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Abstract Investigating the unknowns in the dynamic field of global marketing, a unique study
presents a novel, fuzzy, two-tiered model for facility placement. This novel model has a single
product, one method of transportation, two suppliers, and two locations for manufacturing and
warehousing. Because of space limits in factories and stockrooms, the model employs triangular
fuzzy numbers to account for demand, total expense, stock level cost, capacity, and lead time,
which are unpredictable. To find the best answer, we also look at other defuzzification methods,
such as the fuzzy ranking approach, the fuzzy centroid method, and the fuzzy entropy method.
To evaluate the effectiveness of any approach, we carefully examine the costs that arise from
it. To verify the model’s effectiveness, we provide a numerical example and comprehensively
evaluate its results.

1 Introduction

One aspect of supply chain management (SCM) that focuses on locating factories, stockrooms,
and other facilities in a way that minimizes total expenditures is known as the facility location
problem (FLP) [1]. It is possible to classify this complex topic into two broad categories: capac-
itated and uncapacitated facility location problems. CFLP and UFLP deal with limited capabili-
ties, whereas UFLP discusses unlimited capacities. Reducing inventory expenditures and other
supply chain costs within the bounds of capacity, demand, and binary restrictions is the end aim
of both kinds. In addition, operations research relies heavily on the capacitated facility location
problem (CFLP), especially when formulating strategies for distribution networks and supply
chain management as a whole [2]. Supply, demand, and transportation costs are assumed to be
known exactly in traditional CFLP models. However, in actual situations, factors like market
volatility, lack of complete data, and inaccurate predictions can make these parameters uncer-
tain [3]. Incorporating fuzzy set theory into CFLP models provides individuals with a robust
and adaptable strategy for handling uncertainty, enabling them to make more informed location
decisions in unpredictable scenarios [4]. Under conditions of fuzzy uncertainty, this integration
offers a comprehensive framework for resolving the capacitated facility location issue. It is a
potential field for further study and practical application since it provides answers that may be
effectively used in real-life scenarios [5, 6].

The various real-world applications of CFLP in areas including capacity, demand, cost, re-
source allocation, and time restrictions have constructed a rich history in the discipline. Several
scholars have researched CFLP under controlled settings to boost efficiency and profitability
[7]. However, significant unknowns exist in the contemporary world regarding storage capacity,
pricing, and demand. Many people throughout the globe are interested in the CFLP model since
specific parameters are widely unclear [8]. Probabilistic or fuzzy parametric uncertainties define
the modern global corporate environment. Demand could be unpredictable due to market insta-
bility, seasonal changes, and customers’ unpredictable preferences. Total costs could be hard to
forecast due to fluctuations in transportation expenses, raw material expenses, and operational
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charges. Changes in production capacities, equipment breakdowns, and personnel availability
issues are potential reasons for capacity uncertainty [9, 10, 11]. Unpredictable events, including
bad weather or supplier issues, may add uncertainty to lead times and delay shipping, production,
or procurement. Assuming randomness in parameters requires a large amount of data. There-
fore, it has been more common to include uncertainty in demand, pricing, storage capacity, and
decision factors [14].

Although fuzzy uncertainty in CFLP is gaining recognition, research on it is still in its early
stages, in contrast to deterministic techniques. One needs an extensive understanding of the
theory, methodology, and implications of fuzzy uncertainty-based CFLP models to fill this infor-
mation gap. This work aspires to contribute to the field by illuminating current advancements,
methodologies, and practical applications of the topic by analyzing the literature on the capaci-
tated facility locating problem under fuzzy uncertainty.

