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Abstract This work aims to study a discrete ϕ-Laplacian eigenvalue boundary value problem
at four points. Our results are based on the fixed point theory for the sum of two operators defined
on cones of Banach spaces. We first establish the existence of at least one nontrivial nonnegative
solution under a general polynomial growth condition on the nonlinearity. Then, under additional
assumptions, specifically the super-linear and sub-linear cases of the nonlinearity, we establish
the existence of at least one positive solution and the existence of two positive solutions. To
support our theoretical results, we provide numerical examples at the end of the paper.

1 Introduction

In this work, we investigate the following discrete four point boundary value problem

∆(ϕ(∆u(k − 1))) + λg(k)f(k, u(k)) =0, k ∈ {1, 2, . . . , T}
∆u(0)− αu(l1) =0, (1.1)

∆u(T ) + βu(l2) =0,

where λ > 0 is a parameter, l1, l2 ∈ {1, 2, . . . , T} with T > 1 is an integer, l1 < l2, α, β > 0 and
αl1 ≤ 1, β(T + 1 − l2) ≤ 1. Throughout this paper, T = {0, 1, . . . , T + 1} denotes the set of
integers in the interval [0, T +1] and by a positive solution of problem (1.1) we mean a sequence
{u(0), u(1), ..., u(T + 1)} which satisfies (1.1) with u(k) > 0 on T. Here ∆ is the forward
difference operator defined by ∆u(k) = u(k + 1) − u(k) for k ∈ {1, 2, . . . , T}. The nonlinear
operator of derivation ϕ : R → R is an odd increasing homeomorphism such that ϕ(0) = 0 and
satisfies these two conditions:

(A1) there exists an increasing homeomorphism ψ of (0,∞) onto (0,∞) such that

ϕ−1(αβ) ≤ ψ−1(α)ϕ−1(β), for all α, β ∈ (0,∞), (1.2)

and

(A2) there exists an increasing homeomorphism χ of (0,∞) onto (0,∞) such that

ϕ−1(αβ) ≥ χ−1(α)ϕ−1(β), for all α, β ∈ (0,∞). (1.3)

Note that the conditions (A1) and (A2) hold true when there exist increasing homeomorphisms
ψ and χ of (0,∞) onto (0,∞) such that

ψ(α)ϕ(β) ≤ ϕ(αβ) and ϕ(αβ) ≤ χ(α) ϕ(β), for all α, β ∈ (0,∞),

respectively. Such ψ and χ exist in the particular case where both are equal to ϕ.
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Example 1.1. Let p be an integer such that p > 0 and odd, if

ϕ(x) =

{
xp, x ≥ 0
−(−x)p, x < 0

we can easily verify that ϕ is an odd increasing homeomorphism with

ϕ−1(x) =

{
x

1
p , x ≥ 0

−(−x)
1
p , x < 0

and for χ(x) = (3x)p, ψ(x) = (x3 )
p, we verify that χ, ψ are increasing homeomorphism on

(0,∞) onto (0,∞), with χ−1(x) = 1
3 x

1
p and ψ−1(x) = 3x

1
p .

Figure 1. Graphical representation of the inequalities ψ(α)ϕ(β) ≤ ϕ(αβ) and ϕ(αβ) ≤
χ(α) ϕ(β), for all α, β ∈ (0,∞)

Figure 2. Graphical representation of conditions (A1) and (A2)

Obviously, ϕ is an extension of the usual multiplicative p-Laplacian nonlinear operator ϕp(s) =
|s|p−2s for p > 1. In the case when ϕ(u) = u, the problem (1.1) represents the classical second-
order difference boundary value problem at four points.
Note that the special case of the ϕ-Laplacian boundary value problem (1.1) has been studied
in [25] for ϕ(s) = ϕp(s) and the nonlinearity f is autonomous, where the authors discussed the
existence of positive solutions by imposing restrictive conditions on the parameters in the bound-
ary conditions of the problem (1.1) to ensure the nonnegativity of solutions even when both f
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and g are nonnegative; they also discussed cases where solutions fail to exist. In [5], the au-
thors provide sufficient conditions to guarantee that there is at least one homoclinic solution for
the following nonlinear second-order difference equation with p-Laplacian by using variational
methods.

∆(a(k)ϕp(∆(k − 1))) + b(k)ϕp(u(k)) =f(u(k)), k ∈ Z, (1.4)

u(k) → 0, as |k| → ∞

with a, b : Z → (0,+∞) and f : Z×R → R is a continuous function.
In [3], the author used the lower and upper solutions method combined with fixed point index
theory to study the existence, nonexistence, and multiplicity of positive solutions for the follow-
ing discrete Dirichlet ϕ-Laplacian eigenvalue problem

∆(ϕ(∆(k − 1))) + λg(k)f(u(k)) =0, k ∈ {1, 2, . . . , T}, (1.5)

u(0) = u(T + 1) =0,

where λ is a positive parameter, g : [1, T ]Z → (0,∞) and f : R+ → (0,∞) is continuous, with
ϕ : R → R is an odd and strictly increasing homeomorphism and lim

u→∞
f(u)
ϕ(u) = ∞.

In [4], Bai and Xu established the existence of three positive solutions for the problem (1.5),
under some suitable assumptions imposed on the nonlinearity f and the positive parameter λ
belonging to an explicit open interval. The multiplicity result is based on the Brouwer degree
theory and the method of lower and upper solutions.
In [26], Zhou and Ling obtained some sufficient conditions on the existence of infinitely many
positive solutions for the following second order ϕc-Laplacian difference equation; the approach
used is critical point theory.

−∆(ϕc(∆(k − 1))) =λf(k, u(k)), k ∈ {1, 2, . . . , T}, (1.6)

u(0) = u(T + 1) =0,

where ϕc is a special ϕ-Laplacian operator defined by ϕc = s√
1+s2 .

In [8], the authors established the existence of two positive solutions for the following nonlin-
ear Robin problem involving the discrete p-Laplacian using variational methods and truncation
techniques.

