The correct version of this paper is the paper number 76 in this **On Nil-Symmetric Modules** issue.

K. Praminda, Kh. Herachandra and M. Rhoades

Communicated by Christian Lomp

MSC 2020 Classifications: Primary 33C20; Secondary, 16S36,16S85.

Keywords and phrases: Reduced module, Semicommutative module, Weakly Semicommutative module, Symmetric module, Nil-symmetric module.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Abstract In this paper, we have introduced the notion of nil-symmetric modules as a generalisation of symmetric modules and reduced modules by working on the context of nilpotent elements of a module and have also investigated some of its properties. We have also extended various results on symmetric and other classes of modules to that of nil-symmetric modules and have also shown that there is a module which is nil-symmetric but not symmetric. We prove that localizations of nil-symmetric modules are nil-symmetric. It has also been shown that $_RM$ is nil-symmetric if and only if $_{T_n(R)}T_n(M)$ is nil-symmetric.

1 Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary left R-modules over the ring R. $T_n(R)$ denotes the ring of all $n \times n$ upper triangular matrices over R. Let $T(M) = \{m \in M : rm = 0 \text{ for some non-zero divisors } r \in R\}$. Torsion of M is defined as $Tor(M) = \{m \in M : rm = 0 \text{ for some non-zero } r \in R\}$. Clearly, $T(M) \subseteq Tor(M)$. If R is an integral domain, they are same. C(R) denotes the centre of a ring R and defined by $C(R) = \{r \in R : ra = ar \text{ for all } a \in R\}$. Here, D denotes a non-commutative domain. $Nil_R(M)$ is the set of all nilpotent elements of a left R-module M.

Recall in [2], J. Lambek introduced the notion of symmetric ring. A ring R is symmetric if whenever $a,b,c \in R$ satisfy abc = 0, we have bac = 0; it is easily seen that this is left-right symmetric concept. U.S. Chakraborty and K. Das introduced the concept of nil-symmetric rings as a generalisation of symmetric rings and a particular case of nil-semicommutative rings in [11]. A ring R is called right (left) nil-symmetric if whenever, for every $a,b \in nil(R)$ and for every $c \in R$ satisfy abc = 0 (cab = 0), we have acb = 0. A ring R is nil-symmetric if it is both right and left nil-symmetric. Thus, every symmetric ring is nil-symmetric but the converse need not be true in general as in [[11], Example 3], if R is a reduced ring, then $T_2(R)$ is a nil-symmetric ring but not symmetric.

In [2] and [9], a module $_RM$ is symmetric if whenever $a,b \in R, m \in M$ satisfy abm = 0, we have bam = 0. M. B. Rege and A. M. Buhphang studied various properties of symmetric modules. The relationship of symmetric modules with reduced modules were also studied in [8]. Symmetric modules were generalised to α -symmetric modules by Agayev, Halicioglu and Harmanci in [6].

A ring R is reduced if it has no non-zero nilpotent elements. The reduced ring concept was extended to modules by Lee and Zhou in [10]. In [5], the relationship of reduced modules with ZI-modules was studied by Agayev and Harmanci. A left R-module M is reduced if it satisfies any of the following conditions:

- (i) whenever $a \in R, m \in M$ satisfy $a^2m = 0$, we have aRm = 0.
- (ii) whenever $a \in R, m \in M$ satisfy am = 0, we have $aM \cap Rm = 0$. In [4], M. Dutta and Singh introduced the idea of weak reduced and weak rigid module as a generalisation of reduced

and rigid module. They stated that a left R-module M is weak reduced if whenever $a^2m=0$ $\forall a\in R$ and $m\in M$ implies $aRm\subseteq Nil_R(M)$ and a left R-module M is weak rigid if whenever $a^2m=0$ $\forall a\in R$ and $m\in M$ implies $am\in Nil_R(M)$.

In [1], Ssevviiri and Groenewald introduced the concept of nilpotent elements of a module. A non-zero element $m \in M$ is said to be a nilpotent element of M if there exist $0 \neq r \in R$ and $k \in \mathbb{N}$ such that $r^k m = 0$ but $rm \neq 0$. We take the zero element of M as a nilpotent element. In this paper the term "nil" is used to generalize symmetric module by using the definition of nilpotent elements of a module.