Novelty and contribution

Incorporating uncertainty into Capacitated Facility Location Problem (CFLP) models enhances
their reliability and trustworthiness, enabling individuals to make more informed judgments in
the face of unpredictable and ever-changing circumstances. This study examines the two-echelon
CFLP from two distinct perspectives: it uses a fuzzy objective function and fuzzy constraints. An
innovative approach to incorporating fuzzy numbers into the components of a two-dimensional
CFLP model makes this work stand out. Quantity, total cost, demand, stock levels, expenses,
and time to delivery are all examples of these fuzzy numbers. It verifies that the model is flexible
enough to respond to market conditions. However, under this model, transportation expenses
remain stable. This research expands upon previous work by Majumder and Sarkar by demon-
strating how parametric uncertainty may help businesses save costs while improving service
allocation to satisfy customers’ demands. Emphasis is placed on fuzzy parameters such as fuzzy
cost, fuzzy demand, and fuzzy capacity to maximize profit [10]. To tackle the problems asso-
ciated with CFLP, we use a fuzzy linear programming model that encapsulates the parameters
discussed before in triangular fuzzy numbers (TFN). After that, we use some methods for de-
fuzzification, including signed distance, centroid, and fuzzy entropy weighted. Ultimately, we
get the most optimal solution by using fuzzy integer ranking to transform a fuzzy model into a
precise form.

2 Related work

Facility location problem

Within the realm of FLP, specialists have performed research into a wide variety of innovative
approaches to tackle the difficulty of fuzzy parameters, reduce expenses, and boost credibility.
There has been much study into the best methods for finding FLP model optimum solutions.
To lower the overall cost objective of a two-stage CFLP successfully, Yang et al. suggested a
novel strategy that integrates three separate approaches [15]. Wang and Watada also looked at a
similar idea that manipulates expenditure and demand [16]. Arana-Jimenez and Blanco created
the fuzzy CFLP framework in TFN form to solve minimax multiple objective mixed integer
programming problems [17]. In their research, Kratica et al. examined a multi-level UFLP
model using mixed-integer programming. Using the CPLEx and Gurobi solvers, they were able
to determine the best solution [18]. An FLP problem, including point and area destinations, was
investigated by Taghi-Nezhad et al. In their study, they included customer desire as an unknown
variable. Utilizing a fuzzy weighted average methodology and a fuzzy critical point method, the
researchers then proposed a solution [19]. As an NP-hard problem, the placement of capacitated
facilities was tackled by Sadat-Asi A.A. Using a hybrid meta-heuristic approach, the ambiguity
around customer demand was eradicated [20].

Fuzzy uncertainty

The mathematical framework of fuzzy set theory, which Lotfi A. Zadeh first proposed during the
1960s, offers a distinctive approach to addressing uncertainty by permitting components to pos-
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sess varying degrees of membership inside sets [12, 13]. Fuzzy set theory in the context of CFLP
enables the depiction of uncertain factors such as demand levels, transportation costs, and facil-
ity capacity, effectively reflecting the inherent uncertainty associated with these variables. Fuzzy
CFLP models can accommodate uncertainty via the use of fuzzy optimization approaches, hence
offering decision-makers solutions that are more robust and flexible. Wen and Iwamura devel-
oped a facility location/allocation model in a situation characterized by unpredictable demand,
described by the Hurwicz criterion. The solution proposed by this model encompasses three
unique methodologies: a simplex algorithm, fuzzy stimulation, and a genetic algorithm [21].
Handfield et al. have shown that demand, lead-time, supplier yield, and penalty cost may rep-
resent a triangular fuzzy distribution to manage inventory model risk variables effectively [22].
According to Shavandi and Bozorgi, a genetic algorithm was used to address the issue of fuzzy
demand in location-inventory or transportation models [23]. In their study, Phruksarphanrat and
Tanthatemee introduced a lot-size order amount to solve uncertain market situations character-
ized by ambiguous demand and supply [24]. The facility placement model proposed by Wang
and Watada integrates risks, fuzzy costs, and demand. This model was solved using a swarm
Particle swarm optimization (PSO) optimizer [25].

