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Abstract Let V be a finite dimensional vector space. In this paper, we introduce a new graph

called the coprime graph Γc(V) of V and study its properties. Actually, the coprime graph Γc(V)
of V is a simple undirected graph with the set of all nontrivial proper subspaces of V as the

vertex set and two distinct nontrivial subspaces W1 and W2 are adjacent in Γc(V) if and only

if gcd(dim(W1), dim(W2)) = 1. Having introduced this new graph, we study the structure and

graph theoretical properties like connectivity, hamiltonicity, diameter, girth etc of the coprime

graph of a finite dimensional vector space.

1 Introduction

The study about algebraic structures using properties of graphs, has become an exciting research

topic in the last three decades, leading to many fascinating results and questions. There are

many papers assigning a graph to a group or a ring or a vector space and investigating algebraic

properties using the associated graph. Some interesting constructions are available in [9, 16, 17].

For the entire literature on graphs from rings, one can refer[1]. Throughout this paper, V is a

finite dimensional vector space over a finite field F. The dimension of any vector space V is

denoted by dim(V). In this paper, we assign a graph to a finite dimensional vector space V and

investigate algebraic properties of V using properties of the derived graph.

Let V be a finite dimensional vector space over a field F with {m1,m2,

. . . ,mk} as a basis. Then any vector a ∈ V can be expressed uniquely as a linear combina-

tion of the form a = a1m1 + a2m2 + · · · + akmk. The non-zero component graph of V with

respect to the basis {m1, . . . ,mk}, denoted by Γ(V), is a simple undirected graph with non-zero

vectors of V as the vertex set and such that there is an edge between two distinct vertices x and y

if and only if there exists at least one mi along which both x and y have non-zero scalars. Das[3]

proved that the graph Γ(V) is independent of choice of basis (i.e., for two different bases of V, the

nonzero component graphs Γ(V) are isomorphic). Also it was proved that the graph Γ(V) is con-

nected and properties of graph theoretical parameters such as domination number, independence

number and degree of vertices of this graph are investigated in [3]. In the case of finite fields, Eu-

lerian and Hamiltonicity of Γ(V) were discussed in [5]. In 2017, Nikandish, Maimani etal.[14]

studied the coloring of non-zero component graphs associated with finite dimensional vector

spaces. Further genus characterizations of the non-zero component graph is obtained by Tamizh

Chelvam and Prabha Ananthi [18]. Other graphs viz non-zero component union graph[6], sub-

space inclusion graph[4] and subspace inclusion graph [7] are also well studied. Further graphs

corresponding to free semi-modules were studied in [19, 15]. The coprime graph Γc(V) of V

is a simple undirected graph with the collection of proper subspaces of V as the vertex set and

two vertices W1 and W2 are adjacent if and only if gcd(dim(W1), dim(W2)) = 1. In this pa-

per, we investigate the structure and graph theoretical properties like connectivity, hamiltonicity,

diameter, girth etc of Γc(V). For terms in algebra, we refer Dummit and Foote [8].

By a graph G = (V,E), we mean a simple undirected graph with nonempty vertex set V and

edge set E. A graph G is said to be complete if every pair of distinct vertices are adjacent and

a complete graph on n vertices is denoted by Kn. A graph G = (V,E) is said to be bipartite if
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the vertex set V can be partitioned into two subsets V1 and V2 such that every edge of G joins

a vertex of V1 and a vertex of V2. A complete bipartite graph is the bipartite graph in which all

possible edges are included and if |V1| = m and |V2| = n, then it is denoted by Km,n. Two

graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic if there exists a bijection

f : V1 → V2 such that u, v ∈ V (G1) are adjacent in G1 if and only if f(u), f(v) ∈ V (G2) are

adjacent in G2. If a graph G has a u−v path, then the distance from u to v, written as d(u, v) is the

length of a shortest u− v path. If G has no such path, then d(u, v) = ∞. The diameter diam(G)
of G is nothing but max