Recall, a left R-module M is called semicommutative (a ZI-module) if whenever am=0 implies aRm=0 for all $a\in R$ and $m\in M$. In [7], Ansari and Singh introduced weakly semicommutative module as a generalisation of semicommutative module. A left R-module M is said to be weakly semicommutative if whenever am=0 implies $aRm\subseteq Nil_R(M)$ for all $a\in R$ and $m\in M$.

2 Nilpotent elements of modules

In [1], *nilpotent elements of a module can be defined as:*

Definition 2.1. An element $m \in M$ is said to be a nilpotent element if either m = 0 or there exist $0 \neq r \in R$ and $k \in \mathbb{N}$ such that $r^k m = 0$ but $rm \neq 0$, i.e., $Nil_R(M) = \{m \in M | \exists 0 \neq r \in R \text{ and } k \in \mathbb{N} \text{ such that } r^k m = 0, rm \neq 0\} \cup \{0\}.$

In [7], it is stated that if m is an element of a left R-module M, then the following conditions are equivalent:

- (i) There exist $r \in R$ and n > 2 such that $r^n m = 0$ but $r^{n-1} m \neq 0$.
- (ii) There exists $t \in R$ such that $t^2m = 0$ but $tm \neq 0$.

In [7], we have, if $m \in M$ satisfies any of the above equivalent conditions, then m is a nilpotent element of the left R-module M.

Example 2.2. Some examples of nilpotent elements of modules are given below:

```
(i) Let M = \mathbb{Z}_8 and R = \mathbb{Z}_8.

Here, 2^3.\overline{1} = 0 but 2.\overline{1} \neq 0

2^2.\overline{2} = 0 but 2.\overline{2} \neq 0

2^3.\overline{3} = 0 but 2.\overline{3} \neq 0

2^3.\overline{5} = 0 but 2.\overline{5} \neq 0

2^2.\overline{6} = 0 but 2.\overline{6} \neq 0

2^3.\overline{7} = 0 but 2.\overline{7} \neq 0

Clearly, Nil_{\mathbb{Z}_8}(\mathbb{Z}_8) = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{5}, \overline{6}, \overline{7}\}.
```

(ii) If $a \in R$ is nilpotent (with degree $n \ge 3$) in the ring R, then we have $a^{n-1}.a = a^n = 0$ and $a.a = a^2 \ne 0$. Thus, a is nilpotent in the left R-module R.

3 Nil-symmetric modules

In this section, we introduced the class of nil-symmetric modules as a generalisation of symmetric modules and reduced modules. We also show that there are nil-symmetric modules which are not symmetric.

Definition 3.1. [2] A left R-module M is said to be symmetric if whenever $a, b \in R, m \in M$ satisfy abm = 0 implies bam = 0.

Definition 3.2. A left R-module M is said to be nil-symmetric if whenever $a, b \in R, m \in M$ satisfy abm = 0 implies $bam \in Nil_R(M)$.

Remark 3.3. From the definition, the following remarks can be obtained.

- (1) All modules over commutative rings are nil-symmetric modules.
- (2) Submodules of nil-symmetric modules are nil-symmetric.

Recall, in [3] the concept of generalized weakly symmetric rings were studied. A ring R is called generalized weakly symmetric if abc = 0 implies that bac is nilpotent for all $a, b, b \in R$.

Theorem 3.4. If R is a generalized weakly symmetric ring with nilpotency index greater than 2, then the left R-module R is nil-symmetric.

Proof: Let $a,b,m \in R$ with abm = 0. Since R is a nil-symmetric ring $\implies bam = 0 \in Nil(R) \implies (bam)^k = 0, k \in \mathbb{N} \implies (bam)^{k-1}(bam) = 0 \implies s^{k_0}bam = 0, sbam \neq 0$ where $s = bam, k_0 = k - 1 \implies bam \in Nil_R(R)$. Hence, R is nil-symmetric.

Lemma 3.5. [8] All reduced modules are symmetric modules.

Theorem 3.6. All symmetric modules are nil-symmetric modules.

