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Abstract In this paper, we introduce a new class of rings called RF -rings in which every
regular ideal is flat. A ring with wgldim(R) ≤ 1 is naturally an RF -ring; and in the domain
context, these two forms coincide to become a Prüfer domain. We study the transfer of this notion
to various context of commutative ring extensions such as localization, direct product, trivial ring
extensions and pullbacks. Using these results, we construct several classes of examples of RF -
rings.

1 Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero identity and all
modules are nonzero unital. Let R denote such a ring, we denote by Reg(R) and Z(R) the set
of all regular elements of R and the set of all zero-divisors of R respectively. By a “local" ring
we mean a (not necessarily Noetherian) ring with a unique maximal ideal.

In 1932, Prüfer introduced and studied integral domains in which every non-zero finitely gen-
erated ideal is invertible [39]. In 1936, Krull [30] named these rings after H. Prüfer and stated
equivalent conditions for a ring to be a Prüfer domain. Since then, “Prüfer domains have assumed
a central role in the development of multiplicative ideal theory through numeral equivalent forms.
These touched on many areas of commutative algebra, e.g., valuation theory, arithmetic relations
on the set of ideals, ∗-operations, and polynomial rings; in addition to several homological char-
acterizations" (Gilmer [17]).

The extension of this concept to rings with zero-divisors gives rise to five classes of Prüfer-
like rings featuring some homological apsects (Bazzoni-Glaz [5] and Glaz [21]). At this point,
we have :

Semi-hereditary ⇒ weak global dimension ≤ 1 ⇒ Arithmetical ⇒ Gaussian ⇒ Prüfer

In the domain context, all these forms coincide with the definition of a Prüfer domain. Glaz
[21] provides examples which show that all these notions are distinct in the context of arbitrary
rings. See for instance, [5, 6, 20, 21, 31, 32, 41].

In this paper, we introduce a RF -notion which is another characterization of a Prüfer domain.
A ring is called RF -ring, if every regular ideal is flat. A ring with wgdim(R) ≤ 1 is naturally an
RF -ring, and in the domain context, these two forms coincide and which is a Prüfer domain.

Let A be a ring and E an A-module. Then A ∝ E, the trivial ring extension of A by E, is the
ring whose additive structure is that of the external direct sum A ⊕ E and whose multiplication
is defined by (a, e)(b, f) := (ab, af + be) for all a, b ∈ A and all e, f ∈ E. (This construction
is also known by other terminology and other notation, such as the idealization A(+)E.) The
basic properties of trivial ring extensions are summarized in the books [18, 25]. For the reader’s
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convenience, recall that if I is an ideal of A and E′ is a submodule of E such that IE ⊆ E′,
then J := I ∝ E′ is an ideal of R; ideals of R need not be of this form [28, Example 2.5].
However, prime (resp., maximal) ideals of R have the form P ∝ E, where P is a prime (resp.,
maximal) ideal of A [25, Theorem 25.1(3)]. If (A,M) is a local ring with maximal ideal M
and E an A-module with ME = 0, then R := A ∝ E is local total ring of fractions from [28,
Proof of Theorem 2.6]. Trivial ring extensions have been studied or generalized extensively,
often because of their usefulness in constructing new classes of examples of rings satisfying var-
ious properties and for solving many open problems and conjectures in both commutative and
non-commutative ring theory. See for instance [2, 9, 10, 11, 12, 13, 18, 25, 26, 28, 30, 34, 36, 37].

Let T be a ring and let M be an ideal of T . Denote by π the natural surjection π : T −→ T/M .
Let D be a subring of T/M . Then, R := π−1(D) is a subring of T and M is a common ideal of
R and T , such that D = R/M . The ring R is known as the pullback associated to the following
pullback diagram:

R := π−1(D)

i

��

π|R
// D = R/M

j

��
T

π // T/M

where i and j are the natural injections.
A particular case of this pullback is the D + M -construction, when the ring T is of the form
K +M , where K is a field and M is a maximal ideal of T , and R takes the form D +M . See
for instance [4, 5, 18, 33].

In this paper, we investigate the possible transfer of RF -property to the direct product of
rings, to various trivial extension constructions, and to a particular pullbacks. Using these results,
we construct several classes of examples of RF -rings.

2 Main Results

A ring is called an RF -ring, if every regular ideal is flat. Now we give the following natural
results.

Proposition 2.1. Let R be a ring. Then :

(i) If wgdim(R) ≤ 1, then R is an RF -ring.

(ii) Assume that R is an integral domain. Then R is an RF -ring if and only if wgdim(R) ≤ 1
if and only if R is a Prûfer domain.

(iii) A total ring is an RF -ring.

Proof. Straightforward.

First, we construct an RF -ring such that wgdim(R) ≥ 2.

