platform. Biosensor performance features such as response time, sensitivity, and limit of
detection are heavily influenced by diffusion kinetics. To improve the design and performance
of these devices, it is crucial to comprehend and forecast the diffusion behaviour within them.
Diffusion mechanisms in biosensors have been extensively studied and modeled using analytical
and numerical techniques.

Theory and experiment for micro-cylinder biosensors for catechol and phenol-based on layer-
by-layer tyrosinase immobilization on latex particles [2].Diffusion-kinetic model analytical ex-
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pressions by A. Eswari et al. concerning the concentration of catechol, o-quinone and current at
PPO-modified micro cylinder biosensor [3]. A.Eswari and S.Saravanakumar’s hyperbolic func-
tion method for a new mathematical study of the nonlinear simultaneous differential equation in
a micro-disc biosensor [4]. The Taylor series and hyperbolic function approaches were used by
Silambuselvi et al. [11] to theoretically analyse the amperometric response to PPO-based rotat-
ing disc bioelectrodes. Steady-state current mathematical model at ppo-modified micro-cylinder
biosensors [13]. Voltammetry at a Rotating Disk Electrode with No Supporting Electrolyte: A
Theoretical Analysis [19]. Carbon dioxide concentrations in phenyl glycidyl ether solutions at
steady-state were determined using the residual method [34]. Mudassir Shams et al.[25] dis-
cussed the Embedding Family of Numerical Schemes for Solving Non-Linear Equations with
Engineering Applications where they developed an advanced numerical framework that embeds
iterative correction techniques to enhance the stability and convergence rate of root-finding algo-
rithms for nonlinear equations. The physical mechanism relies on an adaptive correction strat-
egy that refines the approximate roots iteratively, ensuring faster convergence while minimizing
computational complexity. The embedding approach integrates error correction from previous
iterations, making it robust for engineering applications such as structural mechanics and ther-
mal analysis. Shams et al.[20] explained the Triangular Intuitionistic Fuzzy Linear System of
Equations with Application, where they investigated the solution methodology for systems mod-
eled using triangular intuitionistic fuzzy numbers. The physical mechanism incorporates the
principles of uncertainty quantification, where intuitionistic fuzzy numbers account for hesita-
tion degrees, enhancing the flexibility of real-world applications such as decision-making and
control systems. The analytical approach utilizes an extended decomposition method to system-
atically extract deterministic solutions from uncertain fuzzy environments.

Shams et al.[17] explored the numerical scheme to estimate all roots of nonlinear equations
with applications, in which they designed an iterative numerical technique capable of capturing
multiple roots of nonlinear equations efficiently. The physical mechanism involves a systematic
root-tracing algorithm that dynamically adjusts the search domain, preventing the omission of
critical roots while reducing the sensitivity to initial guesses. This approach is highly applicable
in computational physics, signal processing, and circuit analysis, where identifying all possible
solutions is essential. Shams et al.[23] analyzed the Techniques for Finding Analytical Solutions
of Generalized Fuzzy Differential Equations, where they introduced new analytical techniques
to solve fuzzy differential equations under generalized conditions. The physical mechanism is
based on extending classical differential calculus into the fuzzy domain, where uncertainty prop-
agation is handled using novel differentiability concepts such as Hukuhara differentiability and
generalized α-cuts. These techniques find applications in population dynamics, epidemiology,
and economic modeling, where uncertainties play a significant role. Non-Michaelis-Menten
Kinetics in an Amperometric Biosensor: Steady-State Substrate and Product Concentrations
Using and Padé Approximants and the Hyperbolic Function method [22]. A brief overview
of analytical methods for a fourth-order nonlinear integral boundary value issue with fractal
derivatives [15]. Comprehensive Analysis of Electron Transfer Mediator/Heterogeneous Cata-
lyst Composites in Polymer-Modified Electrodes Mathematically [26]. International Scholarly
Research Notices, Theoretical Analysis of an Amperometric Biosensor Based on Parallel Sub-
strates Conversion [16]. Using the homotopy perturbation method, an analytical solution of an
am-perometric biosensor based on catalase-peroxidase biochemical processes was found [30].
The present study examines the analytical solution of concentrated mixtures of hydrogen sul-
fide and methanol in a steady state using a biofilm model [33]. Pre-Steady State Behavior of
Non-Linear Double Intermediate Enzymatic Reaction: A Theoretical Analysis [21]. Nonlinear
Differential Equations in Polymer Coated Microelectrodes: A Mathematical Analysis [37]