u,v∈V (G)
d(u, v). The girth gr(G) of a graph G with a cycle is the length of

a shortest cycle in G. If G has no cylce, then gr(G) = ∞. A graph is said to be triangulated if

for any vertex u in V (G), there exist v, w in V (G), such that (u, v, w) is a triangle. A clique in

a graph G is a complete subgraph of G. The order of the largest clique in G is called the clique

number and the same is denoted by ω(G). The smallest number of colors in any coloring of a

graph G is called the chromatic number of G, and is denoted by χ(G). A graph for which the

clique number equals the chromatic number is called weakly perfect graph. If a graph can be

drawn in the plane without crossing edges except at vertices, then it is called a planar graph. A

planar graph is said to be outerplanar if it can be embedded in the plane so that all its vertices

lie on the same face. For a real number x, ⌊x⌋ is the greatest integer not exceeding x and ⌈x⌉ is

the smallest integer not less than x. For terminology in graph theory we refer Chartrand [2] and

West [20].

2 Basic Properties of Γc(V)

First let us see an example of coprime graph of a vector space.

Example 2.1. Consider the vector space V = Z2 ×Z2×Z2 over the Galois field Z2. Then proper

1-dimensional subspaces of V are W1,1 = 〈(0, 0, 1)〉 ,W1,2 = 〈(0, 1, 0)〉 ,W1,3 = 〈(1, 0, 0)〉 ,
W1,4 = 〈(0, 1, 1)〉 ,W1,5 = 〈(1, 0, 1)〉 ,W1,6 = 〈(1, 1, 0)〉 , W1,7 = 〈(1, 1, 1)〉 and proper 2-

dimensional subspaces of V are W2,1 = 〈(0, 0, 1), (0, 1, 0)〉 ,W2,2 = 〈(0, 0, 1), (1, 0, 0)〉 ,
W2,3 = 〈(0, 1, 0), (1, 0, 0)〉 ,W2,4 = 〈(0, 1, 1), (1, 0, 1)〉 ,W2,5 = 〈(0, 0, 1), (1, 1, 0)〉 ,
W2,6 = 〈(0, 1, 0), (1, 0, 1)〉 ,W2,7 = 〈(1, 0, 0), (0, 1, 1)〉 . The graph Γc(Z2 ×Z2 ×Z2) is given in

Figure 2.1.
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Figure 2.1: Γc(Z2 × Z2 × Z2)

Lemma 2.2. Let V be a finite dimensional vector space. Then the following can be observed

about the coprime graph Γc(V) of V.

(1) If W1 is a 1-dimensional subspace and W2 be any proper subspace of V, then W1 and W2

are adjacent in Γc(V).
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(2) Let S be the set of all one dimensional subspaces of V. Then the induced subgraph Γc(〈S〉)
of V is complete.

(3) If W1 and W2 are two distinct proper m-dimensional subspaces of V and m ≥ 2, then W1

is not adjacent to W2 in Γc(V).

(4) If dim(V) = 2, then Γc(V) is a complete graph and hence Γc(V) is hamiltonian.

(5) If dim(V) ≥ 3, then Γc(V) is not complete.

(6) If W is a subspace of V with dimension greater than 1, then Γc(W ) is a subgraph of Γc(V).

(7) If dim(V) ≥ 2, then Γc(V) is connected.

In the following lemma, we obtain the diameter of the coprime graph Γc(V).

Lemma 2.3. Let Γc(V) be the coprime graph of a finite dimensional vector space V. Then the

diameter, diam(Γc(V)) =

{

1 if dim(V) = 2;

2 if dim(V) > 2.

Proof. If dim(V) = 2, then Γc(V) is complete and so diam(Γc(V)) = 1. If dim(V) > 2, then

then there exists at least two proper subspaces W1 and W2 of V whose dimensions are same and

greater than or equal to 2. Hence W1 and W2 of V are not adjacent and so d(W1,W2) > 1. Also

both W1 and W2 are adjacent to a subspace of dimension 1. Hence diam(Γc(V)) = 2.