Proof: Let M be a symmetric module. Let $a,b \in R$ and $m \in M$ with abm = 0. Then, $bam = 0 \in Nil_R(M) \Longrightarrow bam \in Nil_R(M)$.

Remark 3.7. The converse of Theorem 3.6 is not true in general which is shown in Example 3.30. The above Lemma 3.5 and Theorem 3.6 give Corollary 3.8.

Corollary 3.8. All reduced modules are nil-symmetric modules.

Lemma 3.9. [8] Symmetric modules are semicommutative.

Remark 3.10. Nil-symmetric modules are not semicommutative.

Example 3.11. Let $M = \mathbb{Z}$. Then, M is nil-symmetric. Hence, $T_n(\mathbb{Z})$ is nil-symmetric by

Theorem 3.28. Let
$$e_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $e_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $e_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then, $e_{11}e_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. But $e_{11}e_{12}e_{22} = e_{12}e_{22} = e_{12} \neq 0$. So, M is not semicommutative.

Theorem 3.12. All nil-symmetric modules are weakly semicommutative.

Proof: Let M be a nil-symmetric module. Let $a \in R, m \in M$ with $am = 0 \Longrightarrow bam = 0$ for all $b \in R$. Since M is nil-symmetric $\Longrightarrow abm \in Nil_R(M) \Longrightarrow aRm \subseteq Nil_R(M)$. Hence, M is weakly semicommutative.

Next, we recall a torsion free module. A module having no non-zero torsion elements is called a torsion free-module, i.e., $0 \neq m$ is torsion free if $rm = 0, r \in R \implies r = 0$. We recall a result in [7].

Theorem 3.13. If M is a torsion free left R-module, then $Nil_R(M) = \{0\}$.

In [7], the converse of the above Theorem 3.13 need not be true in general,i.e., there exists a left R-module M such that $Nil_R(M) = 0$ but M is not torsion free by the following example.

Example 3.14. Let $R=\mathbb{Z}$ and $M=\mathbb{Z}_p$, where p is a prime number. Then, $\bar{1}\in Tor(\mathbb{Z}\mathbb{Z}_p)$ as $p.\bar{1}=\bar{0}$. Thus, $Tor(\mathbb{Z}\mathbb{Z}_p)\neq 0$. Let $\bar{0}\neq \bar{a}\in Nil_{\mathbb{Z}}(\mathbb{Z}_p)$. Then, by definition there exist $r\in\mathbb{Z}$ and $k\in\mathbb{N}$ such that $r^k\bar{a}=\bar{0}$ and $r\bar{a}\neq\bar{0}$ implies $p|r^ka$ which again implies $p|r^k$ or p|a. If p|a, then $r\bar{a}=0$ and thus $\bar{a}\notin Nil_{\mathbb{Z}}(\mathbb{Z}_p)$. Suppose $p|r^k$ which implies $p|r.r^{k-1}$. Again, p|r or $p|r^{k-1}$. If p|r, then $r\bar{a}=\bar{0}$ and hence $\bar{a}\notin Nil_{\mathbb{Z}}(\mathbb{Z}_p)$. On the other suppose $p|r^{k-1}$, then by continuing we get p|r and hence $r\bar{a}=0$. Thus, $Nil_{\mathbb{Z}}(\mathbb{Z}_p)=0$.

Here, we have found some conditions for which symmetric and nil-symmetric modules are equivalent which is given below.

Theorem 3.15. Let M be a torsion free left R-module. Then, M is symmetric if and only if M is nil-symmetric.

Proof: Let M be nil-symmetric. Also, let $a,b \in R, m \in M$ with abm = 0. Since M is nil-symmetric, $bam \in Nil_R(M)$. Now, since M is torsion free, $Nil_R(M) = 0$. Therefore, $bam \in \{0\} \implies bam = 0$. Hence, M is symmetric.

The converse part follows from Theorem 3.6.

Theorem 3.16. Let M be a nil-symmetric module over a domain D. Then, T(M) is a submodule of M.