Example 2.2. Let R = Z ∝ (Z/3Z)∞, where E := (Z/3Z)∞ is a (Z/3Z)-vector space with
infinite rank. Then:

(i) R is an RF -ring.

(ii) wgdim(R) ≥ 2.

Proof. (i) Let R = Z ∝ (Z/3Z)∞. It is clear that R is non-local since so is Z. Now, we claim
that R− Z(R) = {(n, e) ∈ R / n /∈ 3Z and e ∈ (Z/3Z)∞}.
Indeed, we have (0, e)(0, e) = 0 and (3m, e)(0, e) = 0 for every e ∈ (Z/3Z)∞ and m ∈ Z.
Hence, R−Z(R) ⊆ {(n, e) ∈ R / n ∈ Z−3Z and e ∈ (Z/3Z)∞}. Conversely, let (n, e) ∈ R
such that n ∈ Z− 3Z and e ∈ (Z/3Z)∞ and let (m, f) ∈ R such that (n, e)(m, f) = (0, 0).
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Hence, (0, 0) = (n, e)(m, f) = (nm, nf +me) and so nm = 0 and nf +me = 0. Since
n ∈ Z− 3Z and nm = 0, then m = 0 and so nf = 0. On the other hand, since n ∈ Z− 3Z,
two cases are then possible:

Case 1: n = 3p+ 1 for some p ∈ Z.
Hence, 0 = nf = (3p+ 1)f = 3pf + f = f and so (m, f) = (0, 0), as desired.

Case 2: n = 3p+ 2 for some p ∈ Z.
Hence, 0 = nf = (3p+ 2)f = 3pf + 2f = 2f and so f = 4f = 2.2f = 2.0 = 0. Hence,
(m, f) = (0, 0), as desired.

In all cases, we have (m, f) = (0, 0), as desired.

Now, our aim is to show that R is an RF -ring. Let I be a regular ideal of R. Then, there
exists (p, e) ∈ I such that p ∈ Z− 3Z and e ∈ (Z/3Z)∞. Hence, for every f ∈ (Z/3Z)∞,
we have (p, e)(0, f) = (0, pf). Therefore, 0 ∝ (Z/3Z)∞ ⊆ I (since p ∈ Z − 3Z) and so
I = J ∝ (Z/3Z)∞, where J is a proper ideal of Z, that is J = nZ, where n ∈ Z−3Z since
I is a regular ideal of R. Hence, I = nZ ∝ (Z/3Z)∞ = R(n, 0) ∼= R, as desired.

(ii) We claim that the ideal J := 0 ∝ (Z/3Z)∞ is not flat. Deny. Let {fi}i∈I be a basis of the
(Z/3Z)-vector space 3Z)∞ and consider the R-map R(I) u→ J defined by u((ai, ei)i∈I) :=∑

i∈I(ai, ei)(0, fi)(= (0,
∑

i∈I aifi)). Clearly, Ker(u) = 0 ∝ E(I) = (0 ∝ E)(I), where
E := (Z/3Z)∞. Hence, by [40, Theorem 3.55], we obtain

(0 ∝ E)(I) = (0 ∝ E(I)) ∩ (0 ∝ E)R(I) = (0 ∝ E)(I))(0 ∝ E) = 0,

a desired contradiction.

Therefore, the ideal 0 ∝ (Z/3Z)∞ is not flat and so wgdim(R) ≥ 2, as desired.

Now, we construct an RF local ring such that wgdim(R) ≥ 2.

Example 2.3. Let A = K[[X1, ..., Xn, ...]] = K +M be a power series local ring with infinite
indeterminates (Xi)i=1,...,n,... over a field K with maximal ideal M and set R := A/M 2. Then:

(i) R is an RF -ring.

(ii) wgdim(R) ≥ 2.

Proof. (i) R is a local total ring with maximal ideal M/M2. In particular, R is an RF -ring.

(ii) We claim that wgdim(R) ≥ 2. Deny. Then, R is a valuation domain since R is a lo-
cal, a desired contradiction since R is a total ring with maximal ideal M/M2. Therefore,
wgdim(R) ≥ 2, as desired.

Now, we study the transfer of RF notion to a direct product.

Proposition 2.4. Let R :=
∏n

i=1 Ri the direct product of a rings Ri. Then R is an RF -ring if
and only if so is Ri, for every i = 1, ..., n.

Proof. By induction, it suffices to show the proof for n = 2. Assume that R1 and R2 are RF -
rings and let J be a regular ideal of R. Then, it is easy to see that J = I1 × I2, where Ii is a
regular ideal of Ri for i = 1, 2. Hence, Ii is a flat ideal of Ri and so J := I1 × I2 is a flat ideal
of R, as desired.
Conversely, assume that R is an RF -ring and let I1 be a regular ideal of R1. Then, I1 × R2 is a
regular ideal of the RF -ring R, hence I1 × R2 is a flat ideal of R. Therefore, I1 is a flat ideal of
R1, as desired.
By the same argument, we show that R2 is also an RF -ring which completes the proof.
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We know that a localization of a ring such that wgdim(R) ≤ 1 has the same property. Now,
we give an example showing that the localization of an RF -ring is not always an RF -ring.

