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Abstract In this paper, we study isolate domination in hypergraphs and introduced the no-
tions of an isolate set and isolate irredundant set in hypergraphs. A set I is called an isolate set
if it contains at least one vertex v ∈ I such that v is not adjacent to any vertex of I . The set
I is called an isolate irredundant set if it is both isolate and irredundant. The equality among
domination number, isolate domination number, isolate number and total domination number
has been studied and their properties are examined. Further the integrated chain containing iso-
late number, isolate irredundance number along with domination related parameters has been
obtained while several important results and many bounds regarding these parameters are found.

1 Introduction

In graph theory based on applications in various fields, the major focus is given to the domination
and related subset problems such as independence, irredundance, vertex covering and matching.
Many authors have been working on these topics and more than thousand research papers have
been published during last five decades. In [6]-[7] Haynes et al. gave the detailed fundamen-
tal and advanced concepts of domination in graphs. Several variants of domination have been
introduced and well-studied in the present literature and many others are being studied. In [8],
[9] and [11] researchers studied isolate domination and discussed equality of some parameters
in the extended domination chain in graphs. The concept of domination in hypergraphs was ini-
tiated by Acharya [1] and studied further in [2], [3]. He extended many important theorems for
graphs to hypergraphs and raised several interesting open problems on hypergraphs. Many of his
conjectures and open problems were solved by Jose et al. [5]. He also explored the study of dom-
ination in hypergraphs and obtained several results connecting domination number, irredundance
number and independence number of a hypergraph H in his thesis [10]. The six parameters of
domination, independence and irredundance are connected by a chain of inequalities called the
domination chain of the hypergraph H, ir(H) ≤ γ(H) ≤ i(H) ≤ β0(H) ≤ Γ(H) ≤ IR(H),
where ir(H) and IR(H) denote the irredundance number and upper irredundance number of H,
γ(H) and Γ(H) denote the domination number and upper domination number of H, i(H) and
β0(H) denote the independent domination number and independence number of the hypergraph
H. In [13] Jadhav and Pawar introduced the notion of edge product hypergraphs and proved
some results, while in [14] the notion of an isolate domination in hypergraphs is introduced. In
the present paper, we introduced some new isolate domination related parameters in hypergraphs
and initiate a study on these parameters on the line of [8], [9] and [11].

2 Preliminaries

We begin with recalling some basic definitions and results required for our purpose.
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Definition 2.1. [10] A hypergraph H is a pair H(V,E) where V is a finite nonempty set and E
is a collection of subsets of V . The elements of V are called vertices and the elements of E
are called edges or hyperedges. And ∪ei∈Eei = V and ei ̸= ϕ are required for all ei ∈ E. The
number of vertices in H is called the order of the hypergraph and is denoted by |V |. The number
of edges in H is called the size of H and is denoted by |E|. A hypergraph of order n and size m
is called a (n,m) hypergraph. The number |ei| is called the degree (cardinality) of the edge ei.
The rank of a hypergraph H is r(H) = maxei∈E |ei|.

Definition 2.2. [10] For any vertex v in a hypergraph H(V,E), the set N [v] = {u ∈ V :
u is adjacent to v} ∪ {v} is called the closed neighborhood of v in H and each vertex in the set
N [v] \ {v} is called neighbor of v. The open neighborhood of the vertex v is the set N [v] \ {v}.
If S ⊆ V , then N(S) = ∪v∈SN(v) and N [S] = N(S) ∪ S.

Definition 2.3. [10] A simple hypergraph (or sperner family) is a hypergraph H(V,E), where
E = {e1, e2, · · · , em} such that ei ⊂ ej implies i = j.

Definition 2.4. [10] A hypergraph is called k-uniform if |e| = k, for every e ∈ E.

Definition 2.5. [10] For any hypergraph H(V,E) two vertices v and u are said to be adjacent if
there exists an edge e ∈ E that contains both v and u and non-adjacent otherwise.

Definition 2.6. [10] For any hypergraph H(V,E) two edges are said to be adjacent if their inter-
section is nonempty. If a vertex vi ∈ V belongs to an edge ej ∈ E, then we say that they are
incident to each other.

Definition 2.7. [10] The vertex degree of a vertex v is the number of vertices adjacent to the
vertex v in H. It is denoted by d(v).

The maximum (minimum) vertex degree of a hypergraph is denoted by ∆(H)(δ(H)).