−∆(ϕp(∆u(k − 1))) + g(k)ϕp(u(k)) =λfk(u(k)), k ∈ {1, . . . , T} (1.7)

u(0) = ∆u(T ) =0, (1.8)

where λ is a positive parameter, g : [1, T ] → [0,+∞) and fk : R → R are continuous mappings.

Difference equations have been extensively applied across various fields of applied sciences
[13, 18]. In recent years, increasing attention has been given to the existence and multiplicity of
positive solutions for boundary value problems involving the ϕ-Laplacian and its special cases.
To the best of our knowledge, no existing work has addressed on discrete four-point bound-
ary value problems involving the generalized ϕ-Laplacian operator. For recent developments in
discrete eigenvalue problems, relevant studies can be found in the context of partial difference
equations [12, 19, 21, 22, 23, 24], where the principal method employed is critical point theory.
In the case of fractional difference equations [14, 15, 20], fixed point theorems and variational
methods have been the main used methods. The fixed point approach was chosen for its adapt-
ability to the problem’s nonlinear structure.

In this work, we assume that:

(H1) g : T → (0,∞) is a function such that
T∑

k=1
g(k) < ∞ and f : T× [0,∞) → R is a contin-

uous function such that f(k̄, 0) ̸= 0 for some k̄ ∈ T, satisfying the growth condition

0 ≤ f(k, u(k)) ≤ a(k) + b(k)|u(k)|p,
where a, b ∈ C(T,R) are positive functions, p nonnegative constant and a(k), b(k) ≤M for
some positive constant M .
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(H2) There exists a constant R > 0 such that

Lψ−1(λ)ϕ−1

(
(M +MRp)

T∑
i=1

g(i)

)
< R,

where L = max
(

1
α + T + 1, 1

β + T + 1
)
.

To ensure that (H2) is satisfied, it suffices to show that

sup
z>0

z

Lψ−1(λ)ϕ−1

(
(M +Mzp)

T∑
i=1

g(i)

) > 1.

This work is devoted to discussing the existence and the multiplicity of positive solutions to
the problem (1.1). We will make use of a recent fixed point theory for the sum of two opera-
tors on a suitable cone in some Banach space. In addition, two examples are given to illustrate
some existence results. The paper is organized as follows: In the next section, we give some
preliminary results we need in this paper. In section 3, we provide some auxiliary results and
necessary lemmas. In section 4, we present our main existence results. In the last section, we
give numerical examples to support our theoretical results.

2 Preliminaries

Definition 2.1. Let (X, d) be a metric space and D a subset of X. A mapping T : D → X is said
to be h-expansive if there exists a constant h > 1 such that

d(Tx, Ty) ≥ h d(x, y), ∀x, y ∈ D.

Let E be a real Banach space.

Definition 2.2. The mapping K : E → K is said to be completely continuous if it is continuous
and it maps any bounded set into a relatively compact set.

Lemma 2.3. (Discrete Ascoli-Arzelà Theorem, see [1, Theorem 17.1]). Let C be a closed subset
of the class of continuous maps u : T → E. If C is uniformly bounded and the set {u(k) : u ∈
C} is relatively compact for each k ∈ T, then C is compact.

Remark 2.4. Recall that a map f : T × (0,∞) → (0,∞) is continuous if it is continuous as
a map of the topological space T × (0,∞) into the topological space (0,∞). Throughout this
paper the topology on T will be the discrete topology.

Definition 2.5. A closed, convex set P of E is said to be cone if

(i) αx ∈ P for any α ≥ 0 and for any x ∈ P ,

(ii) x,−x ∈ P implies x = 0.

For two numbers 0 < r < R, we set

PR ={x ∈ P : ∥x∥ ≤ R},
Pr,R ={x ∈ P : r < ∥x∥ < R}.

The following theorems will be utilized to demonstrate the existence of at least one nonneg-
ative solution, one nonzero nonnegative solution as well as multiple nonnegative solutions to
Problem (1.1). The proofs are based on the fixed point index theory on retracts of Banach spaces
for the sum of two operators. This theory has proven to be a powerful tool in investigating the
existence, positivity, multiplicity and localization of various boundary value problems, including
those arising in differential equations, difference equations, dynamic equations on time scales;
for some works in this direction, see [6, 7, 9, 10, 17]. For more details on this theory, readers are
referred to [11] and [16] and references therein.
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Theorem 2.6. [16, Proposition 2.2.55] Let U be a bounded open subset of a cone P and Ω a
subset of P . Assume that T : Ω → E is an h-expansive mapping, S : U → E is a completely
continuous mapping and tS(U) ⊂ (I − T )(Ω) for all t ∈ [0, 1]. If (I − T )−10 ∈ U , and

(I − T )x ̸= µSx for all x ∈ ∂U ∩ Ω and 0 ≤ µ ≤ 1, (2.1)

then i∗ (T + S,U ∩ Ω,P) = 1. Therefore, there exists x∗ ∈ U ∩ Ω such that

Tx∗ + Sx∗ = x∗.

Theorem 2.7. [16, Theorem 3.1.5]. Let Ω be a subset of a cone P with 0 ∈ Ω; α, β > 0, α ̸=
β; r = min (α, β) and R = max (α, β) such that Pr,R ∩ Ω ̸= ∅. Assume that T : Ω → E is
an h-expansive mapping and S : PR → E is a completely continuous mapping. Suppose that
∥T0∥ < (h− 1)β,

tS(PR) ⊂ (I − T )(Ω) for all t ∈ [0, 1], (2.2)

and that there exists u0 ∈ P\{0} such that the following conditions are satisfied:

Sx ̸= (I − T )(x− µu0) for all µ ≥ 0, x ∈ ∂Pα ∩ (Ω + µu0),

Sx ̸= λ(x− Tx) for all λ ≥ 1, x ∈ ∂Pβ .

Then T + S has a fixed point x ∈ Pr,R ∩ Ω.

3 Auxiliary results

We consider the Banach spaceE = {y : y : T → R}, endowed with the norm ∥y∥ = max
k∈T

|y(k)|.
Define

K = {u ∈ E : u(k) ≥ 0, k ∈ T} ,

P =
{
u ∈ K : ∆

2u(k − 1) ≤ 0, k ∈ {1, . . . , T}
}
.