Defuzzification

There has been consistent demand for numerous publications. Maintaining a consistent demand,
on the other hand, is no longer sufficient in the present marketing scene. By including demand
uncertainty and travel time into their fuzzy Economic Order Quantity (EOQ) model, Milenkovic
and Bojovic improved the rail freight system using triangular fuzzy numbers. They defuzzi-
fied the model and determined the optimal total cost using the signed distance technique [26].
However, using triangular fuzzy numbers, Lin L. et al. looked into the issue of optimizing the
quickest path. As a result of using the graded mean integration strategy, the algorithmic model
was defuzzified. Furthermore, numerous domains and applications of SCM make heavy use
of robust ranking, a fundamental defuzzification strategy. Similarly, to tackle the problem of
fuzzy transportation and provide a first workable solution, Hunwisai and Kumar combined the
Allocation Table Method (ATM) with a robust ranking approach [28]. While a transportation
model included the fuzzy cost of transportation, supply, and consumption, Nagstiti et al. inves-
tigated the zero-suffix and zero-point techniques. They employed the robust ranking strategy
to defuzzify the model. The subject of Singh A.P.’s research was a fuzzy assignment problem
involving four people and four different professions. To choose which courses each department
will offer the next semester, they employed the robust ranking method [30].

3 Preliminaries

The following definitions and terminologies are essential for defining the model and the defuzzi-
fication technique.

Definition 3.1. Fuzzy number [31, 32, 33]
When a fuzzy set with the symbol Ã satisfies the following requirements, it is considered a fuzzy
number:

• The fuzzy set Ã must exhibit convexity.

• The fuzzy set Ã needs to be a normalized fuzzy set.

• The membership function should display piecewise continuity. In this context, a fuzzy
number is an extension of α− cut represented in an interval format, i.e., Ãα = [αl, αr].

Definition 3.2. α-Level set [31, 37]
An α-Level set is characterized by the α-cut, denoted as Ãα = {α|µÃ(α) ≥ α}, where α ranges
arbitrarily within the interval [0, 1].

Definition 3.3. Triangular Fuzzy Number (TFN) [31, 35]
A triangular fuzzy number is represented as T = (t1, t2, t3) through three distinct points. The
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expression of its membership function is

µ(T )(x) =


0, x < t1
x−t1
t2−t1

, t1 ≤ x ≤ t2
t3−x
t3−t2

, t2 ≤ x ≤ t3

0, x > t3; otherwise

Definition 3.4. Robust ranking method (RRM) [36]
The Robust ranking method (RRM) transforms a Triangular Fuzzy Number, as per definition
3.3, into a crisp form by rank-ordering the fuzzy number using α-cut. The obtained crisp value
through RRM is crucial for decision-making.

d(T, 0) = 1
2

∫ 1
0 [Tl(α), Tr(α)]dα.

Remark 3.5. If [Tl(α), Tr(α)] is the α-level cut of TFN T = (t1, t2, t3), then by definition 3.4 of
the robust ranking method, the crisp value is derived using the following formula [36]:

TRR : = 1
4(t1 + 2t2 + t3)

Definition 3.6. Center of area (COA) [34]
Within the centroid method, the crisp output for a TFN is determined as the Center of Area
(COA) or centroid of the continuous membership function µ(T )(x). The COA is computed using
the formula:

TCOA =
∫
x∗µ(T )(x)dx∫
µ(T )(x)dx

Here, TCOA symbolizes the crisp output, while x represents possible output values.

Remark 3.7. Utilizing definition 3.6 for a TFN T = (t1, t2, t3), the centroid of the fuzzy number
is as follows [12]:

TCOA = t1+t2+t3
3

Definition 3.8. Fuzzy entropy weighted method (FEWM) [35, 38, 39]
The inventive FEWM method integrates entropy to assign weights to the components of a fuzzy
number, capturing the level of uncertainty within the group. The method aims to harmonize a
wide range of information in the fuzzy set by maximizing entropy. The crisp value for the TFN
T = (t1, t2, t3) is computed as follows:

TFEWM = t1∗log(t1)+t2∗log(t2)+t3∗log(t3)
log(t1)+log(t2)+log(t3)