Example 2.5. Let A = K[[X1, ..., Xn, ...]] = K + M be a local power series ring with infi-
nite indeterminates (Xi)i=1,...,n,... over a field K, where M is its maximal ideal generated by
(Xi)i=1,...,n,... over a field K. Set E := (A/M)∞(= K∞) be a K-vector space with infinite
rank and set R = A ∝ E be the trivial ring extension of A by E. Let S0 := {Xn

1 /n ∈ N} be a
multiplicatively set of A and set S := S0 ∝ 0 be a multiplicative set of R. Then:

(i) R is an RF -ring since R is a total ring.

(ii) S−1R ∼= S−1
0 A is a non-Prûfer domain. In particular, S−1R is a non-RF -ring.

Proof. (i) Straightforward.

(ii) If we take S0 = {Xn
1 /n ∈ N} and S = S0 ∝ 0, we have S−1R ∼= S−1

0 A = [S−1
0 (K[X1])][X2, ...Xn, ...]

which is a non-Prûfer domain. Hence, S−1R is a non-RF -ring, as desired.

But a localization by a multiplicative set S ⊆ Reg(R) of an RF -ring is an RF -ring.

Proposition 2.6. Let S be a multiplicative set of a ring R such that S ⊆ Reg(R). If R is an
RF -ring, then so is S−1R.

Proof. Remark that if S ⊆ Reg(R), then x/s is a regular element of S−1R if and only if x is a
regular element of R, for every x ∈ R and s ∈ S. The rest of the proof is straightforward.

Now, we study the transfer of an RF -property in trivial ring extension.

Theorem 2.7. Let A be a ring, E be an A-module and set R := A ∝ E be the trivial ring exten-
sion of A by E. Then:

(i) Assume that A ⊆ B be an extension of domains, K := qf(A) and E := B. Then:
a) R := A ∝ B is a an RF -ring if and only if A is a Prûfer domain and K ⊆ B.
b) wgdim(R) ≥ 2.

(ii) Assume that A be an integral domain, K := qf(A) and E be a K-vector space. Then:
a) R := A ∝ E is an RF -ring if and only if A is a Prûfer domain.
b) wgdim(R) ≥ 2.

(iii) Assume that (A,M) is a local ring and E is an (A/M)-vector space. Then R is an RF -ring.

Proof. (i) a) Assume that A is a Prûfer domain, K ⊆ B and let J be a proper regular ideal
of R. Then there exists (a, e) ∈ J such that a ̸= 0 (since (0 ∝ E)(0, e) = 0). Since
(a, e)R = aA ∝ E since aE = aB = B = E (since a ∈ A ⊆ K and K ⊆ B). Therefore,
J := I

⊗
A R = IR = I ∝ E for some proper ideal I of A. Hence, I is a flat ideal of A

(since A is a Prûfer domain) and so J := I
⊗

A R = IR = I ∝ E is a flat ideal of R since
R is a flat A-module, as desired.

Conversely, assume that R is an RF -ring. Our aim is to show that K ⊆ B.
First, we wish to show that K ⊆ B in the case when A is local. Let x ̸= 0 ∈ A and
let I := ((x, 0), (x, 1))R, a finitely generated regular ideal of R. Then I is projective and
hence principal (since R is local too). Write I = (a, b)R for some a ∈ A and b ∈ B.
Clearly, a = ux for some invertible element u in A, hence I = (ux, b)R = (x, u−1b)R.
Further (x, 0) ∈ I yields u−1b = b′x for some b′ ∈ B. It follows that I = (x, b′x)R =
(x, 0)(1, b′)R = (x, 0)R since (1, b′) is invertible. But (x, 1) ∈ I yields 1 = xb′′ for some
b′′ ∈ B. Therefore K ⊆ B.
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Now, suppose that A is not necessarily local and let q ∈ Spec(B) and p := q ∩ A. Clearly,
S := (A \ p) × 0 is a multiplicatively closed subset of R with the feature that r

1 is regular
in S−1R if and only if r is regular in R. So regular ideals of S−1R originate from regular
ideals of R. Hence Ap ∝ Bp = S−1R is an RF -ring. Whence K = qf(Ap) ⊆ Bp ⊆ Bq. It
follows that K ⊆ B =

⋂
Bq, where q ranges over Spec(B), as desired.