Bakhadda et al. [27] examined the existence of positive radial solutions of a nonlinear elliptic
equation with a critical potential. Their study is significant in the context of reaction-diffusion
systems, where the presence of a critical potential influences the spatial distribution of solu-
tions. Physically, such equations often arise in electrostatic models, population dynamics, and
quantum mechanics, where the radial symmetry represents isotropic conditions. The critical
potential introduces a threshold behavior, affecting the stability and boundedness of solutions
in biological and physical systems. Rasheed et al. [31] investigated the blow-up results for a



Reaction-Diffusion Modeling in PPO Micro Planes 641

reaction-diffusion equation with a Dirichlet boundary condition. Blow-up phenomena are cru-
cial in modeling physical and biological processes where energy or concentration accumulates
beyond a finite threshold, leading to singularities. In the context of chemical reactions, heat trans-
fer, or biological populations, blow-up signifies uncontrolled growth, such as thermal runaway
in combustion or tumor growth in biomedical applications. Their findings provide insights into
the time scales and conditions under which such extreme behaviors occur, offering guidelines
for controlling or mitigating them in practical applications. Az-Edine et al. [36] explored the
weak periodic solution to nonlinear variational parabolic problems having nonlinear boundary
conditions and without a sign condition. These problems arise in thermomechanical and fluid
transport models where periodic forcing, such as seasonal variations in environmental condi-
tions, affects the system’s evolution. The absence of a sign condition implies that the system can
exhibit both positive and negative fluxes, which is particularly relevant in multiphase transport
and heat conduction in composite materials. Their study provides a mathematical framework to
understand long-term oscillatory behaviors in nonlinear systems, contributing to the design of
stable engineering and biomedical systems.

Shams et al.[28] investigated the Modified Block Homotopy Perturbation Method for Solving
Triangular Linear Diophantine Fuzzy System of Equations, in which they extended the Homo-
topy Perturbation Method (HPM) to efficiently solve fuzzy Diophantine systems. The physical
mechanism utilizes a block-wise decomposition approach that applies homotopy perturbation
iteratively over subdomains of the problem space, leading to enhanced accuracy in solutions.
This method is particularly beneficial for cryptographic applications, combinatorial optimiza-
tion, and fuzzy logic-based control systems. Shams et al.[32] examined the Semi-Analytical
Scheme for Solving Intuitionistic Fuzzy System of Differential Equations, where they proposed
a hybrid approach combining analytical and numerical techniques to solve differential equations
modeled under intuitionistic fuzzy logic. The physical mechanism leverages a decomposition-
based framework that systematically reduces the complexity of fuzzy differential equations by
isolating intuitionistic components. This approach is highly useful in modeling uncertainty in
fluid dynamics, bioinformatics, and environmental engineering. Shams et al.[35] discussed the
Highly Efficient Numerical Scheme for Solving Fuzzy Systems of Linear and Non-Linear Equa-
tions with Application in Differential Equations, where they developed an optimized numeri-
cal scheme that improves computational efficiency in solving fuzzy-based linear and nonlinear
systems. The physical mechanism integrates a multi-stage refinement process, where iterative
corrections are applied in an adaptive manner to balance accuracy and computational load. This
scheme has wide-ranging applications in network optimization, artificial intelligence, and pre-
dictive analytics in engineering and sciences.

This research is novel since it uses my paper’s modified micro-cylinder biosensor model [3].
Our AGM and HPM techniques transformed the model into a ppo-modified micro planar biosen-
sor. The main objective of the research is to develop and analyze models of reaction-diffusion
systems in the context of PPO microplanes. These systems explain the changes in chemical
compounds dispersed over space due to diffusion and local chemical reactions. The Akbari
Ganji method and the Homotopy Perturbation Method, assessing their accuracy, efficiency, and
applicability to reaction-diffusion modeling in PPO microplanes. Validate the proposed models
and solutions by comparing them with experimental data or established numerical solutions, en-
suring the reliability of the methods in practical applications.