Lemma 2.4. Let Γc(V) be the coprime graph of a finite dimensional vector space V. Then the

girth gr(Γc(V)) = 3.

Proof. If dim(V) = 2, then the coprime graph is complete and hence result is trivially true. If

dim(V) ≥ 3, then there exists two linearly independent vectors α, β ∈ V. Then the subspaces

W1 = 〈α〉, W2 = 〈β〉 and W3 = 〈α, β〉 are of dimensions 1, 1 and 2 respectively. Therefore

W1 −W2 −W3 −W1 is a triangle and hence the girth of Γc(V) is 3.

Lemma 2.5. Let Γc(V) be the coprime graph of a finite dimensional vector space V. If dim(V) ≥
2, then Γc(V) is triangulated.

Proof. Let V be a finite dimensional vector space.

Case 1. If dim(V) = 2, then Γc(V) is complete and hence triangulated.

Case 2. Assume that dim(V ) > 2. Let W be a proper subspace of V. Clearly there exists two

subspaces W1 & W2 of dimension 1. Then W −W1 −W2 −W forms a triangle.

A remarkable simple characterization for planar graphs was given by Kuratowski.

Theorem 2.6. [20] A graph is planar if and only if it contains no subdivision of K5 or K3,3.

Lemma 2.7. [8] Let V be a finite dimensional vector space of dimension n over a finite field F

of q elements. Then the number of k-dimensional subspaces of V is
[

n

k

]

q

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)
.

Now, we obtain a characterization for Γc(V) to be planar.

Lemma 2.8. Let Γc(V) be the coprime graph of a finite dimensional vector space V. Then Γc(V)
is planar if and only if dim(V) = 2 and |F| = 2 or 3.

Proof. If dim(V) = 2 and |F| = 2, then Γc(V) ∼= K3 and so Γc(V) is planar.

If dim(V) = 2 and |F| = 3, then Γc(V) ∼= K4 and so Γc(V) is planar.

Conversely assume that Γc(V) is planar. Suppose dim(V) ≥ 3. Then as shown in Figure 2.1,

K7,7 is a subgraph of Γc(V) and hence Γc(V) is not planar, a contradiction. Hence dim(V) = 2.

If |F| ≥ 4, then, by Lemma 2.7, the number of one dimensional subspaces of V is at least 5.

Hence Γc(V) contains K5 as a subgraph and so Γc(V) is not planar, again a contradiction. Hence

|F| ≤ 3.
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Now, we present another characterization of coprime graph in terms of dimension of the

underlying vector space and cardinality of the base field. The following lemma identifies outer

planar coprime graphs.

Lemma 2.9. Let Γc(V) be the coprime graph of a finite dimensional vector space V. Then Γc(V)
is outerplanar if and only if dim(V) = 2 and |F| = 2.

Proof. Since K7,7 is not outer planar, the result follows from Lemma 2.8.

Now, we obtain the clique number of the coprime graph.

Lemma 2.10. Let Γc(V) be the coprime graph of a finite dimensional vector space V. Then the

clique number ω(Γc(V)) = |S1|+m where S1 is the set of all 1-dimensional subspaces of V and

m is the number of prime numbers less than dim(V).

Proof. Let S1 be the set of all one dimensional subspaces of V. Let M be the set of prime num-

bers greater than 2 and less than dim(V). Let T be the set containing exactly one i−dimensional

subspace for each i ∈ M and S = S1 ∪ T. Note that S1 and T are disjoint and the subgraph

induced by S is complete. Hence S is a clique and so ω(Γc(V)) ≥ |S| = |S1|+ |T |.
Suppose there exists a subspace U of V such that dim(U) is not prime. Then there is an

element W ∈ T such that gcd(dim(W ), dim(U)) 6= 1 and hence W and U are not adjacent.

Hence S is a maximum clique and so ω(Γc(V)) = |S1|+m.

In the following theorem, we prove that the coprime graph is weakly perfect.

Theorem 2.11. The coprime graph Γc(V) of a finite dimensional vector space V is weakly per-

fect.