Remark 3.1. Let ℓ ∈ {1, . . . ,
[
T+1

2

]
}, where [x] is the greatest integer less than x.

For u ∈ P, from [25, Lemma 2.4], we have

u(k) ≥ min
(

k

T + 1
, 1 − k

T + 1

)
∥u∥, for k ∈ T.

In particular, we get

min
k∈{ℓ,T+1−ℓ}

u(k) ≥ ℓ

T + 1
∥u∥.

Lemma 3.2. For each fixed y ∈ K, the linear boundary value problem

∆(ϕ(∆u(k − 1))) + λg(k)f(k, y(k)) = 0, k ∈ {1, 2, . . . , T} (3.1)

subject to the boundary conditions

∆u(0)− αu(l1) = 0, ∆u(T ) + βu(l2) = 0, (3.2)

has a unique solution u ∈ K. Furthermore, the solution u can be expressed as:

u(k) = u(0) +
k∑

s=1

ϕ−1

(
ϕ(Ay)−

s−1∑
i=1

λg(i)f(i, y(i))

)
,

or

u(k) = u(T )−
T∑

s=k+1

ϕ−1

(
ϕ(By) +

T∑
i=s

λg(i)f(i, y(i))

)
.
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Here, Ay is the unique constant determined by Ay = ϕ−1
(

k0∑
i=1

λg(i)f(i, y(i))

)
, for some k0 ∈

T, which satisfies

βAy + αϕ−1
(
ϕ(Ay)−

T∑
i=1

λg(i)f(i, y(i))

)
+ αβ

l2∑
s=l1+1

ϕ−1
(
ϕ(Ay)−

s−1∑
i=1

λg(i)f(i, y(i))

)
= 0.

Similarly, By is the unique constant determined by By = −ϕ−1

(
T∑

i=k1+1
λg(i)f(i, y(i))

)
, for

some k1 ∈ T, which satisfies

αBy + βϕ−1
(
ϕ(By)−

T∑
i=1

λg(i)f(i, y(i))

)
+ αβ

l2∑
s=l1+1

ϕ−1
(
ϕ(By) +

s−1∑
i=1

λg(i)f(i, y(i))

)
= 0.

Moreover, the integers k0 and k1 are equal.

Proof. On one side, we sum (3.1) from 1 to s− 1, one gets

∆u(s) = ϕ−1

(
ϕ(∆u(0))−

s−1∑
i=1

λg(i)f(i, y(i))

)
.

Again summing (3) from 1 to k, it follows that

u(k) = u(0) +
k∑

s=1

ϕ−1

(
ϕ(∆u(0))−

s−1∑
i=1

λg(i)f(i, y(i))

)
. (3.3)

Considering ∆u(0)− αu(l1) = 0, we obtain

u(0) =
1
α

∆u(0)−
l1∑

s=1

ϕ−1

(
ϕ(∆u(0))−

s−1∑
i=1

λg(i)f(i, y(i))

)
.

Let ∆u(0) = Ay, where Ay satisfies ∆u(T ) + βu(l2) = 0, i.e.,

ϕ−1
(
ϕ(∆u(0))−

T∑
i=1

λg(i)f(i, y(i))

)
+ β

[
1
α∆u(0)−

l1∑
s=1

ϕ−1
(
ϕ(∆u(0))−

s−1∑
i=1

λg(i)f(i, y(i))

)
+

l2∑
i=1

ϕ−1
(
ϕ(∆u(0))−

s−1∑
i=1

λg(i)f(i, y(i))

)]
= 0.

Next, define

G(c) = βc+ αϕ−1
(
ϕ(c)−

T∑
i=1

λg(i)f(i, y(i))

)
+ αβ

l2∑
s=l1+1

ϕ−1
(
ϕ(c)−

s−1∑
i=1

λg(i)f(i, y(i))

)
,

then G : R → R is a continuous and increasing function satisfying

G(0) < 0 and G

(
ϕ−1

(
T∑
i=1

λg(i)f(i, y(i))

))
> 0.

By the Intermediate Value Theorem (IVT), it follows that there exists a unique

Ay ∈

(
0, ϕ−1

(
T∑
i=1

λg(i)f(i, y(i))

))
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such that G(Ay) = 0. This implies by applying the IVT again to the continuous and increasing

function k 7→ ϕ−1
(

k∑
i=1

λg(i)f(i, y(i))

)
, that there exists a unique k0 = k0y

∈ {0, . . . , T} such

that

Ay = ϕ−1

(
k0∑
i=1

λg(i)f(i, y(i))

)
.

On the other side, we sum (3.1) from s to T , one gets

∆u(s− 1) = ϕ−1

(
ϕ(∆u(T ))−

T∑
i=s

λg(i)f(i, y(i))

)
. (3.4)

Again summing (3.4) from k + 1 to T , it follows that

u(k) = u(T )−
T∑

s=k+1

ϕ−1

(
ϕ(∆u(T )) +

T∑
i=s

λg(i)f(i, y(i))

)
. (3.5)

Considering ∆u(T ) + βu(l2) = 0, we obtain

u(T ) = − 1
β

∆u(T ) +
T∑

s=l2

ϕ−1

(
ϕ(∆u(T )) +

T∑
i=s

λg(i)f(i, y(i))

)
.

Let ∆u(T ) = By, where By satisfies ∆u(0) + αu(l1) = 0, i.e.,

ϕ−1
(
ϕ(∆u(T )) +

T∑
i=1

λg(i)f(i, y(i))

)
− α

[
− 1

β ∆u(T ) +
T∑

s=l2+1
ϕ−1

(
ϕ(∆u(T )) +

T∑
i=s

λg(i)f(i, y(i))

)
−

T∑
i=l1+1

ϕ−1
(
ϕ(∆u(T )) +

T∑
i=s

λg(i)f(i, y(i))

)]
= 0

Now, define

H(c) = αc+ βϕ−1
(
ϕ(c)−

T∑
i=1

λg(i)f(i, y(i))

)
+ αβ

l2∑
s=l1+1

ϕ−1
(
ϕ(c) +

s−1∑
i=1

λg(i)f(i, y(i))

)
then, H : R → R is a continuous and increasing function satisfying

H(0) > 0 and H

(
−ϕ−1

(
T∑
i=1

λg(i)f(i, y(i))

))
< 0.