2 Mathematical formulation

An enzyme immobilized in a non-conductive substance permeable to the substrate is
equally coated on a planar electrode. The electrode is utilized in a stirred solution, including
additional supporting electrolytes. According to [3], the enzyme and electrode reactions are as
follows:

O2 + 2catechol−→2o− quinone+ 2H2O (2.1)

o− quinone+ 2H+ + 2e−−→catechol (2.2)
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If the enzyme reaction follows Michaelis-Menten kinetics and the enzyme concentration
is uniform, as is expected, then the response in the film is [7]. Michaelis-Menten kinetics, or
M-K, can be used to model the process.

kcat = k1Co2 and Mk = k1(k2 + k3)Co2k2k3 (2.3)

The mass balance for catechol (S) is given as follows in planar coordinates:

DS

(
d2S

dx2

)
− kcatCES

S +Mk
= 0 (2.4)

catechol concentration profile (S), enzyme concentration profile (CE), diffusion coefficients (DS

and DP ), Michaelis constant (MK), and quinone concentration profile (P) are all abbreviations
for the concentration profiles of their respective compounds. Consequently, at steady-state, the
equation of continuity for quinone is frequently written as

DP

(
d2P

dx2

)
− kcatCEP

P +Mk
= 0 (2.5)

The electrode surface (x0), as well as the film surface (x1), have boundary conditions of [2]

x = x0, s = s∗, P = 0; (2.6)

x = x1, s = s∗, P = 0; (2.7)

where s∗ is the enzyme film’s partition coefficient divided by the bulk concentration of catechol.
When we combine equations (4) and (5) and integrate them using the boundary conditions (6),
we obtain

s(x)

s∗
+
DPP (x)

DSS∗ = 1 (2.8)

The steady-state current is given in [2]

I

nF
= 2πAx0DP (dP/dx)x=x0 (2.9)

Our presentation of dimensionless variables looks like this:

S =
s

s∗
, P =

p

s∗
, X =

x

x0
, γ =

s∗

MK
, λ1 =

kcatCEx
2
0

DSMK
, λ2 =

kcatCEx
2
0

DPMK
,
DP

DS
=
λ1

λ2
(2.10)

where S and P represent the catechol and o-quinone dimensionless concentrations, X represents
the parameter for distance with no dimensions. The reaction-diffusion parameters without di-
mensions λ1, λ2 and γ are the saturation parameter.

d2S

dX2 − λ1S

1 + γS
= 0 (2.11)

d2P

dX2 +
λ2S

1 + γS
= 0 (2.12)

The boundary conditions are shown in the following way:

S = 1, P = 0, when X = 1 (2.13)

S = 1, P = 0, when X =
x1

x0
(2.14)

It is possible to express the dimensionless current at the micro planar as follows:

ψ = I/nFADP s
∗ = 2π(dP/dX)X=1 (2.15)
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3 Approximate Analytical Solution for Current and Concentrations

The HPM and AGM are mathematical approaches that provide solutions to the governing
equations of diffusion phenomena. The HPM is a powerful analytical technique that solves
nonlinear differential equations by introducing a small parameter and employing perturbation
theory. On the other hand, the AGM is a numerical method that applies a suitable transformation
to convert the governing equations into a simpler form, leading to efficient and accurate numeri-
cal solutions.

Combining these two techniques, a thorough theoretical model is created to explain the
diffusion process at micro planar biosensors modified by PPO. The derived concentration profiles
of analytes close to the electrode surface are compared after theoretical and numerical investi-
gations utilizing the HPM and AGM. This comparison study aims to evaluate how well the two
approaches predict diffusion kinetics in terms of precision and effectiveness.

3.1 Homotopy Perturbation Method (HPM)

The homotopy perturbation method (HPM) [5, 12, 18] is an effective mathematical tech-
nique for solving nonlinear differential equations. Ji-Huan He first presented it in 1999, and
it has since become well-liked in many scientific and engineering sectors [1]. To get approx-
imations of solutions to nonlinear problems, the method combines the ideas of homotopy and
perturbation [8, 9, 10].

As part of our investigation, we focus on a non-linear partial differential equation that has
been thoroughly researched in the literature [1, 8, 9, 10].
A homotopy was built to find the solution to the equations (11) & (12).