Definition 2.8. [10] The edge degree of a vertex v is the number of edges containing the vertex
v. It is denoted by dE(v).

The maximum (minimum) edge degree of a hypergraph is denoted by ∆E(H)(δE(H)). A
vertex of a hypergraph which is incident to no edge is called an isolated vertex.

Definition 2.9. [10] The hypergraph H(V,E) is called connected if for any pair of its vertices,
there is a path connecting them. If H is not connected, then it consists of two or more connected
components, each of which is a connected hypergraph.

Definition 2.10. [12] A complete r-partite hypergraph is an r-uniform hypergraph H(V,E) such
that the set V can be partitioned into r non-empty parts, each edge contains precisely one vertex
from each part, and all such subsets form E. It is denoted by Kr

n1,n2,...,nr
, where ni is the number

of vertices in part Vi.

Definition 2.11. [10] For a hypergraph H(V,E), a subset S of V is called an independent set of
H if no two vertices of S are adjacent in H.

Definition 2.12. [10] For a hypergraph H(V,E), a set D ⊆ V is called a dominating set of H if
for every v ∈ V \D there exists u ∈ D such that u and v are adjacent in H.

If further, D is an independent set, then D is called an independent dominating set of H.

Definition 2.13. [10] A dominating set D of a hypergraph H is called a minimal dominating set,
if no proper subset of D is a dominating set of H.

The minimum(maximum) cardinality of a minimal dominating set in a hypergraph H is called
the domination(upper domination) number of H and is denoted by γ(H)(Γ(H)). A dominating
set of cardinality γ(Γ) is called a γ-set (Γ-set).

The minimum cardinality of an independent dominating set in H is called the independent
domination number of H and is denoted by i(H). The maximum cardinality of an independent
set in H is called the independence number of H and is denoted by β0(H).
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Definition 2.14. [10] Let S be a set of vertices of a hypergraph H and let u ∈ S. Then the vertex
v is said to be a private neighbor of u (with respect to S) if N [v] ∩ S = {u}. The set of all
private neighbors of u with respect to S is called private neighbor set of u with respect to S and
is denoted by pn[u, S] = {v : N [v] ∩ S = {u}}.

Definition 2.15. [10] A set S of vertices is irredundant if for every vertex v ∈ S, pn[v, S] ̸= ϕ.
An irredundant set S is called a maximal irredundant set if no proper superset of S is irredun-
dant. The minimum cardinality of a maximal irredundant set in a hypergraph H is called the
irredundance number of H and is denoted by ir(H). The maximum cardinality of an irredundant
set in H is called the upper irredundance number of H and is denoted by IR(H).

Definition 2.16. [14] A dominating set I of a hypergraph H is called an isolate dominating set
of H if it contains at least one vertex v ∈ I such that v is not adjacent to any vertex of I , that is
N(v) ∩ I = ϕ, for at least one vertex v ∈ I .

Definition 2.17. [14] An isolate dominating set I of a hypergraph H is called a minimal isolate
dominating set if no proper subset of I is an isolate dominating set of H.

The minimum (maximum) cardinality of a minimal isolate dominating set in a hypergraph H
is called the isolate (upper isolate) domination number of H and is denoted by γ0(H)(Γ0(H)).
An isolate dominating set of cardinality γ0(Γ0) is called a γ0-set (Γ0-set).

Definition 2.18. [15] A total dominating set in H is a dominating set in H with the additional
property that for every vertex v in D, there exists an edge e ∈ E(H) for which v ∈ e and
e ∩ (D \ {v}) ̸= ϕ. The minimum cardinality of a total dominating set in H is called the total
domination number of hypergraph H and is denoted by γt(H).

Theorem 2.19. [1] Let H = (V,E) be a hypergraph and D ⊆ V be a dominating set. Then D
is a minimal dominating set of H if and only if for every v ∈ D there exists a vertex w ∈ V such
that N [w] ∩D = {v}.

Theorem 2.20. [10] Every minimal dominating set S in a hypergraph H is a maximal irredun-
dant set of H.

3 Extension of Domination Chain

In this section, we extend the domination chain of hypergraph H by having two more parameters
namely isolate domination number and upper isolate domination number of the hypergraph H.

Definition 3.1. [4] Let P denote an arbitrary property of sets of vertices S in a hypergraph
H(V,E). If a set S has property P , then we say that S is a P -set, otherwise it is a P̄ -set.