By the IVT, it follows that there exists a unique

By ∈

(
−ϕ−1

(
T∑
i=1

λg(i)f(i, y(i))

)
, 0

)

such that H(By) = 0. This implies by applying the IVT again to the continuous and increasing

function k 7→ −ϕ−1
(

T∑
i=k+1

λg(i)f(i, y(i))

)
, that there exists a unique k1 = k1y

∈ {0, . . . , T}

such that

By = −ϕ−1

 T∑
i=k1+1

λg(i)f(i, y(i))

 .

Finally, we show that k0 = k1. We have,

∆u(0) = Ay = ϕ−1

(
k0∑
i=1

λg(i)f(i, y(i))

)
.
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From (3.5), we find

∆u(k) = ϕ−1

(
ϕ(∆u(T )) +

T∑
i=k+1

λg(i)f(i, y(i))

)
.

∆u(k) = ϕ−1

(
ϕ(By) +

T∑
i=k+1

λg(i)f(i, y(i))

)
,

then,

∆u(0) =ϕ−1

(
ϕ(By) +

T∑
i=1

λg(i)f(i, y(i))

)

=ϕ−1

−
T∑

i=k1+1

λg(i)f(i, y(i)) +
T∑
i=1

λg(i)f(i, y(i))


=ϕ−1

(
k1∑
i=1

λg(i)f(i, y(i))

)
.

Then, k0 = k1.

For each u ∈ K, define an operator F : K → E by

Fu(k) =



1
αϕ

−1
(
λ

k0∑
i=1

g(i)f(i, u(i))

)
−

l1∑
s=1

ϕ−1
(
λ

k0∑
i=s

g(i)f(i, u(i))

)
+

k∑
s=1

ϕ−1
(
λ

k0∑
i=s

g(i)f(i, u(i))

)
, k ≤ k0,

1
βϕ

−1

(
λ

T∑
i=k0+1

g(i)f(i, u(i))

)
−

T+1∑
s=l2+1

ϕ−1

(
λ

s−1∑
i=k0+1

g(i)f(i, u(i))

)

+
T+1∑

s=k+1
ϕ−1

(
λ

s−1∑
i=k0+1

g(i)f(i, u(i))

)
, k ≥ k0 + 1,

where k0 ∈ T is an integer corresponding to u satisfying

∆u(0) = ϕ−1

(
k0∑
i=1

λg(i)f(i, u(i))

)

and

∆u(T ) = −ϕ−1

 T∑
i=k0+1

λg(i)f(i, u(i))

 .

Due to the uniqueness of Ay and By, it follows that the operator F is well-defined.

Remark 3.3. From Lemma 3.2, we can easily deduce that any fixed point of the operator F on
K is a positive solution to the boundary value problem (1.1), and conversely. Specifically, for
each u ∈ K, we have

∆Fu(k) =


ϕ−1

(
λ

k0∑
i=k+1

g(i)f(i, u(i))

)
, k ≤ k0,

−ϕ−1

(
λ

k∑
i=k0+1

g(i)f(i, u(i))

)
, k ≥ k0 + 1.

(3.6)
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Hence, we obtain the boundary conditions:

∆Fu(0)− αFu(l1) =ϕ
−1

(
λ

k0∑
i=1

g(i)f(i, u(i))

)
− α

(
1
α
ϕ−1

(
λ

k0∑
i=1

g(i)f(i, u(i))

)

−
l1∑

s=1

ϕ−1

(
λ

k0∑
i=1

g(i)f(i, u(i))

)
+

l1∑
s=1

ϕ−1

(
λ

k0∑
i=s

g(i)f(i, u(i))

))
=0,

and

∆Fu(T ) + βFu(l2) =− ϕ−1

λ T∑
i=k0+1

g(i)f(i, u(i))

+ β

(
1
β
ϕ−1

λ T∑
i=k0+1

g(i)f(i, u(i))


−

T+1∑
s=l2+1

ϕ−1

λ s−1∑
i=k0+1

g(i)f(i, u(i))

+
T+1∑

s=l2+1

ϕ−1

λ s−1∑
i=k0+1

g(i)f(i, u(i))

)
=0.

3.1 Properties of the operator F

Lemma 3.4. Assume that (H1) holds. Then the operator F maps K into P.

Proof. Let u ∈ K. (i) Firstly, we show that Fu(k) ≥ 0 for k ∈ T. We have

∆Fu(0) > 0, ∆Fu(T ) < 0, Fu(l1) > 0 Fu(l2) > 0,

and

Fu(l1)− Fu(0) =
l1−1∑
i=0

∆Fu(i) ≤ ∆Fu(0)l1 = αFu(l1)l1 ≤ Fu(l1).

So, Fu(0) ≥ 0. Similarly,

Fu(T + 1)− Fu(l2) =
T∑

i=l2

∆Fu(i) ≥ −β(T + 1 − l2)Fu(l2) ≥ −Fu(l2).

So, Fu(T + 1) ≥ 0.

Now, let k0 ∈ [l1, l2] be fixed; otherwise, the negative terms in the expression of F are equal
to zero.

• For 0 < k ≤ l1, we have

Fu(k)− Fu(0) =
k∑

s=1

ϕ−1

(
λ

k0∑
i=s

g(i)f(i, u(i))

)
≥ 0

thus Fu(k) ≥ Fu(0) and since Fu(0) ≥ 0, we get Fu(k) ≥ 0.