Proof. In view of Lemma 2.10, it is enough to prove that the chromatic number χ(Γc(V)) ≥
|S1| + m, where S1 is the set of all one dimensional subspaces of V, M is be the set of prime

numbers greater than 2 and less than dim(V) and m = |M |.
For, let us colour each one dimensional subspace W of V by a different colour using |S1|

colours. Now colour subspaces of even dimension by a colour different from colours used so far.

Colour the subspaces whose dimension is a multiple of 3 except those that are already coloured

by some colour that was not already used. Continuing this process, we get χ(Γc(V)) ≤ |S1|+m.

Hence χ(Γc(V)) = |S1|+m and hence Γc(V) is weakly perfect.

Theorem 2.12. The coprime graph Γc(V) of a finite dimensional vector space V is regular if and

only if dim(V) = 2.

Proof. If dim(V) = 2, then the result is obvious by Lemma2.2(4). Conversely assume that Γc(V)
is regular. Suppose dim(V) ≥ 3. Let W1, W2 be subspaces of dimensions 1 and 2 respectively.

Let W be another subspace of dimension 2. Clearly W1 is adjacent to all other subspaces of

dimension both 1 and 2. But W2 and W are not adjacent. Therefore deg(W1) 6= deg(W2) and

deg(W1) 6= deg(W ) which is a contradiction. Hence dim(V) = 2.

Now we obtain the number of vertices and number of edges in Γc(V) for some particular

cases. Actually, we obtain these parameters through the Galois number. For a positive integer

n and a prime power q, the Galois number G(n, q) is defined as G(n, q) =
n
∑

k=0

[

n

k

]

q

where

[

n

k

]

q

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)

Proposition 2.13. [3] Let V be an n-dimensional vector space over a finite field of order q = pr,

where p is prime and r is a positive integer. Then Γc(V) is a graph of order G(n, q)− 2, where

G(n, q) is the Galois number.

Lemma 2.14. Let V be a two dimensional vector space over a finite field of order q. Then the

order and size of Γc(V) are (q + 1) and
q2 + 3q + 2

2
respectively.
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Proof. Let dim(V) = 2 and the underlying field has q elements. Then the number of 1-

dimensional subspaces is

[

2

1

]

q

=

(

q2 − 1

q − 1

)

= (q + 1) and so the number of vertices in

Γc(V) is q + 1. By Lemma 2.2 (4), the graph Γc(V) is complete. Hence the number of edges is
(

q + 1

2

)

=
q2 + 3q + 2

2
.

Theorem 2.15. Let V be a three dimensional vector space over a finite field of order q. Then the

order and size of Γc(V) are 2(q2 + q + 1) and
3q4 + 6q3 + 10q2 + 7q + 4

2
respectively.

Proof. Note that the number of 1-dimensional and 2-dimensional subspaces are

[

3

1

]

q

and

[

3

2

]

q

respectively. Hence the number of vertices in Γc(V) is

[

3

1

]

q

+

[

3

1

]

q

= 2

[

3

1

]

q

= 2(q2 + q + 1).

Further, the number of edges of Γc(V) is






[

2

1

]

q

2






+





[

3

1

]

q

×

[

3

2

]

q



 =
(q2 + q + 1)(q2 + q + 2)

2
+ (q2 + q + 1)2

=
3q4 + 6q3 + 10q2 + 7q + 4

2
.

Theorem 2.16. Let V be a four dimensional vector space over a finite field of order q. Then the

order and size of Γc(V) are (q4 + 3q3 + 4q2 + 3q + 3) and

4q7 + 11q6 + 22q5 + 29q4 + 33q3 + 26q2 + 15q + 8

2
respectively.

Proof. Note that the number of 1-dimensional, 2-dimensional and 3-dimensional subspaces are
[

4

1

]

q

,

[

4

2

]

q

and

[

4

3

]

q

respectively. Hence the number of vertices of Γc(V) is

[

4

1

]

q

+

[

4

2

]

q

+

[

4

3

]

q

= 2

[

4

1

]

q

+

[

4

2

]

q

= q4 + 3q3 + 4q2 + 3q + 3.