Definition 3.2. [4] A P -set S is a minimal P -set if every proper subset S∗ ⊂ S is a P̄ -set. A
P -set is a 1-minimal P -set if for every vertex v ∈ S, S \ {v} is a P̄ -set.

As we know, minimal P -sets are always 1-minimal P -sets but the converse is not always true.
The minimality and 1-minimality of sets having property P are equivalent when the property P
is superhereditary. Clearly, the property of being isolate domination is neither hereditary nor
superhereditary. However, we can assert the following,

Theorem 3.3. Let H(V,E) be a hypergraph and let I be any isolate dominating set of H. Then
I is minimal if and only if I is 1-minimal.

Proof. By definition, every minimal isolate dominating set is 1-minimal. For the converse, let
I be a 1-minimal isolate dominating set of H. Suppose, to the contrary, that I is not minimal.
Then there exists a subset I ′ of I which is an isolate dominating set of H, where |I ′| ≤ |I − 2|.
Further, the set I ′ will contain all the vertices of I with N(v) ∩ I = ϕ. Thus for all vertices
v ∈ I \ I ′, we have N(v) ∩ I ̸= ϕ. Therefore for a vertex v ∈ I \ I ′, the set I \ {v} is an isolate
dominating set of H. But this contradicts the assumption that I ′ is 1-miminal.
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Theorem 3.4. An isolate dominating set I of a hypergraph H is minimal if and only if every
vertex in I has a private neighbor with respect to I .

Proof. Let I be a minimal isolate dominating set of H and let v ∈ I . If N(v) ∩ I = ϕ, then v is
a private neighbor of itself. Suppose N(v)∩ I ̸= ϕ. If v has no private neighbors with respect to
I , then the set I \{v} is an isolate dominating set of H, contradicting the minimality of I . Hence
v must have a private neighbor with respect to I . Conversely, let I be an isolate dominating set
of H with every vertex in I has a private neighbor with respect to I . Suppose, to the contrary,
that I is not minimal. Then by Theorem 3.3, I cannot be 1-minimal. Hence there exists a vertex
v in I such that I \{v} is an isolate dominating set of H. Therefore, every vertex in V \ (I \ {v})
is adjacent to at least one vertex of I \ {v}, which implies that the vertex v can have no private
neighbor with respect to I . This contradicts the assumption. Hence the proof.

Corollary 3.5. Every minimal isolate dominating set of a hypergraph H is a minimal dominating
set of H.

Proof. Let I be a minimal isolate dominating set of H. Then by Theorem 3.4, every vertex of I
has a private neighbor with respect to I . Consequently, I is a minimal dominating set of H, by
Theorem 2.19.

Corollary 3.6. For any hypergraph H, γ(H) ≤ γ0(H) ≤ Γ0(H) ≤ Γ(H).

Proof. Follows from Corollary 3.5.

Theorem 3.7. Every maximal independent set of H is a minimal isolate dominating set.

Proof. Let I be a maximal independent set and u ∈ V \I . Then I∪{u} is not an independent set
and hence there exists a vertex v in I such that u and v are adjacent. Thus I is a dominating set
of the hypergraph H. Since I is an independent set, it is an isolate dominating set of H and every
vertex of I has a private neighbor namely itself. Hence by Theorem 3.4, the result follows.

Corollary 3.8. For any hypergraph H, γ0(H) ≤ i(H) ≤ β0(H) ≤ Γ0(H).

Proof. Follows from Theorem 3.7.

The Corollaries 3.6 and 3.8 extend the existing domination chain of the hypergraph H as
follows,

ir(H) ≤ γ(H) ≤ γ0(H) ≤ i(H) ≤ β0(H) ≤ Γ0(H) ≤ Γ(H) ≤ IR(H). (3.1)

4 Isolate Variants

In this section, the notions of an isolate set and isolate irredundant set of a hypergraph H are
introduced. Also their corresponding parameters are defined with suitable examples and many
important results are explored. Later, we obtain the integrated chain containing these parameters
along with the domination related parameters.

Definition 4.1. For a hypergraph H(V,E), a set I ⊆ V is called an isolate set if it contains at
least one vertex v ∈ I such that v is not adjacent to any vertex of I .

Definition 4.2. The minimum(maximum) cardinality of a maximal isolate set in a hypergraph H
is called the isolate(upper isolate) number of a hypergraph H and is denoted by i0(H)(I0(H)).