Proof: Let $m_1, m_2 \in T(M)$. Then, there exist $0 \neq r_1, 0 \neq r_2 \in R$ such that $r_1m_1 = 0, r_2m_2 = 0 \Longrightarrow r_2r_1m_1 = 0, r_1r_2m_2 = 0 \Longrightarrow r_1r_2m_1 \in Nil_D(M), r_2r_1m_2 \in Nil_D(M)$. Then, there exist $0 \neq t \in D$ and $n \in \mathbb{N}$ such that $t^nr_1r_2m_1 = 0, tr_1r_2m_1 \neq 0$. Now, $t^nr_1r_2(m_1 - m_2) = t^nr_1r_2m_1 - t^nr_1r_2m_2 = 0$ which implies $m_1 - m_2 \in T(M)$. Also, let $m \in T(M) \Longrightarrow rm = 0$ for some $0 \neq r \in D \Longrightarrow arm = 0 \ \forall a \in D$. Since M is a nil-symmetric module and $arm = 0 \Longrightarrow ram \in Nil_D(M)$. Then, there exist $0 \neq t \in D$ and $n \in \mathbb{N}$ such that $t^nram = 0, tram \neq 0$. Since D is domain, we have $t^nr \neq 0$. Thus, $am \in T(M)$. Hence proved.

Lemma 3.17. [4] If $_RN$ is a submodule of $_RM$, then $Nil_R(N) \subseteq Nil_R(M)$.

Theorem 3.18. A left R-module M is nil-symmetric if and only if every cyclic submodule of M is nil-symmetric.

Proof: Let M be nil-symmetric. Since submodules of nil-symmetric modules are nil-symmetric, every cyclic submodule of M is nil-symmetric.

Conversely, let $a,b \in R, m \in M$ satisfying abm = 0. Since $m \in M, m = 1.m \in Rm$ which is cyclic $\implies m \in Rm \subseteq M \implies abm = 0$. Since Rm is a nil-symmetric module $\implies bam \in Nil_R(Rm) \implies bam \in Nil_R(M)$. Hence M is nil-symmetric.

Theorem 3.19. A left R-module M is nil-symmetric if and only if every finitely generated submodule of M is nil-symmetric.

Proof: Let M be nil-symmetric. Since submodules of nil-symmetric modules are nil-symmetric, every finitely generated submodule of M is nil-symmetric.

The converse is clear by Theorem 3.18.

In the next theorem, we give a condition on a submodule N of a left R-module M which is sufficient for the nil-symmetricity of $\frac{M}{N}$ to imply nil-symmetricity of M.

Theorem 3.20. Let M be a left-R module over a commutatative ring R and N be a submodule of M such that $N \subseteq Nil_R(M)$. If $\frac{M}{N}$ is nil-symmetric, then M is nil-symmetric.

Proof: Let $a,b \in R$ and $m \in M$ with abm = 0. Then, we have, $ab\bar{m} = 0$. Since $\frac{M}{N}$ is nil-symmetric, $ba\bar{m} \in Nil_R(\frac{M}{N})$. Then, there exist $r \in R, k \in \mathbb{N}$ such that $r^kba\bar{m} = \bar{0}$, $rba\bar{m} \neq \bar{0} \implies r^kba(m+N) = \bar{0}$, $rba(m+N) \neq \bar{0} \implies r^kbam + N = 0 + N$, $rbam + N \neq 0 + N \implies r^kbam \in N$. Since $N \subseteq Nil_R(M)$, we have, $r^kbam \in Nil_R(M)$. Then, there exist $p \in R$, $s \in \mathbb{N}$ such that $p^sr^kbam = 0$, $pr^kbam \neq 0$. Since R is commutative, we have, $(pr)^{max(s,k)}bam = 0$, $prbam \neq 0$ as $pr^kbam \neq 0 \implies bam \in Nil_R(M)$. Hence, M is nil-symmetric.

Theorem 3.21. Let M be a left R-module over an integral domain R. If M is nil-symmetric, then $\frac{M}{T(M)}$ is symmetric.

Proof: The proof is obvious as R is commutative.

Corollary 3.22. Let M be a left R-module over an integral domain R. If M is nil-symmetric, then $\frac{M}{T(M)}$ is nil-symmetric.