Also the number of edges in Γc(V) is






[

4

1

]

q

2






+





[

4

2

]

q

×







[

4

1

]

q

+

[

4

3

]

q









+





[

4

1

]

q

×

[

4

3

]

q





=







[

4

1

]

q

2






+





[

4

2

]

q

× 2







[

4

1

]

q









+





[

4

1

]

q





2

=
4q7 + 11q6 + 22q5 + 29q4 + 33q3 + 26q2 + 15q + 8

2
.

3 Hamiltonian Characterization

In this section, we give some sufficient conditions for the existence of a hamiltonian cycle in

Γc(V).

Lemma 3.1. Let Γc(V) be the coprime graph of a finite dimensional vector space V. If dim(V) =
6 and |F| = 2, then Γc(V) is hamiltonian.
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Proof. Let dim(V) = 6 and |F| = 2. By Lemma 2.7, the number of 1-dimensional as well

as 5-dimensional subspaces of V is 63, the number of 2-dimensional as well as 4-dimensional

subspaces of V is 651 and the number of 3-dimensional subspaces of V is 1395. Let Si =
{ui1, ui2, . . . , uini

} be the set of all i-dimensional subspaces of V for 1 ≤ i ≤ 5 where ni is the

number of i-dimensional subspaces of V. Now, let us obtain a hamiltonian cycle of Γc(V) as

follows:

1. Construct the path P1 using the vertices of S3 and S2 as P : u31 − u21 − u32 − u22 − · · · −
u3 651 − u2 651 − u3 652.

2. Continue the path P1 with vertices from S4 and let newly formed path be P2 : u3 652 −
u41 − u3 653 − u42 − · · · − u3 1302 − u42 − u3 1303.

3. Continue the path P2 with vertices from S5 and let newly formed path be P3 : u3 1303 −
u51 − u3 1304 − u52 − · · · − u3 1365 − u5 63 − u3 1366.

4. Continue the path P3 with vertices from S1 and let newly formed path be P4 : u3 1366 −
u11 − u3 1367 − u12 − · · · − u3 1395 − u1 30.

5. Continue the path P4 with vertices of S1 and let newly formed path be P5 : u1 30 − u1 31 −
u1 32 − · · · − u1 63 − u31.

The entire construction of the path P5 is exhibited in Figure 3.1. Note that P5 is a hamiltonian

cycle in Γc(V) and so Γc(V) is hamiltonian.
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Figure 3.1: Hamiltonian cycle in Γc(V) where dim(V) = 6 and |F| = 2

We need the following notation to prove Lemma 3.2.

Notation: If P is a u− v path then we denote P−1 is the reverse of P which is a v − u path.

Lemma 3.2. Let Γc(V) be the coprime graph of a finite dimensional vector space V. If dim(V)
is odd, then Γc(V) is hamiltonian.

Proof. Let dim(V) = 2m+ 1 for some positive integer n ≥ 1. Let Si = {ui1
, ui2

, ui3
, . . . , uimi

}
be the set of all i-dimensional subspaces of V for 1 ≤ i ≤ 2m and mi = |Si|. Also we observe

that for 1 ≤ k ≤ n, |Sk| = |S(2n+1)=k|. Now, let us construct a Hamiltonian cycle as given

below:

1. Construct a path P1 between vertices of S1 and S2 as P1 : u = u11 − u21 − u12 − u22 −
· · · − u2 m1−1 − u1 m1

− u2 m1
.

2. Continue the path P1 with vertices from S3 and let newly formed path be namely P2 :

u2 m1
− u3 1 − u2 m1+1 − u3 2 − · · · − u3 j1−1 − u2 m2

− u3 j1
where j1 = m2 −m1.

3. Continue the path P2 with vertices from S4 and let newly formed path be namely P3 :

u3 j1
− u4 1 − u3 j1+1 − u4 2 − · · · − u4 j2−1 − u3 m3

− u4 j2
where j2 = m3 − j1.