Definition 4.3. An isolate set I of a hypergraph H is called a maximal isolate set if no proper
superset of I is an isolate set of H. An isolate set of cardinality i0(I0) is called a i0-set (I0-set).

Example 4.4. Consider the hypergraph H(V,E), where V = {v1, v2, . . . , v10} and E = {e1, e2, e3, e4}.
In which the edges of H are defined as follows:

e1 = {v1, v2, v3, v4}, e2 = {v5, v6, v7, v8},
e3 = {v1, v2, v5, v6, v9}, e4 = {v5, v9, v10}.

Then the sets I1 = {v8, v9}, I2 = {v3, v4, v5}, I3 = {v3, v4, v7, v8, v9}, and
I4 = {v1, v2, v3, v4, v6, v7, v8, v10} are isolate sets of H. But among these all are maximal isolate
sets except I1. In fact, I2 is a maximal isolate set of H with minimum cardinality and I4 is that
of maximum cardinality. Hence i0(H) = 3 and I0(H) = 8.
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Definition 4.5. A subset I ⊆ V is called an isolate irredundant set of a hypergraph H if it is
both isolate and irredundant. The minimum(maximum) cardinality of a maximal isolate irredun-
dant set in a hypergraph H is called the isolate(upper isolate) irredundance number of H and is
denoted by ir0(H)(IR0(H)).

Example 4.6. Consider the hypergraph H(V,E), where V = {v1, v2, . . . , v10} and E = {e1, e2, e3, e4}.
In which the edges of H are defined as follows:

e1 = {v1, v2, v3, v4}, e2 = {v4, v5, v6},
e3 = {v2, v3, v7, v8, v9}, e4 = {v7, v10}.

Here the sets I1 = {v1, v7}, I2 = {v4, v7}, I3 = {v2, v4, v10} and I4 = {v1, v5, v8, v10} are all
isolate irredundant sets in which except I1, all of them are maximal. Also, I2 is a maximal isolate
irredundant set of minimum cardinality, whereas, I4 is that of maximum cardinality. Hence
ir0(H) = 2 and IR0(H) = 4.

Theorem 4.7. Every minimal isolate dominating set is a maximal isolate irredundant set.

Proof. Let I be a minimal isolate dominating set of H. Since I is a minimal isolate dominating
set in H, it follows from Corollary 3.5 that I is a minimal dominating set in H. Again by Theorem
2.20, I is a maximal irredundant set in H. Consequently, I is a maximal isolate irredundant
set.

Corollary 4.8. For any hypergraph H, ir0(H) ≤ γ0(H) ≤ Γ0(H) ≤ IR0(H).

Proof. Immediate from the above Theorem 4.7.

Theorem 4.9. Let H(V,E) be a hypergraph and let I be an isolate set of H. Then I is a maximal
isolate set if and only if every vertex in V \I is adjacent to all the vertices v ∈ I with N(v)∩I = ϕ.

Proof. Let I be a maximal isolate set of H. Suppose there exists a vertex u ∈ V \ I such that
u is not adjacent to all v ∈ I with N(v) ∩ I = ϕ. Then I ∪ {u} will be an isolate set of H,
contradicting the assumption that I is a maximal isolate set. Hence the result. The converse is
obvious.

From the above theorem, it is clear that every maximal isolate set is an isolate dominating
set. However, a maximal isolate set need not be a minimal isolate dominating set. For example,
the set I4 in the Example 4.6 is a maximal isolate set but not a minimal isolate dominating set of
H. Hence γ0(H) ≤ i0(H).
Further, I0(H) is the maximum cardinality of an isolate set in H and hence IR0(H) ≤ I0(H).
Also, since ir(H) ≤ ir0(H), we have the following inequality chains,

ir(H) ≤ ir0(H) ≤ γ0(H) ≤ i0(H) ≤ I0(H). (4.1)

Γ0(H) ≤ IR0(H) ≤ I0(H). (4.2)

Theorem 4.10. For any hypergraph H, i(H) ≤ i0(H).

Proof. Let I be an i0-set of H and let S be the set of vertices v ∈ I with N(v) ∩ I = ϕ. Then
the set I1 ∪ S is an independent set of H, where I1 is an independent dominating set of I \ S.
Further, I1 dominates all the vertices of I \S and the single vertex of S dominates all vertices of
V \ I , by Theorem 4.9. Hence the set I1 ∪ S is an independent dominating set of H.

Remark 4.11. The bound given in Theorem 4.10 is sharp and attained for complete k-partite
hypergraphs.