• For l1 < k ≤ k0, we have

k0∑
i=1

g(i)f(i, u(i)) ≥
k0∑
i=s

g(i)f(i, u(i)),

thus

−
l1∑

s=1

ϕ−1

(
k0∑
i=1

g(i)f(i, u(i))

)
≤ −

l1∑
s=1

ϕ−1

(
k0∑
i=s

g(i)f(i, u(i))

)
.
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Then,

Fu(k) =
1
α
ϕ−1

(
λ

k0∑
i=1

g(i)f(i, u(i))

)
−

l1∑
s=1

ϕ−1

(
λ

k0∑
i=s

g(i)f(i, u(i))

)

+
k∑

s=1

ϕ−1

(
λ

k0∑
i=s

g(i)f(i, u(i))

)

≥ 1
α
ϕ−1

(
λ

k0∑
i=1

g(i)f(i, u(i))

)
−

l1∑
s=1

ϕ−1

(
λ

k0∑
i=1

g(i)f(i, u(i))

)

+
k∑

s=1

ϕ−1

(
λ

k0∑
i=s

g(i)f(i, u(i))

)

=
1
α
ϕ−1

(
λ

k0∑
i=1

g(i)f(i, u(i))

)
− l1ϕ

−1

(
λ

k0∑
i=1

g(i)f(i, u(i))

)

+
k∑

s=1

ϕ−1

(
λ

k0∑
i=s

g(i)f(i, u(i))

)

≥(
1
α
− l1)ϕ

−1

(
λ

k0∑
i=1

g(i)f(i, u(i))

)
≥0.

• For k0 ≤ k ≤ l2, we have

Fu(l2)− Fu(k) =
T+1∑

s=l2+1

ϕ−1

λ s−1∑
i=k0+1

g(i)f(i, u(i))

−
T+1∑

s=k+1

ϕ−1

λ s−1∑
i=k0+1

g(i)f(i, u(i))


=−

l2∑
s=k+1

ϕ−1

λ s−1∑
i=k0+1

g(i)f(i, u(i))


≤0,

thus Fu(l2) ≤ Fu(k) and since Fu(l2) ≥ 0, we get Fu(k) ≥ 0.

• For l2 < k ≤ T , we have

ϕ−1

−λ
s−1∑

i=k0+1

g(i)f(i, u(i))

 ≥ ϕ−1

−λ
T∑

i=k0+1

g(i)f(i, u(i))

 .

Hence

Fu(k) =
1
β
ϕ−1

λ T∑
i=k0+1

g(i)f(i, u(i))

−
T+1∑

s=l2+1

ϕ−1

λ s−1∑
i=k0+1

g(i)f(i, u(i))


+

T+1∑
s=k+1

ϕ−1

λ s−1∑
i=k0+1

g(i)f(i, u(i))


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≥ 1
β
ϕ−1

λ T∑
i=k0+1

g(i)f(i, u(i))

− (T + 1 − l2)ϕ
−1

λ T∑
i=k0+1

g(i)f(i, u(i))


+

T+1∑
s=k+1

ϕ−1

λ s−1∑
i=k0+1

g(i)f(i, u(i))


=(

1
β
− T − 1 + l2)ϕ

−1

λ T∑
i=k0+1

g(i)f(i, u(i))

+
T+1∑

s=k+1

ϕ−1

λ s−1∑
i=k0+1

g(i)f(i, u(i))


≥0.

(ii) Show that ∆2Fu(k − 1) ≤ 0 for k ∈ {1, ..., T}. From (3.6), we have

∆
2Fu(k−1) =


ϕ−1

(
λ

k0∑
i=k+1

g(i)f(i, u(i))

)
− ϕ−1

(
λ

k0∑
i=k

g(i)f(i, u(i))

)
, k − 1 ≤ k0,

−ϕ−1

(
λ

k∑
i=k0+1

g(i)f(i, u(i))

)
+ ϕ−1

(
λ

k−1∑
i=k0+1

g(i)f(i, u(i))

)
, k − 1 ≥ k0 + 1.

The conclusion stems from the fact that ϕ−1 is an increasing function.

Lemma 3.5. Suppose that (H1) holds and B > 0. If u ∈ P with ∥u∥ ≤ B, then

∥Fu∥ ≤ Lψ−1(λ)ϕ−1

(
(M +MBp)

T∑
i=1

g(i)

)
.

Proof.

∥Fu∥ = max{Fu(k0), Fu(k0 + 1)}

≤ max
{

1
αϕ

−1
(
λ

k0∑
i=1

g(i)f(i, u(i))

)
+

k0∑
s=1

ϕ−1
(
λ

k0∑
i=s

g(i)f(i, u(i))

)
,

1
βϕ

−1

(
λ

T∑
i=k0+1

g(i)f(i, u(i))

)
+

T+1∑
s=k0+2

ϕ−1

(
λ

s−1∑
i=k0+1

g(i)f(i, u(i))

)}
≤ max

{
1
αϕ

−1
(
λ(M +MBp)

T∑
i=1

g(i)

)
+

T∑
s=1

ϕ−1
(
λ(M +MBp)

T∑
i=1

g(i)

)
,

1
βϕ

−1
(
λ(M +MBp)

T∑
i=1

g(i)

)
+

T+1∑
s=1

ϕ−1
(
λ(M +MBp)

T∑
i=1

g(i)

)}
≤ max

{
1
αϕ

−1
(
λ(M +MBp)

T∑
i=1

g(i)

)
+ (T + 1)ϕ−1

(
λ(M +MBp)

T∑
i=1

g(i)

)
,

1
βϕ

−1
(
λ(M +MBp)

T∑
i=1

g(i)

)
+ (T + 1)ϕ−1

(
λ(M +MBp)

T∑
i=1

g(i)

)}
≤ max

{( 1
α + T + 1

)
,
(

1
β + T + 1

)}
ψ−1(λ)ϕ−1

(
(M +MBp)

T∑
i=1

g(i)

)
≤ Lψ−1(λ)ϕ−1

(
(M +MBp)

T∑
i=1

g(i)

)
.

Lemma 3.6. Assume that (H1) holds. Then the operator F is completely continuous.