(1 − p)

(
d2S

dX2

)
+ p

(
d2S

dX2 − λ1S

1 + γS

)
= 0 (3.1)

(1 − p)

(
d2P

dX2

)
+ p

(
d2P

dX2 +
λ2S

1 + γS

)
= 0 (3.2)

From (16) and (17), the approximate answers are

S = S0 + pS1 + p2S2 + p3S3 + ...& (3.3)

P = P0 + pP1 + p2P2 + p3P3 + ... (3.4)

The coefficients of like powers of p are compared after substituting equations (18) and (19) into
equations (16) and (17)

p0 :
d2S0

dX2 = 0 (3.5)

p1 :
d2S1

dX2 − λ1S0

1 + γS0
= 0 (3.6)

and (3.7)

p0 :
d2P0

dX2 = 0 (3.8)

p1 :
d2P1

dX2 +
λ1P0

1 + γP0
= 0 (3.9)

The following outcomes can be obtained by solving Equations (20) through (24) and applying
the boundary conditions (13) and (14).

S0(X) = 1 (3.10)

S1(X) =
λ1(X − 1)(X − k)

2 + 2γ
(3.11)
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and

P0(X) = 0 (3.12)

P1(X) = −(−6 + (X2 + (k + 1)X + k2 + k + 1)λ2)λ1(X − 1)(X − k)

24 + 24γ
(3.13)

As per the HPM,

S(X) = S0 + S1 + S2 + ... (3.14)

P (X) = P0 + P1 + P2 + ... (3.15)

Using Equations (25) and (26) in Equation (29) as well as Equations (27) and (28) in (30), we
obtain the final results presented below.

S(X) = 1 +
λ1(X − 1)(X − k)

2 + 2γ
(3.16)

P (X) = 0 − (−6 + (X2 + (k + 1)X + k2 + k + 1)λ2)λ1(X − 1)(X − k)

24 + 24γ
(3.17)

where k = x1/x0

3.2 Akbari-Ganji Method (AGM)

Dr Akbari and Dr Ganji collaborated and introduced the Akbari-Ganji method, an ex-
tension of the Homotopy Perturbation Method (HPM) [6]. Their work has provided a practical
method used in research to solve nonlinear differential equations and engineering, and their
method has been widely adopted and applied [14, 24, 29]

We focus on a specific non-linear partial differential equation in this study that has drawn
much interest from the literature [12, 6, 14, 24, 29, 4, 11]. Our investigation centers on this
equation, and we explore its properties and the conclusions and theories from previous research
[6, 14, 24, 29].
Let us assume that solution of the Eqn. (11),

S(X) = A coshmX +B sinhmX (3.18)

Here A, B and m is necessary to achieve are constants.
To resolve the equation (33) using the boundary conditions (13) & (14)

A =
−sinh(m)− sinh(mk)

sinh(mk)cosh(m)− sinh(m)cosh(mk)
(3.19)

B =
−cosh(mk) + cosh(m)

sinh(mk)cosh(m)− sinh(m)cosh(m)
(3.20)

Substitute Eqns. (34) and (35) in (33), we get

S(X) =
(sinh(mk)− sinh(m))cosh(mX) + sinh(mX)(−cosh(mk) + cosh(m))

−sinh(m)cosh(mk) + sinh(mk)cosh(m)
(3.21)

Substitute equation (36) into (11),

S(X) =
m2(sinh(mk)− sinh(m))

−sinh(m)cosh(mk) + sinh(mk)cosh(m)
+

λ1(−sinλ(mk) + sinh(m))

(cosh(m) + γ)sinh(mk)− sinh(m)(γ + cosh(mk)
(3.22)
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put X = 1 in Eqn. (37), we get

γm2 +m2 − λ1

γ + 1
= 0 (3.23)

m =

√
(γ + 1)λ1

γ + 1
(3.24)

After repeating the same procedure for Eqn. (12), we obtain

P (X) =
λ2(1 − S(X))

λ1
(3.25)

The dimensionless current as follows:

ψ =
2πλ2(sinh(m)sinh(mk)− cosh(m)cosh(mk) + 1)

λ1(sinh(m)cosh(mk)− sinh(mk)cosh(m))
(3.26)

where S(X) =
(sinh(mk)− sinh(m))cosh(mX) + sinh(mX)(−cosh(mk) + cosh(m))

−sinh(m)cosh(mk) + sinh(mk)cosh(m)
(3.27)

k = x1/x0 & m =

√
(γ + 1)λ1

γ + 1
(3.28)

4 Comparative Analysis of Analytical and Numerical Simulation

We may decide which approach is best for a given topic and develop a thorough grasp
of the phenomenon being examined by comparing the findings, computational efficiency, accu-
racy, and simplicity. In this work, the numerical solution produced by MATLAB software was
compared to the analytical expressions that were obtained.