Further, since γ0(H) ≤ i(H) and i(H) ≤ i0(H), we have the extended chain as follows:

ir(H) ≤ ir0(H) ≤ γ0(H) ≤ i(H) ≤ i0(H) ≤ I0(H). (4.3)

It can be noticed from Equation 3.1 and 4.3 that each of the parameters γ and ir0 lies between ir
and γ0. Note, however, there is no relation between ir0 and γ.

The following examples illustrate that there is no relation between domination number and
isolate irredundance number of a hypergraph H.



SOME PARAMETERS IN HYPERGRAPH 731

Example 4.12. Consider the hypergraph H(V,E), where V = {v1, v2, . . . , v12} and E = {e1, e2, e3, e4, e5}.
In which the edges of H are defined as follows:

e1 = {v1, v2, v3, v4}, e2 = {v3, v4, v5, v6},
e3 = {v3, v4, v7, v8, v9}, e4 = {v8, v9, v10, v11},
e5 = {v8, v9, v12}.

Here γ(H) = 2 < ir0(H) = 3.

Example 4.13. Consider the hypergraph H(V,E), where V = {v1, v2, . . . , v11} and E = {e1, e2, e3, e4, e5}.
In which the edges of H are defined as follows:

e1 = {v1, v2, v3, v4}, e2 = {v3, v4, v5, v6, v7, v8},
e3 = {v7, v8, v9}, e4 = {v9, v10},
e5 = {v10, v11}.

Here ir0(H) = 2 < γ(H) = 3.

Now we focus our attention on the relationships among the maximum parameters,

Theorem 4.14. For any hypergraph H, Γ(H) = Γ0(H) and IR0(H) = IR(H).

Proof. Since every minimal isolate dominating set is a minimal dominating set, it follows that
Γ0(H) ≤ Γ(H), for any hypergraph H. Now we go for another part of the equality. Let D be a Γ-
set of H. Then D need not be an isolate dominating set of H. However, the set I∗ = (D\{v})∪I1,
where I1 is a minimal isolate dominating set of pn[v,D] is a minimal isolate dominating set of H
with cardinality more than or equal to D. And the minimality of I∗ follows from the minimality
of I1 and minimality of D. Hence Γ(H) = Γ0(H). Now let I be an IR-set of H. If for any
v ∈ I , we have N(v) ∩ I = ϕ, then I itself is a maximal isolate irredundant set of H and the
result follows. Otherwise every vertex in I has a private neighbor in v \ I . Therefore the set
(I \ {v}) ∪ I ′, where I ′ is an IR0-set of pn[v, I] forms an isolate irredundant set of H. Further,
for every vertex v ∈ I , IR0(pn[v, I]) ≥ 1, which implies that |I| ≤ |(I \ {v}) ∪ I ′|. Hence
IR(H) ≤ IR0(H). Also, since IR(H) is the maximum cardinality of an irredundant set of H, it
follows that IR0(H) ≤ IR(H). Hence IR0(H) = IR(H).

Theorem 4.15. For any hypergraph H, I0(H) = n− δ(H).

Proof. Let H be a hypergraph. Since for any vertex v of H, V (H)\N(v) is an isolate set of H, it
follows that I0(H) ≥ maxv∈V (H)|V (H)\N(v)| = n−δ(H). Further, let I be an isolate set of H
and u ∈ I with N(u) ∩ I = ϕ. Then all neighbors of u must lie outside the set I . Consequently,
I0(H) ≤ n− δ(H). Hence for any hypergraph H, we have I0(H) = n− δ(H).

Now all these results and inequities can be summarized as,

Theorem 4.16. For any hypergraph H, ir(H) ≤ ir0(H) ≤ γ0(H) ≤ i(H) ≤ β0(H) ≤ Γ0(H) =
Γ(H) ≤ IR0(H) = IR(H) ≤ I0(H).

It should be noted that we have excluded two parameters namely γ and i0 from the chain as
there is no relation among ir0, γ and i0. However we also have, ir(H) ≤ γ(H) ≤ γ0(H) ≤
i(H) ≤ i0(H) ≤ I0(H).

5 More on Isolate Parameters

In this section, we study more about isolate number and isolate irredundance number of a hy-
pergraph H. We also determine the values of these parameters for some hypergraphs such as
disconnected hypergraphs, complete n-partite hypergraphs etc.