It remains to show that A is a Prûfer domain and let I be a proper ideal of A. Hence,
J := I

⊗
A R = IR = I ∝ E is a regular ideal of an RF -ring R, so J is a flat

ideal of R. Therefore, I be a flat ideal of A since R is a faithfully flat A-module and
J := I

⊗
A R = IR = I ∝ E, as desired.

b) We claim that wgdim(R) ≥ 2. Indeed, set I := R(0, e), where e ∈ E − {0} and
set T := S ∝ 0 be a multiplicatively closed subset of R, where S := A − {0}. Re-
mark that T−1R = K ∝ S−1E(= K ∝ S−1B) is a local ring and T−1I = 0 ∝ Ke is
a non-flat ideal of a local ring T−1R since T−1I(= 0 ∝ Ke) is not principal generated
by a regular element (since (0, e)T−1I = 0). Therefore, I is a non-flat ideal of R since
fdT−1R(T

−1I) ⩽ fdR(I), as desired.

(ii) Argue as 1) above.

(iii) Straightforward since R is a (local) total ring and this completes the proof of Theorem 2.7.

The following corollary is an immediate consequence of Theorem 2.7.

Corollary 2.8. Let A be a domain, K := qf(A), and R := A ∝ K. Then the following
statements are equivalent:

(i) R is an RF -ring.

(ii) A is a Prûfer domain.

Now, we construct a new examples of RF -rings R such that wgdim(R) ≥ 2 by using Theo-
rem 2.7.

Example 2.9. Let R := Z ∝ Q be the trivial ring extension of Z by Q. Then:

(i) R is an RF -ring.

(ii) wgdim(R) ≥ 2.

Now, we study the transfer of RF -property in a particular case of pullbacks.

Theorem 2.10. Let T = K +M be a local ring, where K is a field and M is a maximal ideal of
T such that for each m ∈ M , there exists n ∈ M such that mn = 0 (take for instance Mn = 0
for some a positive integer n). Let D ⊆ K be a subring of K and set R = D+M . Then R is an
RF -ring if and only if D is a Prûfer domain.

Proof. Assume that R is an RF -ring and let I be a proper ideal of D. Set J = IR = I + M
(since aM = M for every a ∈ K) an ideal of R and we claim that J is a regular ideal of R.
Indeed, let d ∈ I − {0} ⊆ J and let a + m ∈ R such that d(a + m) = 0, where a ∈ D and
m ∈ M . Then 0 = da+ dm and so da = 0 in D and dm = 0 in M . Therefore, a = 0 since D
is an integral domain and d ∈ D − {0} and m = 0 since 0 = dm ∈ M and d is invertible in K,
hence d is a regular element in J . Therefore, J is a flat ideal of R since R is an RF -ring and so
I a flat ideal of D. Hence, D is a Prûfer domain.

Conversely, assume that D is a Prûfer domain and let J be a proper regular ideal of R. Then
J ⊊ M since J is a regular ideal of R and so there exists d +m ∈ J , where d ∈ D − {0} and
m ∈ M . Hence, J ⊇ (d+m)M = dM+mM = M (since mM ⊆ M = dM ) and so J = I+M ,
where I is a proper ideal of D. Hence, I is a flat ideal of a Prûfer domain D. Therefore, J is a
flat ideal of R and so R is an RF -ring which completes the proof of Theorem 2.10.
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Now, we construct a non-total RF -rings R such that wgdim(R) ≥ 2 by using the above
Theorem 2.10.

Example 2.11. Let T = Q[[X]]
<Xn> = Q + XT , where X is an indeterminates over Q, Q[[X]] is

the power series ring over Q, and < Xn >= XnQ[[X]] where n is a positive integers. Set
R = Z+XT . Then:

(i) R is an RF -ring.

(ii) wgdim(R) ≥ 2.

Proof. (i) R is an RF -ring by Theorem 2.10.

(ii) The ring R is non-total since every n ∈ Z − {0} is regular in R. Also, we claim that the
ideal XT is not flat. Deny. Let S := {2n/n ∈ N} be a multiplicative subset of R. Hence,
S−1(XT ) is a flat ideal of a local ring S−1R (since S−1R = (Z2Z) ∝ XT ), a desired
contradiction since Xn−1(XT ) = 0.
Therefore, the ideal XT is not flat and so wgdim(R) ≥ 2, as desired.

We know that R have weak global dimension ≤ 1 (wgdim(R) ≤ 1) if every (resp., finitely
generated) ideal of R is flat. Also, by using [5, Proposition 2.5] and since a flatness is a locally
property, we have :

Proposition 2.12. Let R be a ring and I be a finitely generated and regular ideal of R. Then the
following statements are equivalent:

(i) I is invertible.

(ii) I is projective.

(iii) I is locally principal.

(iv) I is flat.

We know that in an RF -ring, any finitely generated regular ideal is flat. We are led to make
the following conjecture

Conjecture : Is a ring in which every finitely generated regular ideal is flat, is an RF -ring ?
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