Theorem 3.23. Let $\theta: R \to R'$ be a ring homomorphism and let M be an R'-module. Then, M can be made as an R-module by defining $am = \theta(a)m$. If θ is onto, the following are equivalent:

- (1) M is a nil-symmetric R'-module.
- (2) M is a nil-symmetric R-module.
- Proof: $(1) \Longrightarrow (2)$ Let $abm = 0 \ \forall a,b \in R, m \in M \Longrightarrow \theta(ab)m = 0 \Longrightarrow \theta(a)\theta(b)m = 0$ in $_{R'}M$. Since $_{R'}M$ is nil-symmetric, $\theta(b)\theta(a)m \in Nil_{R'}(M) \Longrightarrow \exists t \in R'$ and $k \in \mathbb{N}$ such that $t^k\theta(b)\theta(a)m = 0$, $t\theta(b)\theta(a)m \neq 0$. Since θ is onto, there exists $l \in R$ such that $\theta(l) = t$. Now, $l^kbam = \theta(l)^k\theta(b)\theta(a)m = t^k\theta(b)\theta(a)m = 0$ and $t\theta(b)\theta(a)m \neq 0$ implies $\theta(l)\theta(b)\theta(a)m \neq 0$, and so $lbam \neq 0$. Therefore, $bam \in Nil_R(M)$. Hence, M is a nil-symmetric R-module.
- (2) \Longrightarrow (1) Let $a'b'm = 0 \ \forall a', b' \in R', m \in M$. Since θ is onto, there exist $r \in R, l \in R$ such that $\theta(r) = a', \theta(l) = b'$. Now, $\theta(r)\theta(l)m = 0 \Longrightarrow \theta(rl)m = 0 \Longrightarrow rlm = 0 \Longrightarrow lrm \in Nil_R(M)$. Then, there exist $t \in R$ and $n \in \mathbb{N}$ such that $t^n lrm = 0$ and $t lrm \neq 0$. Then, $b'a'm \in Nil_{R'}(M)$. Hence, M is a nil-symmetric R'-module.

Next, we study localisations. Recall that if R is a commutative ring and S is a multiplicatively closed subset of R consisting of $C(R)-\{0\}$ and without zero divisor, then $S^{-1}R$ has a ring structure with unity known as ring of fractions. If R is an integral domain and $S=R-\{0\}$, then the ring of fractions $S^{-1}R$ is called field of fractions. If M is a left R-module, then $S^{-1}M$ can be made as an $S^{-1}R$ -module. By applying standard localisations techniques, we can prove Theorem 3.24 and Corollary 3.25.

Theorem 3.24. Let R be a ring and S be a multiplicatively closed subset of $C(R)-\{0\}$. Then, M is a nil-symmetric R-module if and only if $S^{-1}M$ is a nil-symmetric $S^{-1}R$ -module.

Proof: Consider M to be a nil-symmetric R-module. Let $\frac{a}{r}\frac{b}{s}\frac{m}{t}=0$ in $S^{-1}M$ where $\frac{m}{t}\in S^{-1}M, \frac{a}{r}, \frac{b}{s}\in S^{-1}R \implies u_1abm=0$ for some $u_1\in R \implies abm=0$. Since M is a nil-symmetric R-module, we have $bam\in Nil_R(M)$. Then, there exist $0\neq t\in R$ and $n\in \mathbb{N}$ such that $t^nbam=0$ and $tbam\neq 0$. Now, $t^n\frac{b}{s}\frac{a}{r}\frac{m}{t}=\frac{t^nbam}{srt}=0$ and $t\frac{b}{s}\frac{a}{r}\frac{m}{t}=\frac{tbam}{srt}\neq 0$ as $tbam\neq 0$. Therefore, $\frac{b}{s}\frac{a}{r}\frac{m}{t}\in Nil_{S^{-1}R}(S^{-1}M)$. Hence, $S^{-1}M$ is a nil-symmetric $S^{-1}R$ -module.