Theorem 5.1. Let H be a disconnected hypergraph with H1,H2,H3, . . . ,Hk as its components.
Then
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(1) i0(H) = i0(H1) + |V (H)| − |V (H1)|, where i0(H1) = min {i0(Hi), i = 1, 2, . . . , k}.

(2) ir0(H) = min1≤i≤k{si}, where si = ir0(Hi) +
∑k

j=1,j ̸=i ir(Hj).

Proof. (1) Let I1 be an i0-set of H1. Then the set I1 together with all the vertices of each of
the remaining components H2,H3, . . . ,Hk is a maximal isolate set of H. Hence i0(H) ≤
i0(H1)+ |V (H)|− |V (H1)|. Now let I be any maximal isolate set of H. Then I ∩V (Hj) is
an i0-set of Hj , for some j and I ∩V (Hi) = V (Hi) for all i ̸= j. Hence i0(H1)+ |V (H)|−
|V (H1)| ≤ i0(H).

(2) Every ir0-set of Hi together with the set ∪k
j=1,j ̸=i Dj forms a maximal isolate irredundant

set of H, where Dj is a ir-set of Hj and 1 ≤ i ≤ k. Thus, ir0(H) ≤ min1≤i≤k{si}.
Now, let I be any maximal isolate irredundant set of H. Then I ∩ V (Hi) is a maximal
irredundant set of H, for every i = 1, 2, . . . , k. Further, for at least one i, say j we have I ∩
V (Hj) is a maximal isolate irredundant set. Therefore |I| ≥ ir0(Hj) +

∑k
i=1,i̸=j ir(Hi) =

sj ≥ min1≤i≤k{si}. Hence ir0(H)=min1≤i≤k{si}.

Corollary 5.2. Let H be a hypergraph. Then i0(H) = n if and only if H has an isolated vertex.

Proof. Follows from first part of Theorem 5.1.

Proposition 5.3. If H is a hypergraph with an isolated vertex, then V (H) is the only maximal
isolate set of H.

Theorem 5.4. For a complete r-partite hypergraph H = Kr
n1,n2,...,nr

, i0(H)= min {n1, n2, . . . , nr}.

Proof. Let H be a hypergraph. Let I be any maximal isolate set of H. Then I will not intersect
more than one part of H. Also, being a maximal isolate set, I cannot be a proper subset of any
part of H. Hence the parts of H are the only maximal isolate sets of H, which completes the
proof.

Now we see some bounds for the isolate number i0 of H. It is obvious that for any hypergraph
H of order n, we have 1 ≤ i0(H) ≤ n. Corollary 5.2 tells us that i0(H) = n only when the
hypergraph H has an isolated vertex. And, if i0(H) = 1, then γ0(H) = 1 as γ0(H) ≤ i0(H) and
consequently ∆(H) = n − 1. Further, if H is a hypergraph with ∆(H) = n − 1, then we have
i0(H) = 1. Hence for any hypergraph H, i0(H) = 1 if and only if ∆(H) = n− 1.

Now following is the theorem that characterizes hypergraphs for which we have, i0(H) = 2.

Theorem 5.5. Let H(V,E) be a hypergraph with i0(H) = 2. Then i0(H) = γ0(H) = γ(H) =
i(H) = ir0(H) = ir(H).

Proof. Let H be a hypergraph with i0(H) = 2 and let I be an i0-set of H. Then by Theorem
4.9, every vertex of V \ I is adjacent to both vertices of I . Hence I is a dominating set of H
and γ(H) ≤ 2. Also ∆(H) < V (H)− 1, otherwise i0(H) would be less than 2, which is absurd.
Hence γ(H) = 2. Now, as I is an independent set, it follows that γ0(H) = 2. Further, since
∆(H) ≤ V (H)− 2, and every vertex of V \ I is adjacent to two vertices of I , we get ir(H) = 2.
Hence ir(H) = ir0(H) = γ(H) = γ0(H) = i(H) = i0(H).

6 Equality of Parameters

In this section, we study the equality among domination number, isolate domination number,
isolate number and total domination number of a hypergraph H and examine their properties.
We have determined the properties of hypergraphs for which some of the above said parameters
equals or have some relation between them. We also study the conditions when γ(H) ≡ γt(H)
in a hypergraph H.

For complete n-partite hypergraphs, we have γ(H) = γ0(H). In the following theorem, we
determine one more class of hypergraphs for which we have γ(H) = γ0(H).