X λ1 = 0.1 λ1 = 0.5 λ1 = 1

Num. HPM AGM

Error
%
of

HPM

Error
%
of

AGM

Num. HPM AGM

Error
%
of

HPM

Error
%
of

AGM

Num. HPM AGM

Error
%
of

HPM

Error
%
of

AGM
1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

1.1 0.99 0.99 0.99 0 0 0.99 0.99 0.99 0 0 0.99 0.99 0.99 0 0
1.2 0.99 0.99 0.99 0 0 0.99 0.99 0.99 0 0 0.99 0.99 0.99 0 0
1.3 0.99 0.99 0.99 0 0 0.99 0.99 0.99 0 0 0.99 0.99 0.99 0 0
1.4 0.99 0.99 0.99 0 0 0.99 0.99 0.99 0 0 0.99 0.99 0.99 0 0
1.5 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

Average Error % 0 0 0 0 0 0

Table 1. Comparing the Substrate Concentration (S) in Equation (11) its Numerical Result for
various reaction diffusion parameter (λ1) Values with Fixed saturation parameter (γ)

5 Result and discussion

The new approximate analytical formulations of catechol and o-quinone concentrations
reflect S, P, CE , x1/x0, and a for all values of the parameters Eqs. (11) as well as (12). The
boundary requirements of Equations (13) and (14) are met. In Fig. 1, we show a set of nor-
malized concentration profiles for a catechol S as a function of γ saturation parameter an, film
thickness x1/x0, and reaction-diffusion parameters. The catechol concentration S is shown as
a parabola with X = 0.1, 0.2, and 0.3 as the axis. When X = 1 and X = x1/x0, the catechol
concentration S is almost equal to 1, the attention of catechol is one for all values of x1/x0 when
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X γ = 0.1 γ = 0.5 γ = 1

Num. HPM AGM

Error
%
of

HPM

Error
%
of

AGM

Num. HPM AGM

Error
%
of

HPM

Error
%
of

AGM

Num. HPM AGM

Error
%
of

HPM

Error
%
of

AGM
1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

1.1 0.99 0.99 0.99 0.00 0 0.99 0.99 0.99 0 0 0.99 0.99 0.99 0 0
1.2 0.98 0.98 0.98 0.00 0 0.98 0.98 0.98 0 0 0.99 0.99 0.99 0 0
1.3 0.98 0.98 0.98 0.00 0 0.99 0.99 0.99 0 0 0.99 0.99 0.99 0 0
1.4 0.99 0.99 0.99 0 0 0.99 0.99 0.99 0 0 0.99 0.99 0.99 0 0
1.5 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

Average Error % 0 0 0 0 0 0

Table 2. Comparing the Substrate Concentration (S) in Equations (11) its Numerical Result for
various saturation parameter (γ) values with fixed reaction diffusion parameter (λ1) values.

X λ1 = 0.1 λ1 = 0.5 λ1 = 1

Num. HPM AGM

Error
%
Of

HPM

Error
%
of

AGM

Num. HPM AGM

Error
%
of

HPM

Error
%
of

AGM

Num. HPM AGM

Error
%
of

HPM

Error
%
of

AGM
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1.1 0.19 0.19 0.19 0 0 0.19 0.19 0.19 0 0 0.19 0.19 0.19 0 0
1.2 0.27 0.27 0.27 0 0 0.27 0.27 0.27 0 0 0.27 0.27 0.27 0 0
1.3 0.26 0.26 0.26 0 0 0.26 0.26 0.26 0 0 0.26 0.26 0.26 0 0
1.4 0.16 0.16 0.16 0 0 0.16 0.16 0.16 0 0 0.16 0.16 0.16 0 0
1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Average Error % 0 0 0 0 0 0

Table 3. Comparing the Product Concentration (P) in Equations (12) its Numerical results for
saturation parameter (γ) fixed and reaction diffusion parameter (λ1) varies.