Proof. (i) As demonstrated in [25, Lemma 2.4] and from remark 2.4, since f and g are contin-
uous, we can show that Ay and By vary continuously with respect to y. Consequently, F is a
continuous operator.
(ii) According to the Ascoli-Arzelà compactness criterion (see Lemma 2.3), by invoking Lem-
mas 3.4 and 3.5, we conclude that F : K → K is a completely continuous operator.
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4 Main results

We are now ready to establish our first existence result by utilizing Theorem 2.6.

Theorem 4.1. Suppose that (H1)− (H2) hold. Then the problem (1.1) has at least one nonneg-
ative solution u∗ such that R > ∥u∗∥ ≥ u∗(k) > 0 for all k ∈ {1, ..., T}.

Proof. Let ε > 0. For u ∈ P , define the operators

Tu(k) = (1 + ε)u(k),

Su(k) = −εFu(k), k ∈ T.

Note that any fixed point u ∈ P of the operator sum T + S is a solution of the problem (1.1).
Let

U = {u ∈ P, ∥u∥ < R},
Ω = {u ∈ P, ∥u∥ ≤ 2R}.

(i) For u, v ∈ Ω, we have
∥Tu− Tv∥ = (1 + ε)∥u− v∥.

So, T is h-expansive with constant h = 1 + ε > 1.

(ii) From Lemma 3.6, the operator S is completely continuous.

(iii) Let t ∈ [0, 1] and u ∈ U be arbitrary chosen. Then, by Lemmas 3.5 and 3.4, we get

z = tFu ∈ P

and

∥z∥ ≤ Lψ−1(λ)ϕ−1

(
(M +MRp)

T∑
i=1

g(i)

)
≤ 2R.

Hence z ∈ Ω. Next

tSu(k) =− tεFu(k)

=− εz(k)

=(I − T )z(k).

Thus, tS(U) ⊂ (I − T )(Ω).

(iv) We have that
(I − T )−10 = 0 ∈ U.

(v) Assume that there is u ∈ ∂U ∩ Ω and µ ∈ [0, 1] such that

(I − T )u = µSu.

• If µ = 0, then u = 0, contradicting u ∈ ∂U ∩ Ω.
• If µ ∈ (0, 1], then there would exist k̃ ∈ T such that u(k̃) = R. We get

(I − T )u(k̃) =− ϵu(k̃)

=− ϵR

=− ϵµFx(k̃),

which implies
R = µFu(k̃) < µR ≤ R,

which is a contradiction.
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Consequently, by Theorem 2.6, the operator T + S has a fixed point in U . Then there exists
u∗ ∈ P such that Fu∗ = u∗ such that

0 ≤ u∗(k) < R, k ∈ T.

Moreover, since f(k̄, 0) ̸= 0 for some k̄ ∈ T, from Remark 3.1, we obtain

u∗(k) ≥ min
(

k

T + 1
, 1 − k

T + 1

)
∥u∗∥ > 0, for all k ∈ {1, ..., T}.

Remark 4.2. The result of Theorem 4.1 remains correct even if the function ϕ does not satisfy
the condition (A2).

Now, we will apply Theorem 2.7 to establish criteria for the existence of positive solutions
satisfying both lower and upper bounds on the norm. In the sequel, let

Γ ≥ 1
λ χ
(
T+1
ℓ

)
max

(
1
g(ℓ)

,
1

g(T + 1 − ℓ)

)
.

Theorem 4.3. Assume that (H1)− (H2) hold together with

(H3) lim inf
u→+∞

min
k∈{ℓ,T+1−ℓ}

f(k, u)

ϕ(u)
> Γ·

Then the problem (1.1) has at least one positive solution.

Proof. Let R be as defined by the assumption (H2). By the inequality of (H3), for ε > 0, there
exists an η > ℓ

T+1R > 0 such that

min
k∈{ℓ,T+1−ℓ}

f(k, u) ≥ (Γ + ε)ϕ(u), ∀u ≥ η.

Hence,
f(k, u) ≥ (Γ + ε)ϕ(u), for any u ≥ η and k ∈ {ℓ, T + 1 − ℓ}. (4.1)

Let L = max(2R, (T+1)η
ℓ ) and define the following sets

PR = {u ∈ P, ∥u∥ < R},
PL = {u ∈ P : ∥u∥ < L},
Ω = {u ∈ P, ∥u∥ ≤ 2L}.

Hereafter, we check the hypotheses of Theorem 2.7.
According to the above, it remains to show that there exists u0 ∈ P\{0} such that

Su ̸= (I − T )(u− µu0), for all µ ≥ 0, u ∈ ∂PL ∩ (Ω + µu0).

On the contrary, for any u0 ∈ P\{0} there would exist some µ ≥ 0 and w ∈ ∂PL ∩ (Ω + µu0)
such that

Sw = (I − T )(w − µu0),

or
Fw = w − µu0.

From Remark 3.1, we have min
k∈{ℓ,T+1−ℓ}

w(k) ≥ ℓ
T+1∥w∥ = ℓ

T+1L ≥ η so condition (4.1) implies

that
f(k,w(k)) ≥ (Γ + ε)ϕ(w(k)), ∀ k ∈ {ℓ, T + 1 − ℓ}. (4.2)
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To reach a contradiction, we will use (4.2) and discuss three distinct cases, considering the
definition of the operator F .
(1) For k0 ∈ {ℓ, T + 1 − ℓ}, the following estimates are straightforward:

L = ∥w∥ ≥ w(k0) =Fw(k0) + µu0(k0)

≥(
1
α
− l1)ϕ

−1

(
λ

k0∑
i=1

g(i)f(i, w(i))

)

≥(
1
α
− l1)ϕ

−1

(
λ

k0∑
i=ℓ

g(i)f(i, w(i))

)

≥(
1
α
− l1)ϕ

−1

(
λ (Γ + ε)

k0∑
i=ℓ

g(i)ϕ(w(i))

)

≥(
1
α
− l1)χ

−1

(
λ (Γ + ε)

k0∑
i=ℓ

g(i)

)
ϕ−1

(
ϕ( min

k∈{ℓ,T+1−ℓ}
w(k))

)

>(
1
α
− l1)χ

−1

(
λΓ

k0∑
i=ℓ

g(i)

)
min

k∈{ℓ,T+1−ℓ}
w(k)

≥(
1
α
− l1)χ

−1

(
λΓ

k0∑
i=ℓ

g(i)

)
l

T + 1
∥w∥

≥(
1
α
− l1)χ

−1
(
λΓg(ℓ)

)
l

T + 1
L

≥χ−1
(
λΓg(ℓ)

)
l

T + 1
L

≥L.