4 Problem Definition

This study delves into a distinct logistical problem called the two-echelon capacitated facility
location problem (TECFLP) inside a two-dimensional framework. The primary goal is to get
products from the plant to the stockroom and the vendor. The structure consists of a delivery plan
that is particular to the product, two suppliers, two stockrooms, two production locations, and
a two-dimensional organization of the decision factors. Storage expenses, capacity needs, and
plant and stockroom delivery schedules are all variables with some unpredictability. The capacity
of the facilities is constant and unaffected by factors such as product type, transportation mode,
or vendor location. Binary conditions, expressed as binary variables, determine the placement of
facilities at specific locations. Despite focusing on only one kind of product, the kind of product
affects vendor needs in this case. To find the optimal TECFLP solution, we first display the
unknown parameters in TFN format and use several methods to optimize these parameters

Notations:

Table 1 lists the notations employed to create the two-dimensional fuzzy TECFLP model. The
variables in this table are continuous and binary, containing two parameters: fuzzy and fixed.
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Table 1: Notations used to formulate the TECFLP model

Continuous variables
xvw A portion of goods drop-shipped in relation to D̃v;
ywf A portion of goods drop-shipped in relation to S̃Ww;
sv A portion of goods supplied to vendor v from an external distributor

in relation to D̃v;
IWw Stock levels of goods at stockroom w;
JFf Stock levels of goods at the factory f ;
Binary variables
WOw 1, in case stockroom is open w; or else 0;
FOf 1, in case factory is open f ; or else 0;
Fixed parameters
v Count of vendors v ∈ V ;
w Count of stockrooms w ∈ W ;
f Count of factory locations f ∈ F ;
SCvw Expense for delivering each item of goods from stockroom w to vendor v;
TCEv Expense for delivering each item of goods to vendor v from an external distributor;
PSCwf Manufacturing and delivering expense of goods per unit from

factory f to stockroom w;
LT The economic value of a lead time frame;
Fuzzy parameters
C̃WOw Overall expense of stockroom w open;

C̃FOf Overall expense of factory f open;

ŨHWw Stock levels expense of goods at stockroom w;

ŨHFf Stock levels expense of goods at factory f ;
S̃Ww Capacity of stockroom w;
S̃Ff Capacity of factory f ;
D̃v Demand of vendor v;

L̃WVvw The time range of delivering goods per unit from stockroom w to vendor v;

L̃FWwf The time range of delivering goods per unit from factory f to stockroom w;

Assumptions:

The mathematical formulation relies on a set of assumptions, encompassing the following con-
ditions:

(i) Fuzzy parameters effectively handle the vague nature of TECFLP.

(ii) The movement of items within the supply chain is assumed to be uniform.

(iii) Limited-capacity factories and stockrooms necessitate the need for openness.

(iv) Meeting each customer’s requirements is essential. Hence, external distributors ensure cus-
tomer satisfaction. The delivery lead time is a crucial factor in the process.

5 Fuzzy TECFLP model in mathematical terms

The model for fuzzy TECFLP is constructed in two dimensions, aligning with the assumptions
mentioned earlier, notations, and definitions. Subject to the model’s constraints, the objective
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function incorporates various fuzzy variable parameters.

Objective function:

MinF =
∑
v∈V

∑
w∈W

SCvwD̃vxvw +
∑
f∈F

∑
w∈W

PSCwf S̃Wwywf +
∑
v∈V

D̃vTCEvsv +
∑
w∈W

ŨHWwIWw

+
∑
f∈F

ŨHFfJFf +
∑
w∈W

C̃WOwWOw +
∑
f∈F

C̃FOfFOf +
∑
v∈V

∑
w∈W

LTD̃vL̃WVvwxvw

+
∑
w∈W

∑
f∈F

LTS̃WwL̃FWwfywf (5.1)