X γ = 0.1 γ = 0.5 γ = 1

Num. HPM AGM

Error
%
Of

HPM

Error
%
of

AGM

Num. HPM AGM

Error
%
of

HPM

Error
%
of

AGM

Num. HPM AGM

Error
%
of

HPM

Error
%
of

AGM
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1.1 0.19 0.19 0.19 0 0 0.19 0.19 0.19 0 0 0.19 0.19 0.19 0 0
1.2 0.27 0.27 0.27 0 0 0.27 0.27 0.27 0 0 0.27 0.27 0.27 0 0
1.3 0.26 0.26 0.26 0 0 0.26 0.26 0.26 0 0 0.26 0.26 0.26 0 0
1.4 0.16 0.16 0.16 0 0 0.16 0.16 0.16 0 0 0.16 0.16 0.16 0 0
1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Average Error % 0 0 0 0 0 0

Table 4. Comparing the Product Concentration (P) in Equations (12) its Numerical results for
reaction diffusion parameter (λ1 ) fixed and saturation parameter (γ) varies.

the saturation parameter (γ) is significant (or the reaction-diffusion parameter (CE) is minimal).
We compare our analytical expressions for o-quinone (P) (Eq. (12) and catechol (S) (Eq.

(11) in Figures 1-4. A satisfactory arrangement has been made. As demonstrated in Figs. 1-4,
as enzyme activity rises, the catechol concentration decreases in the middle of the film. Still, it
stays high at the film/solution interface because of diffusion from bulk and at the electrode/film
interface because of generation at the electrode. Figures 5 depict the dimensionless current ψ
vs x1/x0 using Eqn. (15) as an illustration. We contrast the saturated outcome in Fig. 5 with
the steady-state analytical current expression (Eqn. 20). For all values, the value of current ψ
increases as the film’s thickness x1/x0 increases.

6 Conclusion

The developed diffusion-kinetic model offers a comprehensive analytical framework for
understanding the steady-state behavior of PPO-modified micro planar biosensors. Using the
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Homotopy perturbation method (HPM) and the Akbar Ganji method (AGM), we derived closed-
form solutions that describe the spatial distribution of catechol and o-quinone concentrations
within the substrate (S) and product (P) regions, as well as the ratio x1/x0 that characterizes the
relative concentration dynamics. This model incorporates nonlinear reaction-diffusion interac-
tions, particularly those governed by a nonlinear Michaelis-Menten kinetic scheme, providing
an accurate description of the enzymatic activity at the biosensor interface. The steady-state
current response of the biosensor is explicitly formulated, allowing for precise predictions of
the electrochemical behavior of the system at various substrate concentrations. Furthermore,
the calibration curves obtained from this study highlight the significant nonlinear contributions
in catechol/phenol biosensors, emphasizing the necessity of accounting for these effects in ex-
perimental and theoretical analyses. The analytical results facilitate the estimation of catechol
and o-quinone concentrations and their influence on biosensor performance, enabling a robust
framework for optimizing biosensor design and improving detection accuracy in practical appli-
cations. The study shows that HPM and AGM can solve diffusion kinetics for PPO-modified
micro planar biosensors, with AGM having higher accuracy and convergence. AGM concentra-
tion profiles closely match the experimental results, indicating its efficacy. This study improves
our understanding of diffusion kinetics in biosensors and offers valuable insights for enhancing
bio electro chemical systems.

Figure 1. (a) Steady-state concentration catechol (S) for various reaction diffusion parameter
(λ1) calculated from Eqn.(16 & 18)
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Figure 2. (b) Steady-state concentration catechol (S) for various saturation parameter value (γ)
calculated from Eqn.(16 & 18)

Figure 3. (a) Steady-state concentration quinone (P) for various reaction diffusion parameter
(λ1) calculated from Eqn.(17 & 19)
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Figure 4. (b) Steady-state concentration catechol (S) for various saturation parameter value (γ)
calculated from Eqn.(17 & 19)
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