(2) For k0 > T + 1 − ℓ, we get

L ≥ w(T + 1 − ℓ) =Fw(T + 1 − ℓ) + µu0(T + 1 − ℓ)

≥
T+1−ℓ∑
s=1

ϕ−1

(
λ

T+1−ℓ∑
i=s

g(i)f(i, w(i))

)

≥ϕ−1

(
λ

T+1−ℓ∑
i=ℓ

g(i)f(i, w(i))

)

≥ϕ−1

(
λ (Γ + ε)

T+1−ℓ∑
i=ℓ

g(i)ϕ(w(i))

)

>χ−1

(
λΓ

T+1−ℓ∑
i=ℓ

g(i)

)
min

k∈{ℓ,T+1−ℓ}
w(k)

≥χ−1

(
λΓ

T+1−ℓ∑
i=ℓ

g(i)

)
l

T + 1
L

≥χ−1
(
λΓg(T + 1 − ℓ)

)
l

T + 1
L

≥L.
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(3) Similarly, for k0 < ℓ, we get

L ≥ w(ℓ) =Fw(ℓ) + µu0(ℓ)

≥
T+1∑
s=ℓ+1

ϕ−1

λ s−1∑
i=k0+1

g(i)f(i, w(i))


≥

T+2−ℓ∑
s=ℓ+1

ϕ−1

(
λ

s−1∑
i=ℓ+1

g(i)f(i, w(i))

)

≥ϕ−1

(
λ

T+1−ℓ∑
i=ℓ

g(i)f(i, w(i))

)

≥ϕ−1

(
λ (Γ + ε)

T+1−ℓ∑
i=ℓ+1

g(i)ϕ(w(i))

)

>χ−1

(
λΓ

T+1−ℓ∑
i=ℓ+1

g(i)

)
min

k∈{ℓ,T+1−ℓ}
w(k)

≥χ−1

(
λΓ

T+1−ℓ∑
i=ℓ+1

g(i)

)
∥w∥

≥χ−1

(
λΓ

T+1−ℓ∑
i=ℓ+1

g(i)

)
l

T + 1
L

≥χ−1
(
λΓg(T + 1 − ℓ)

)
l

T + 1
L

≥L.

Which is a contradiction, this implies that the statement holds true. By Theorem 2.7, we finally
deduce that the mapping T +S has at least one fixed point v∗, which belongs to PR,L and hence
is a solution to the problem (1.1) that satisfies 0 < R < ∥v∗∥ < L. Moreover, we have

v∗(k) > min
(

k

T + 1
, 1 − k

T + 1

)
R, for all k ∈ T.

Then v∗ is a positive solution of the problem (1.1).

The following result deals with the other polynomial growth case and can be proved in a
similar manner.

Theorem 4.4. Assume that (H1)− (H2) hold together with

(H4) lim inf
u→0

min
k∈{ℓ,T+1−ℓ}

f(k, u)

ϕ(u)
> Γ·

Then the problem (1.1) has at least one positive solution.

Proof. Let R be as defined by the assumption (H2). By the inequality of (H4), for ε > 0, there
exists an r0 > 0 such that

f(k, u) ≥ (Γ + ε)ϕ(u), for any u ≤ r0 and k ∈ {ℓ, T + 1 − ℓ}. (4.3)

Let r = min(R2 , r0) and consider the sets

PR = {u ∈ P, ∥u∥ < R},
Pr = {u ∈ P : ∥u∥ < r},
Ω = {u ∈ P, ∥u∥ ≤ 2R}.
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Similarly, the conclusion follows from Theorem 2.7. Hence the problem (1.1) has at least one
solution v∗ ∈ P such that 0 < r < ∥v∗∥ < R. Moreover, we have

v∗(k) > min
(

k

T + 1
, 1 − k

T + 1

)
r, for all k ∈ T.

Then v∗ is a positive solution of the problem (1.1).

Our final result is concerned of the existence of at least two positive solutions.

Theorem 4.5. Assume that (H1) − (H4) hold. Then the problem (1.1) has at least two positive
solutions.

Proof. Using the same arguments as in Theorems 4.3 and 4.4, we consider the following sets

Pr = {u ∈ P : ∥u∥ < r},
PR = {u ∈ P, ∥u∥ < R},
PL = {u ∈ P : ∥u∥ < L},
Ω = {u ∈ P, ∥u∥ ≤ 2L}.

Here r < min(R, r0) and L > max(R, (T+1)η
ℓ ), where r and L are given in (4.3) and (4.1),

respectively. By Theorem 2.7, the problem (1.1) has at least two solutions u∗, v∗ ∈ P such that

0 < r < ∥u∗∥ < R < ∥v∗∥ < L.

Moreover, we have u∗(k) > min
(

k

T + 1
, 1 − k

T + 1

)
r, for all k ∈ T. Then u∗ and v∗ are

positive solutions of the problem (1.1).

As a consequence, we obtain

Corollary 4.6. Assume that (H1)− (H2) hold together with

(H5) lim inf
u→0

min
k∈{ℓ,T+1−ℓ}

f(k, u)

ϕ(u)
= lim inf

u→+∞
min

k∈{ℓ,T+1−ℓ}

f(k, u)

ϕ(u)
= +∞·

Then the problem (1.1) has at least two positive solutions.