Equation (5.1) represents the goal function of the TECFLP model. The first term in this equation
denotes the variable cost associated with delivering goods from stockrooms to vendors to satisfy
the vendor’s demand. The second component of the equation represents the variable cost asso-
ciated with the manufacturing and delivery of individual units of commodities from the factory
to the stockroom. As shown in the third term, an external distributor bears the variable cost of
shipping each unit of goods to the vendor. The fourth and fifth terms denote the variable costs
related to stock-level expenditures at the stockroom and factories. Conversely, the sixth and sev-
enth terms represent the variable expenses associated with setting up and running stockrooms
and factories at a particular site. The ninth and tenth terms explain the variable costs related
to the delivery time frame from the stockroom to the vendor and from the manufacturer to the
stockroom. Sustaining the following restrictions is required to achieve the goal of this function:

Subject to constraints:

∑
w∈W

xvw ≥ 1 (5.2)

∑
v∈V

sv ≥ 1 (5.3)

∑
f∈F

ywf ≥ 1 (5.4)

∑
w∈W

S̃Wwywf + JFf ≤ S̃FfFOf (5.5)

∑
v∈V

D̃vxvw + IWw ≤ S̃WwWOw (5.6)

WOw, FOf ∈ {0, 1}∀w ∈ W, f ∈ F (5.7)

0 ≤ xvw, ywf , sv ≤ 1 (5.8)

The constraints in the model ensure that each customer’s demand, as well as each retailer’s de-
mand, is met. These constraints are demand constraints and capacity constraints. The demand
constraints (5.2) and (5.3) guarantee the fulfillment of customer and retailer demand, while ca-
pacity constraints (5.5) and (5.6) ensure not to exceed the capacity of stockroom and plant. Fur-
thermore, constraint (5.4) provides that at least one plant is open to supply goods to stockrooms,
and constraints set (5.7) specify that closed sites do not have facilities. The decision variable is
either ’1’ for an open facility or ’0’ for a closed one, as defined by constraint (5.8).

6 Solution methodology

The TECFLP model turns fuzzy parameters into a crisp shape to reduce costs. By considering
two vendors, two stockrooms, and two factory locations, the model is expanded, denoted as 1,2,
to demonstrate its validity.
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Objective function:

MinF = [SC11D̃1x11 + SC21D̃2x21 + SC12D̃1x12 + SC22D̃2x22] + [PSC11S̃W1y11 + PSC12S̃W1y12

+ PSC21S̃W2y21 + PSC22S̃W2y22] + D̃1TCE1s1 + D̃2TCE2s2] + [ŨHW1IW1 + ŨHW2IW2]

+ [ŨHF1JF1 + ŨHF2JF2] + [C̃WO1WO1 + C̃WO2WO2] + [C̃FO1FO1 + C̃FO2FO2]

+ [LTD̃1L̃WV11x11 + LTD̃2L̃WV21x21 + LTD̃1L̃WV12x12 + LTD̃2L̃WV22x22]

+ [LTS̃W1L̃FW11y11 + LTS̃W2L̃FW21y21 + LTS̃W1L̃FW12y12 + LTS̃W2L̃FW22y22] (6.1)

Subject to constraints:

x11 + x12 ≥ 1, x12 + x22 ≥ 1, s1 + s2 ≥ 1, y11 + y12 ≥ 1, y21 + y22 ≥ 1 (6.2)

S̃W1y11 + S̃W2y21 + JF1 ≤ S̃F1FO1 (6.3)

S̃W1y12 + S̃W2y22 + JF2 ≤ S̃F2FO2 (6.4)

D̃1x11 + D̃2x21 + IW1 ≤ S̃W1WO1 (6.5)

D̃1x12 + D̃2x22 + IW2 ≤ S̃W2WO2 (6.6)

WO1,WO2, FO1, FO2 ∈ {0, 1}∀w ∈ W, f ∈ F (6.7)

0 ≤ x11, x12, x21, x22, y11, y12, y21, y22, s1, s2 ≤ 1 (6.8)