Conversely, let $a,b \in R$ and $m \in M$ with $abm = 0 \Longrightarrow \frac{a}{1} \frac{b}{1} \frac{m}{1} = 0$. Since $S^{-1}M$ is a nil-symmetric $S^{-1}R$ -module, we have $\frac{b}{1} \frac{a}{1} \frac{m}{1} \in Nil_{S^{-1}R}(S^{-1}M)$. Then, there exist $\frac{t}{s} \in S^{-1}R$ and $n \in \mathbb{N}$ such that $(\frac{t}{s})^n \frac{b}{1} \frac{a}{1} \frac{m}{1} = 0 \Longrightarrow t^n bam = 0 \Longrightarrow u_1(t^n bam - 0) = 0$ for some $u_1 \in S \Longrightarrow u_1 t^n bam = 0 \Longrightarrow t^n bam = 0$ and $\frac{t}{s} bam \neq 0 \Longrightarrow u(tbam - 0.s) \neq 0$ for all $u \in S \Longrightarrow utbam \neq 0$ for all $u \in S \Longrightarrow utbam \neq 0$ for u = 1. Therefore, $u \in S$ have $u \in S$ is a nil-symmetric $u \in S$ -module.

Corollary 3.25. For a left R-module M, $_{R[x]}M[x]$ is nil-symmetric if and only if $_{R[x,x^{-1}]}M[x,x^{-1}]$ is nil-symmetric.

Proof: Let $S = \{1, x, x^2, ...\}$. Then, S is a multiplicatively closed subset of R[x] consisting of central elements of R[x]. Since $S^{-1}M[x] = M[x, x^{-1}]$ and $S^{-1}R[x] = R[x, x^{-1}]$, the result is clear from Theorem 3.24.

Lemma 3.26. [4] Let M be a left R-module. Then, $Nil_{M_n(R)}M_n(M) = M_n(M)$ for $n \geq 2$.

Theorem 3.27. For a left R-module M, $M_n(R)M_n(M)$ is nil-symmetric for $n \geq 2$.

Proof: Let $ABL = 0 \ \forall A, B \in M_n(R)$ and $L \in M_n(M)$. Then, $BAL \in M_n(M) = Nil_{M_n(R)}M_n(M) \implies BAL \in Nil_{M_n(R)}M_n(M)$. Hence, $M_n(R)M_n(M)$ is a nil-symmetric module.

Theorem 3.28. A left R-module M is a nil-symmetric module if and only if for any $n \in \mathbb{N}$, $T_n(R)T_n(M)$ is a nil-symmetric module.

Proof: Consider M to be a nil-symmetric module. Let $A = (a_{ij}), B = (b_{ij}) \in T_n(R)$ and $L = (m_{ij}) \in T_n(M)$ with ABL = 0. Then, $a_{ii}b_{ii}m_{ii} = 0 \,\forall \, 0 < i \leq n$. Since ${}_RM$ is nil-symmetric, we have $b_{ii}a_{ii}m_{ii} \in Nil_R(M) \,\forall \, 0 < i \leq n$.

$$\textit{Now, BAL} = \begin{bmatrix} b_{11}a_{11}m_{11} & * & * & \cdots & * \\ 0 & b_{22}a_{22}m_{22} & * & \cdots & * \\ 0 & 0 & b_{33}a_{33}m_{33} & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & b_{nn}a_{nn}m_{nn} \end{bmatrix}.$$

Since $b_{nn}a_{nn}m_{nn} \in Nil_R(M)$, there exist $t_n \in R$ and $n \in \mathbb{N}$ such that $t_n^kb_{nn}a_{nn}m_{nn} = 0$ and $t_nb_{nn}a_{nn}m_{nn} \neq 0$. Choose $T = diag(0, 0, ..., t_n)$, we have $T^kBAL = 0$ and $TBAL \neq 0$.

The converse part is easily seen that submodules of nil-symmetric modules are nil-symmetric, then so is $_{\it R}M$.

Corollary 3.29. Let $_RM$ be a symmetric module. Then, for any $n \in \mathbb{N}$, $_{T_n(R)}T_n(M)$ is a nilsymmetric module.

Here, we have given an example of a module which is nil-symmetric but not symmetric.

Example 3.30. Let $M = \mathbb{Z}, R = \mathbb{Z}$. Then, $\mathbb{Z}\mathbb{Z}$ is a nil-symmetric module by Remark 3.3(1).

So, $T_2(\mathbb{Z})$ is a nil-symmetric module but it is not symmetric module as let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Then, $ABC = 0$. But $BAC = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \neq 0$.