5 Examples

Example 5.1. Consider the following boundary value problem

∆(ϕ(∆u(k − 1))) + λg(k)f(k, u(k)) =0, k ∈ {1, 2, . . . , T}
∆u(0)− αu(l1) =0, (5.1)

∆u(T ) + βu(l2) =0,

with
T = 20, l1 = 4, l2 = 14, α = β =

1
8
, λ = 2,

f(k, u) = C(1 + k2)(1 + up) with C = 6.10−12 > 0, and g(k) =
1√

1 + k
,

ϕ(x) = ψ(x) = xq and χ(x) = xp with 0 < q = 3 < p = 6,

hence
ϕ−1(x) = ψ−1(x) = x

1
q and χ−1(x) = x

1
p .

We have
ψ(x)ϕ(y) ≤ ϕ(xy) = ϕ(x)ϕ(y) ≤ χ(x)ϕ(x), ∀x, y ∈ (0,∞),
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so
χ−1(x)ϕ−1(y) ≤ ϕ−1(xy) = ϕ−1(x)ϕ−1(y) ≤ ψ−1(x)ϕ−1(y), ∀x, y ∈ (0,∞).

Also, we have

α l1 =
1
2
≤ 1, β(T + 1 − l2) =

1
8
(20 + 1 − 14) =

7
8
= 0, 875 ≤ 1,

L = max
(

1
α
+ T + 1,

1
β
+ T + 1

)
= 8 + 21 = 29

and
T∑
i=1

g(i) =
20∑
i=1

(
1

1 + k

) 1
2

= 6, 8135 < 7.

Set a(k) = b(k) = C(1 + k2), k ∈ {0, 1, ..., 20}, we get a(k), b(k) ≤M = C(1 + 202), k ∈
{0, 1, ..., 20}.

Let
R = 10,

then

Lψ−1(λ)ϕ−1
(
(M +MRp)

T∑
i=1

g(i)

)
≤ 29λ

1
q (7M(1 +Rp))

1
q

= 29.2
1
3 (7C.(1 + 202)(1 + 106))

1
3

≈ 9, 3657
< 10.

Then all conditions of Theorem 4.1 hold. Consequently, the problem (5.1) has at least one
bounded solution u∗ such that

R = 10 > ∥u∗∥ ≥ u∗(k) > 0 for all k ∈ {1, ..., 20}.

Moreover,

lim
x→+∞

f(k, x)

ϕ(x)
= lim

x→+∞

C (1 + k2)(1 + xp)

xq

≥ C lim
x→+∞

xp−q = +∞,∀ k ∈ {0, ..., 20}

and

lim
x→0

f(k, x)

ϕ(x)
= lim

x→0

C (1 + k2)(1 + xp)

xq

≥ C lim
x→0

x−q = +∞,∀ k ∈ {0, ..., 20}.

Then all conditions of Theorem 4.5 hold. Consequently, the problem (5.1) has at least two
positive solutions.

Example 5.2. Consider the following boundary value problem

∆(ϕ(∆u(k − 1))) + λg(k)f(k, u(k)) =0, k ∈ {1, 2, . . . , T}
∆u(0)− αu(l1) =0, (5.2)

∆u(T ) + βu(l2) =0,

with
T = 25, l1 = 2, l2 = 8, α =

1
12

β =
1

20
, λ =

1
2
,
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f(k, u) = C(1 + u6) with C = 10−9 and g(k) =
1

1 +
√
k
,

ϕ(u) = |u|p
∗
u, ϕ−1(u) = |u|q

∗
u with

1
p∗

+
1
q∗

= 1,

here we set p∗ = 4, q∗ = 4
3 . Let

ψ(x) = x
1
4 and χ(x) = x8

hence
ψ−1(x) = x4 and χ−1(x) = x

1
8 .

We have

ψ(x)ϕ(y) = x
1
4 |y|4y ≤ ϕ(xy) = ϕ(x)ϕ(y) = |x|4x |y|4y, ∀x, y ∈ (0,∞),

and
ϕ(xy) = ϕ(x)ϕ(y) = |x|4x |y|4y ≤ χ(x)ϕ(y) = x8 |y|4y, ∀x, y ∈ (0,∞),

so
χ−1(x)ϕ−1(y) = x

1
8 |y| 4

3 y ≤ ϕ−1(xy) = |x| 4
3x |y| 4

3 y, ∀x, y ∈ (0,∞),

and
ϕ−1(xy) = |x| 4

3x |y| 4
3 y ≤ ψ−1(x)ϕ−1(y) = x4 |y| 4

3 y, ∀x, y ∈ (0,∞).

Also, we have

α l1 =
2
12

=
1
6
≤ 1, β(T + 1 − l2) =

1
20

(25 + 1 − 14) =
12
20

= 0, 6 ≤ 1,

L = max
(

1
α
+ T + 1,

1
β
+ T + 1

)
=

1
β
+ T + 1 = 46

and
T∑
i=1

g(i) =
25∑
i=1

1
1 +

√
k
= 6, 1460 ≤ 6, 5.

Set a(k) = Ck, b(k) = C, k ∈ {0, 1, ..., 25}, we get a(k), b(k) ≤ Ck ≤ M = 25C, k ∈
{0, 1, ..., 25}.
Let

R = 15, p = 6

then

Lψ−1(λ)ϕ−1
(
(M +MRp)

T∑
i=1

g(i)

)
≤ 46.λ4.(6, 5.M(1 +Rp))

4
3 (6, 5.M(1 +Rp))

= 46.
( 1

2

)4
.(6, 5.25.C.(1 + 156))

7
3

≈ 12, 0941
< 15.

Then all conditions of Theorem 4.1 hold. Consequently, the problem (5.2) has at least one
bounded solution u∗ such that

R = 15 > ∥u∗∥ ≥ u∗(k) > 0 for all k ∈ {1, ..., 25}.

Moreover,

lim
x→+∞

f(k, x)

ϕ(x)
= lim

x→+∞

C (1 + x6)

x5

≥ C lim
x→+∞

x = +∞, ∀ k ∈ {0, ..., 25}
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and

lim
x→0

f(k, x)

ϕ(x)
= lim

x→0

C (1 + x6)

x5

≥ C lim
x→0

x−5 = +∞, ∀ k ∈ {0, ..., 25}.

Then all conditions of Theorem 4.5 hold. Consequently, the problem (5.2) has at least two
positive solutions.
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