Process of fuzzification

This specific model harbors inherent uncertainty within its parameters. In order to address the
imprecise nature of these parameters, the process of fuzzification is implemented. This procedure
entails converting precise inputs into a language that the system can effectively comprehend,
particularly in relation to degrees of membership within fuzzy sets. Consequently, the parameters
of the TECFLP model are conceptualized as fuzzy numbers, referred to as TFN (see Definition
(3.3)), to effectively manage uncertainty by utilizing the adaptable membership function they
offer. Within this framework, the objective function (6.1) and constraints (6.3), (6.4), (6.5), and
(6.6) are also subjected to fuzzification.

Process of defuzzification

To minimize the objective function and determine the optimal values for the decision variables
xvw, ywf , sv, IWw, JFf , WOw, and FOf , the process of defuzzification is initiated to manage
the fuzzy objective function under fuzzy constraints in TFN format. At this stage, we transform
the fuzzy model into a definitive output, which is easy to apply in practical scenarios. The fuzzy
output establishes the most probable value. Furthermore, the academic literature presents various
methodologies for converting fuzzy numbers into precise values. This study employs the RRM,
COA, and FEWM techniques for defuzzification, resulting in an efficient resolution to the issue.

7 Numerical experiment and Result discussion

Numerical experiment

Within this research, the input parameters such as overall expenses, stock level expenses, ca-
pacity, demand, and delivery timeframes of stockrooms and factories are represented as fuzzy
numbers within the model due to their inherent vagueness. The parameter values listed in Table
2 and Table 3 act as the initial data for achieving the optimal solution. This article utilized empir-
ical data to construct a practical and effective service-providing scenario [?]. The fuzzy values
were initially converted into crisp form using the defuzzification techniques outlined in Section
3 to determine the optimal solution for these parameters. On an Intel Core i3-8145U CPU, This
study applied MATLAB 2016a and LINGO 19.0 to optimize the solution. The results were then
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compared to other defuzzification methods. To validate the results, we compared outcomes from
various defuzzification techniques, considering the computational time required by each method
to identify the most efficient approach.

Parametric values for the fuzzy parameters

Presented below are the input parametric values of the fuzzy parameters in TFN format. Various
defuzzification approaches are employed to convert the TFN values into crisp form, aiding in
obtaining the precise solution for the problem.

Table 2: Input Parametric values the in TFN form

L̃WV11 = (15, 16, 17) L̃WV12 = (18, 19, 20) L̃WV21 = (17, 19, 21) L̃WV22 = (19, 22, 24)

L̃FW11 = (12, 14, 16) L̃FW12 = (13, 14, 15) L̃FW21 = (16, 18, 20) L̃FW22 = (19, 20, 22)

C̃WO1 = (65, 67, 69) C̃WO2 = (70, 72, 74) C̃FO1 = (60, 64, 68) C̃FO2 = (67, 70, 75)

ŨHW1 = (40, 42, 44) ŨHW2 = (43, 44, 45) ŨHF1 = (45, 47, 59) ŨHF2 = (48, 50, 52)
D̃1 = (35, 40, 45) D̃2 = (45, 47, 49) S̃W1 = (60, 63, 66) S̃W2 = (65, 67, 70)
S̃F1 = (72, 73, 74) S̃F2 = (75, 77, 80)

Parametric values for the fixed parameters

The parameters related to transportation costs are treated as fixed in the current problem. Here
are the input parametric values of the fixed parameters in the form of TFN.