Continue this process until all the vertices of Sn−1 are covered and this last path is denoted

by Pn−1.
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4. Similar to the construction of Pn−1, construct a path Q1 between vertices of S2n and S2n−1

namely Q1 : v = u2n 1 −u(2n−1) 1 −u2n 2 −u(2n−1) 2 −· · ·−u(2n−1) m1−1 −u2n m1
−u(2n−1) m1

,

since m1 = m2n.

5. Continue the path Q1 with vertices from S2n−2 and let newly formed path be namely

Q2 : u(2n−1) m1
−u(2n−2) 1−u(2n−1) m1+1−u(2n−2) 2−· · ·−u(2n−2) j1−1−u(2n−1) m2

−u(2n−2) j1

where j1 = m2 −m1, since m2 = m(2n−1).

6. Continue the path Q2 with vertices from S2n−3 and let newly formed path be Q3 :

u(2n−2) j1
− u(2n−3) 1 − u(2n−2) j1+1 − u(2n−3) 2 − · · · − u(2n−3) j2−1 − u(2n−2) m3

− u(2n−3) j2

where j2 = m3 − j1, since m3 = m(2n−2).

Continue this process until all the elements of the set Sn+2 are coveredand this last path is

denoted by Qn−1.

The number of uncovered vertices in Sn and Sn+1 remains the same.

7. Now construct a path R between vertices of Sn and Sn+1 namely R : un k − u(n+1) k+1 −
un k+1 − u(n+1) k+2 − · · · − un (mn−1) − u(n+1) mn

− un mn
− u(n+1) k where k = jn−2.

The entire construction of the paths Pn−1, Qn−1 and R is indicated in Figure 3.2. Note that

Pn−1 − R−Q−1
n−1 followed by the edge vu is a hamiltonian cycle.

. . .
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Figure 3.2: Hamiltonian cycle

Now, we obtain a necessary and sufficient condition Γc(V) to be hamiltonian in terms of

the dimension of V. For this purpose, we make use of the following sufficient condition for

hamiltonian graphs.

Theorem 3.3. [2, Theorem ] Let G be a connected graph. If G is a Hamiltonian graph, then for

every nonempty proper subset S of vertices of G, the number of connected components of G \ S
is less than or equal to the cardinality of S.

Theorem 3.4. Let Γc(V) be the coprime graph of a finite dimensional vector space V. Then

Γc(V) is hamiltonian if and only if anyone of the following conditions hold

(1) dim(V) is odd;

(2) dim(V) = 2;

(3) dim(V) = 6 and |F| = 2.

Proof. Proof for sufficient part follows from Lemma 2.2 (4), Lemmas 3.1 and 3.2.

Conversely, assume that Γc(V) is Hamiltonian. Suppose the condition (1) is not true. Then

the dimension of V is even. If dim(V) = 2, then nothing to prove. Assume that dim(V) = 4.
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Let S be the set of all 1-dimensional and 3-dimensional subspaces of V and T be the set of all

2-dimensional subspaces of V. Clearly the number of elements in T is greater than the number of

elements of S. i.e., |T | > |S|. Now the removal of elements of S from Γc(V) results in a totally

disconnected graph. Thus the number of connected components in Γc(V) \ S is |T | > |S|. By

Theorem 3.3, Γc(V) is not hamiltonian which is a contradiction. Hence dim(V) > 4.

Suppose dim(V) > 6 and dim(V) = 2m. Now let T be the set of all m-dimensional subspaces

of V and S = V Γc(V) \ T. Clearly the number of elements in T is greater than the number of

elements of S. Now the removal of elements in S from Γc(V) results in a totally disconnected.

Also the number of connected components in Γc(V) \ S is |T | > |S|. By Theorem 3.3, Γc(V) is

not hamiltonian which is a contradiction. Hence dim(V) = 6.

Suppose dim(V) = 6 and |F| ≥ 3. Let T be the set of all 3-dimensional subspaces of V and

S = V Γc(V) \ T. Here again we get a contradiction as observed in the previous case. Hence

dim(V) = 6 and |F| = 2.
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