Theorem 6.1. Let H be a hypergraph with either δ(H) = 0 or ∆(H) = n − 1. Then γ(H) =
γ0(H).
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Proof. Let H be a hypergraph and let v be a vertex in H such that δ(v) = 0. Then v must belong
to every γ-set of H. Thus, γ(H) = γ0(H). Further when ∆(H) = n− 1, γ(H) = 1.

In the next few theorems, we derived some properties of the hypergraphs with γ(H) = γ0(H).

Proposition 6.2. For a hypergraph H, γ0(H) = γ(H) if and only if there is a γ-set D with v ∈ D
such that N(v) ∩D = ϕ.

Proof. Let H be a hypergraph with γ0(H) = γ(H). Then clearly there is a γ-set D with v ∈ D
such that N(v) ∩ D = ϕ. Conversely, suppose that there is a γ-set D with v ∈ D such that
N(v) ∩D = ϕ. Then D is an isolate dominating set as well. Hence γ0(H) = γ(H).

Corollary 6.3. Let H(V,E) be a hypergraph. Then γ0(H) ̸= γ(H) if and only if every γ-set is a
total dominating set.

Proof. Let H be a hypergraph with γ0(H) ̸= γ(H). Then by Proposition 6.2, there is no γ-set
D with v ∈ D such that N(v) ∩ D = ϕ. Therefore, every minimum dominating set of H is a
total dominating set of H. Conversely, suppose that every minimum dominating set is a total
dominating set. Then no γ-set D with v ∈ D such that N(v) ∩ D = ϕ. Hence by Proposition
6.2, γ0(H) ̸= γ(H).

Theorem 6.4. For any hypergraph H, γ0(H) = γ(H) if and only if γ(H) ̸≡ γt(H).

Proof. Let H be a hypergraph with γ0(H) = γ(H). Then by Corollary 6.3, every minimum
dominating set is not a total dominating set. Hence γ(H) ̸≡ γt(H). Conversely, suppose that
γ(H) ̸≡ γt(H). Then every minimum dominating set is not a total dominating set. Hence by
Corollary 6.3, γ(H) = γ0(H).

Example 6.5. Consider the hypergraph H(V,E), where V = {v1, v2, . . . , v6} and E = {e1, e2, e3}.
In which the edges of H are defined as follows:

e1 = {v1, v2, v3, v4}, e2 = {v2, v5},
e3 = {v4, v6}.

Here the sets D1 = {v2, v4}, D2 = {v2, v6} and D3 = {v4, v5} are the minimum dominating sets
of H. Hence γ(H) = 2. And among these D1 is a γ-set and D2, D3 are the γ0-sets of H. Clearly,
every minimum dominating set is not total dominating. Hence γ(H) ̸≡ γt(H).

Corollary 6.6. Let H be a hypergraph with γ(H) ̸= γt(H). Then γ0(H) = γ(H).

Proof. Let H be a hypergraph with γ(H) ̸= γt(H). Let D be a minimum dominating set of H.
Then |D| < γt(H). Further, there must exist a vertex v ∈ D such that N(v) ∩D = ϕ, otherwise
D would become a total dominating set H with |D| < γt(H). Thus, the set D is an isolate
dominating set as well. Therefore γ0(H) = γ(H).

The following Lemma provides a necessary condition for γ(H) ≡ γt(H) in a hypergraph H:

Lemma 6.7. If H is a hypergraph with γ(H) ≡ γt(H), then every vertex in γ-set D has at least
two private neighbors in V \D.

Proof. Let H be a hypergraph with γ(H) ≡ γt(H). Let D be a γ-set of H. Since γ(H) ≡ γt(H),
it follows that D is also a γt-set of H which implies for every v ∈ D, we have N(v) ∩D ̸= ϕ.
Hence each vertex in D has at least one private neighbor in V \ D with respect to D. Suppose
v ∈ D and pn[v,D] = {u}. Then (D \ {v}) ∪ {u} is a γ-set of H which is not a γt-set,
contradicting the fact that γ(H) ≡ γt(H). Hence every vertex in D has at least two private
neighbors in V \D.

Now we study the properties of hypergraphs with γ0(H) = i0(H).

Theorem 6.8. Let H be a hypergraph with γ0(H) = i0(H). Then every γ0-set of H is indepen-
dent.