Table 3: Input Parametric values in fixed form

SC11 = $90 SC12 = $100 SC21 = $120 SC22 = $80 PSC11 = $81 PSC12 = $97
PSC21 = $110 PSC22 = $77 TCE1 = $82 TCE2 = $90 LT = $10

Result analysis

The RRM method provides the best solution for the objective function and decision variables in
a problem, to minimize costs and improve decisions. This unique strategy is known for its ability
to decrease computational time compared to other commonly used defuzzification techniques.
Interestingly, while the results for decision variables are consistent across these methods, there is
a significant difference in the minimal cost of the TECFLP objective function. Table 4 depicts the
outcomes related to decision variables in the TECFLP model. To simplify and avoid confusion,
we represent different facility and vendor sites with the simple names 1 and 2, signifying the
movement of goods between locations such as 1 to 1, 1 to 2, 2 to 1, and 2 to 2. This naming
system corresponds to the use of two vendors (V = 1,2), two stockrooms (W = 1,2), and two
factory locations (F = 1,2) in this extensive investigation.

Table 4: Optimistic values of the decision variables and objective
function:

Continuous variables Binary variables
x11 = 1.000 WO1 = 1.000
x22 = 1.000 WO2 = 1.000

y11 = 1.000 FO1 = 1.000
y22 = 1.000 FO2 = 1.000
s1 = 1.000

When items are moved from location 1 to location 1 and from location 2 to position 2, i.e.,
within the same area, the problem finds its most cost-effective solution, as shown in Table 4. For
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example, we may contrast the movement of products to transfers between any two states within
a country if we use location 1 to represent that nation, which implies a concentrated distribution
and movement optimization pattern within a limited geographic region, resulting in efficient
and economical logistical operations. Table 5 depicts a comparison of the outcomes obtained
from a variety of defuzzification methods. It becomes apparent that the most efficient cost for
the TECFLP achieved utilizing the RRM approach is $59067.50. The amount of computation
needed for this specific method is significantly lower when compared to others, standing at a
mere 0.10 seconds. After this, the centroid technique generates a minimal cost of $59086.77,
slightly surpassing that obtained through RRM, with a computational time of 0.012 seconds.

Table 5: Optimistic cost for objective function:

Defuzzification technique Minimal Cost CPU Time
COA $ 59086.77 0.12 seconds
RRM $ 59067.50 0.10 seconds
FEWM $ 51941.20 0.15seconds
Total variables = 18
Total constraints = 30

Nonetheless, the FEWM defuzzification method requires more CPU time than the others,
amounting to 0.15 seconds, while presenting a minimal cost value of $51941.20 for the model.
Allocation methods yield results within four iterations, functioning with 18 decision variables
and 30 constraints combined.

8 Conclusion

The conclusive remarks and the future extensions of this study are summarized in the following
points:

(i) This article explores the intricate matter of the inherent unpredictability found in different
facets of the TECFLP model, including demand, overall expense, stock levels expense,
capacity, and lead time. The model encompasses two factory locations, two stockrooms,
two suppliers, and a solitary external distributor, all operating under a single transportation
mode to handle a singular product.

(ii) The primary objective of this model is to minimize overall costs and strategically optimize
the allocation of services provided by an organization to fulfill customer demands at the
most economical cost possible. The focus is fuzzy costs, demand, and capacity to maximize
profits.

(iii) The approaches such as the ranking method RRM, the centroid method, and the entropy-
based FEWM method, using the TFN approach, are used to handle the fuzziness of the
model. Next, the expenses associated with each approach are analyzed to assess the effi-
ciency of the defuzzification methods.

(iv) Upon examination of the results in Table 5, it is evident that ranking the fuzzy numbers in a
triangular format yields superior outcomes for the objective function, specifically achieving
a cost of $59067.50, surpassing other approaches. Furthermore, the execution time required
for this technique within the RRM method is notably shorter than alternative methods.

Future directions

(i) As a direction for future research, there is potential to enhance this model by transforming
it into a multi-echelon CFLP configuration while expanding its dimensions up to n, with n
representing any positive integer.

(ii) Additionally, a valuable avenue for further exploration would involve incorporating a multi-
facility locations-retailers-vendors approach, thus capturing a more comprehensive per-
spective of the dynamics within the supply chain.
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(iii) By incorporating these enhancements, the model elucidated in this study is poised to attain
a heightened level of sophistication and relevance, paving the way for more comprehensive
insights into supply chain operations and optimization.
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