Let $M_n(R)$ denote the ring of $n \times n$ matrices over R. For a left R-module M and $B = (a_{ij}) \in M_n(R)$, let $MB = \{(a_{ij}m) : m \in M\}$. For unit matrices $\{E_{ij} : 1 \leq i, j \leq n\}$, let $V = \sum_{i=1}^{n-1} E_{i,i+1}$ for $n \geq 2$. Let $V_n(R) = RI_n + RV + RV^2 + \ldots + RV^{n-1}$ and $V_n(M) = MI_n + MV + MV^2 + \ldots + MV^{n-1}$. Then, $V_n(R)$ forms a ring and $V_n(M)$ forms a left R-module over $V_n(R)$ under usual addition and multiplication of matrices. There is a ring isomorphism $\theta : V_n(R) \to \frac{R[x]}{(x^n)}$ given by $\theta(r_oI_n + r_1V + \ldots + r_{n-1}V^{n-1}) = r_o + r_1x + \ldots + r_{n-1}V^{n-1} + (x^n)$ and an abelian group isomorphism $\phi : V_n(M) \to \frac{M[x]}{M[x](x^n)}$ defined by $\phi(m_oI_n + m_1V + \ldots + m_{n-1}V^{n-1}) = m_o + m_1x + \ldots + m_{n-1}V^{n-1} + M[x](x^n)$ such that $\phi(AW) = \theta(A)\phi(W)$ for all $A \in V_n(R)$ and $W \in V_n(M)$.

Theorem 3.31. Let M be a left R-module. If M is nil-symmetric module, then for any $n \geq 2$, $\frac{M[x]}{M[x](x^n)}$ is a nil-symmetric module over $\frac{R[x]}{(x^n)}$.

Proof: From the above remark we can easily prove that if $_RM$ is nil-symmetric, then $_{V_n(R)}V_n(M)$ is a nil-symmetric for $n \geq 2$. Thus, the proof follows from Theorem 3.28 given above.

4 Conclusion remarks

Remark 4.1. We conclude this note with the following questions.

- (1) Is a direct product of nil-symmetric modules nil-symmetric?
- (2) Is there any relation between $Nil_R(M)[x]$ and $Nil_{R[x]}M[x]$?
- (3) Is a direct sum of nil-symmetric modules nil-symmetric?

References

- [1] D. Ssevviiri and N. Groenewald, Generalization of nilpotency of ring elements to module elements, Comm. Algebra 42, 571-777, (2014).
- [2] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14, 359-368, (1971).
- [3] Junchao Wei, Generalized weakly symmetric rings, J. of Pure and Applied Algebra 218, 1594-1603, (2014).
- [4] M. Dutta and K. H. Singh, On some generalisations of reduced and rigid modules, IOP Conf. Ser.: Mater. Sci. Eng. 1020 012024, (2021).
- [5] N. Agayev and A. Harmanci, On semicommutative modules and rings, Kyungpook Math. J. 47, 21-30, (2007).
- [6] N. Agayev, S.Halicioglu and A. Harmanci, On symmetric modules, Riv. Mat. Univ. Parma (8) 2, 91-99, (2009).
- [7] N. Ansari and Kh.H. Singh, On weakly semicommutative modules, Indian J. of Mathematics, 62, 321-334, (2020).
- [8] M. B. Rege and A. M. Buhphang, On reduced modules and rings, Int. Electron. J. of Algebra 3, 58-74, (2008).
- [9] R. Raphael, Some remarks on regular and strongly regular rings, Canad. Math. Bull.17, 709-712, (1974/75).
- [10] T.K. Lee and Y. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Groups, Lect. Pure Appl. Math. 16, 236, (2004).
- [11] U.S Chakraborty and K. Das, On Nil-Symmetric rings, Hindawi Publishing Corp. J. of Mathematics, volume 2014, Article ID 483784, 1-7.

Author information

K. Praminda, Department of Mathematics, Manipur University, India. E-mail: koijampraminda@gmail.com

Kh. Herachandra, Department of Mathematics, Manipur University, India. E-mail: heramath@manipuruniv.ac.in

M. Rhoades, Department of Mathematics, Manipur University, India. E-mail: rhoades.phd.math@manipuruniv.ac.in

Received: 2024-08-06 Accepted: 2024-12-04