734 Kishor F. Pawar and Megha M. Jadhav

Proof. Let H be a hypergraph with γ0(H) = i0(H). Let I ′ be an i0-set of H and v ∈ I ′ with
N(v) ∩ I ′ = ϕ. Then |I ′| = i0(H) = γ0(H). Since I ′ is a maximal isolate set, it follows from
Theorem 4.9, that every vertex of V \ I ′ is adjacent to v. Suppose there exist two vertices u and
w in I ′ such that u and w are adjacent. Then u,w ̸= v and I ′ \ {u} is an isolate dominating set
of H with γ0(H) ≤ |I ′| − 1 = γ0(H) − 1, a contradiction. Hence the set I ′ is independent. In
fact, I ′ is a maximal isolate set of H in which for every vertex v ∈ I ′, we have N(v) ∩ I ′ = ϕ.
Hence, again by Theorem 4.9, we have every vertex of V \ I ′ is adjacent to all vertices of I ′.
Therefore every isolate set I of H is either a subset of I ′ or subset of V \ I ′. In particular, if I
is a γ0-set of H, then either I ⊆ I ′ or I ⊆ V \ I ′. If I ⊆ I ′, then the result follows. Suppose
that I ⊆ V \ I ′. Now, if there exist two vertices p and q in I such that p and q are adjacent, then
I \ {p} is an isolate dominating set of cardinality less than γ0(H), a contradiction. Hence the set
I is independent.

Corollary 6.9. If H is a hypergraph with γ0(H) = i0(H), then γ0(H) = i(H).

Proof. Let H be a given hypergraph. Since an i-set is a minimal isolate dominating set of H,
γ0(H) ≤ i(H). Further, by Theorem 6.8, it follows that every γ0-set of H is independent. Hence
i(H) ≤ γ0(H).

Remark 6.10. The converse is not true. For this, consider the following example,

Example 6.11. Consider the hypergraph H(V,E), where V = {v1, v2, . . . , v9} and E = {e1, e2, e3, e4}.
In which the edges of H are defined as follows:

e1 = {v1, v2, v3, v4}, e2 = {v3, v4, v5, v6},
e3 = {v6, v7, v8}, e4 = {v8, v9}.

Clearly, {v4, v8} is a γ0-set of H which is independent. Hence γ0(H) = i(H) whereas i0(H) = 4.

Theorem 6.12. If H(V,E) is a hypergraph with γ0(H) = i0(H) , then i0(H) = n− ∆(H).

Proof. Let H be a hypergraph with γ0(H) = i0(H). Since γ0(H) ≤ n − ∆(H), it follows that
i0(H) ≤ n−∆(H). Further, it can be observed from Theorem 4.9 that i0(H) ≥ n−∆(H). Hence
i0(H) = n− ∆(H).

Remark 6.13. The converse part of the above theorem is not true. For this, consider the hyper-
graph H(V,E) of order 9, where V = {v1, v2, . . . , v9} and E = {e1, e2, e3, e4}. In which the
edges of H are defined as follows:

e1 = {v1, v2, v3, v4}, e2 = {v4, v5, v6},
e3 = {v6, v7, v8}, e4 = {v5, v6, v9}.

The isolate number of the given hypergraph H is 4 while the isolate domination number of H is
2 and ∆(H) = 5.

Theorem 6.14. For a complete k-partite hypergraph H, γ0(H) = i(H) = i0(H) = ir0(H).

Proof. Let I be a γ0-set of H. Since k-parts of H are the only minimal isolate dominating set of
H, it follows that I must be among k-parts of H with minimum cardinality. Also each vertex of
I is the only private neighbor of itself and every vertex in V \ I is adjacent to all the vertices of
I . Therefore, by Theorem 4.9, I is a maximal isolate set of H. Thus i0(H) ≤ γ0(H). Hence by
chains 4.1 and 4.3, we have i0(H) = γ0(H) = i(H). Clearly, ir0(H) = γ0(H).

Theorem 6.15. For any hypergraph H, γt(H) ≤ i0(H) + 1.

Proof. Let H be a hypergraph and let I be an i0-set of H. Then by Theorem 4.9, every vertex in
V \ I is adjacent to all vertices v ∈ I with N(v) ∩ I = ϕ. This implies that I is a dominating set
H. Now choose any vertex v ∈ V \ I . Then the set I ∪ {v} is not an isolate set. Consequently,
I ∪ {v} is a total dominating set of H. Hence γt(H) ≤ |I ∪ {v}| ≤ i0(H) + 1.
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