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Abstract A non-empty subset X of a trellis T is called strongly-convex if X is an intersec-
tion of an ideal and a dual ideal of T . We study the collection SC(T ) of all strongly-convex
subtrellises of T with respect to two different orders, viz. bi-domination and inclusion. Further-
more, using the notion of strong-convexity, the existence of the smallest congruence relation on
a trellis whose homomorphic image is a lattice is proved.

1 Introduction

Let L represent a lattice, and CS(L) denote the collection of all non-empty convex sublattices
of L. In 1996, S. Lavanya and S. P. Bhatta [4] examined CS(L) under a partial order ≤ (referred
to as bi-domination) distinct from the inclusion relation. This order can be described as follows:
for any A,B ∈ CS(L), A ≤ B if and only if (A] ⊆ (B] and [A) ⊇ [B), where (A] and [A)
respectively denote the ideal and the filter (dual ideal) generated by A on L. They demonstrated
that (CS(L),≤) forms a lattice wherein both L and CS(L) belong to the same equational class.
Later, in 2011, Bhatta and Ramananda [5] established a congruence relation Θ on CS(L) corre-
sponding to every congruence relation Θ on L, such that CS(L/Θ) ∼= CS(L)/Θ. In an attempt
to generalize these ideas to trellises, K. Bhargava et al. [1] introduced the concept of strongly-
convex subtrellises in trellises. They have successfully generalized many results of [4, 5] to
trellises.

The concepts of a pseudo-ordered set and a trellis (also known as a weakly associative lattice)
were first introduced independently by E. Fried [2] and H. L. Skala [6]. A pseudo-order defined
on a non-empty set P constitutes a reflexive and anti-symmetric relation ⊴ on it, making (P,⊴)
a pseudo-ordered set. If a pseudo-order is transitive, it qualifies as a partial order. A trellis T is
essentially a pseudo-ordered set where each pair of elements possesses both a least upper bound
and a greatest lower bound. The concepts of subtrellises, ideals, dual ideals (filters), order-
preserving (isotone) maps, homomorphisms, congruence relations, etc., are defined for trellises
similar to those in lattices.

Given a non-empty subset X of a trellis T , and for a, b ∈ T , the notation a ⊑X b signifies the
existence of x1, . . . , xn ∈ X such that a ⊴ x1 ⊴ · · · ⊴ xn ⊴ b. When X = T , the symbol ⊑ is
used instead of ⊑T . The relation ⊑ represents the transitive closure of the pseudo-order ⊴ on T .

A fundamental property of lattices [3] is as follows: “The intersection of an ideal and a dual
ideal of a lattice L forms a convex sublattice, provided it is non-empty. Conversely, if C is a
convex sublattice of L, then C can be uniquely expressed as the intersection of an ideal and a
dual ideal.” Motivated by this, K. Bhargava et al. define the following:

Definition 1.1. [1] A non-empty subset X of a trellis T is said to be strongly-convex if X = I∩D
for some ideal I of T and for some dual ideal D of T .

It has been demonstrated in [1], that the collection SC(T ) comprising of all strongly-convex
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subtrellises of T forms a lattice under the bi-domination relation (cf. Theorem 2.2). Moreover,
they have successfully extended numerous findings from [4, 5] to the lattice (SC(T ),≤).

In Section 3.1 of this article, we initially provide a representation of the lattice (SC(T ),≤ ) by
means of a characterization theorem (Theorem 3.1). Following that, we identify all the distribu-
tive, standard, and neutral elements within (SC(T ),≤). In Section 3.2, we study the properties
of SC(T ) with respect to the inclusion order. We prove that the poset (SC(T )∪{∅},⊆) forms an
algebraic lattice. In Section 4, as an application of the newly defined notion of strong-convexity,
it is proved the existence of the smallest congruence relation on a trellis whose homomorphic
image is a lattice. Additionally, in Section 2, we outline some fundamental findings from [1] for
quick reference.

For terminologies and notations not mentioned here, the reader may refer to [3, 6, 7].

2 Preliminaries

Let T denote a trellis. The ideal (dual ideal) generated by a non-empty subset X of T is defined
as the smallest ideal (dual ideal) containing X , denoted respectively by (X] and [X). When
X = {x}, the symbols (x] and [x) are used instead of

(
{x}

]
and

[
{x}

)
. Note that we do not

consider the empty set ∅ as an ideal (dual ideal). The ideal lattice of T with respect to the
inclusion order is denoted by I(T ), and D(T ) denotes the lattice of dual ideals of T with respect
to the reverse inclusion.

Theorem 2.1. [1] Let T be a trellis, and X ∈ SC(T ). Then X = (X] ∩ [X).

Theorem 2.2. [1] Let T be a trellis. For X,Y ∈ SC(T ), define X ≤ Y if and only if (X] ⊆ (Y ]
and [X) ⊇ [Y ). Then ≤ is a partial order on SC(T ), and the poset (SC(T ),≤) forms a lattice
with respect to the following meet and join operations:

X ∧ Y =
(
(X] ∧ (Y ]

)
∩
(
[X) ∧ [Y )

)
(2.1)

and X ∨ Y =
(
(X] ∨ (Y ]

)
∩
(
[X) ∨ [Y )

)
, (2.2)

where (X] ∧ (Y ] = (X] ∩ (Y ], (X] ∨ (Y ] =
(
(X] ∪ (Y ]

]
are the meet and join operations in

I(T ), and [X)∧ [Y ) =
[
[X)∪ [Y )

)
, [X)∨ [Y ) = [X)∩ [Y ) are the meet and join operations in

D(T ).

Definition 2.3. [1] Let X be a non-empty subset of a trellis T .

(i) The initial segment of X with respect to ⊑ is defined by

↓⊑(X) = { y ∈ T : y ⊑ x for some x ∈ X }.

If X = {x}, then the symbol ↓⊑(x) is used in place of ↓⊑
(
{x}

)
.

(ii) The final segment of X with respect to ⊑ is defined by

↑⊑(X) = { y ∈ T : x ⊑ y for some x ∈ X }.

If X = {x}, then the symbol ↑⊑(x) is used in place of ↑⊑
(
{x}

)
.

Note that X ⊆ ↓⊑(X) ⊆ (X] and X ⊆ ↑⊑(X) ⊆ [X) for any non-empty subset X of a
trellis.

Definition 2.4. [1] A subset X of a trellis T is said to be p-convex if whenever x, y ∈ X and
a ∈ T with x ⊑ a ⊑ y, then a ∈ X .

A characterization of strongly-convex subtrellises is given in the following theorem.

Theorem 2.5. [1] A non-empty subset X of a trellis T lies in SC(T ) if and only if (X] = ↓⊑(X)
(that is ↓⊑(X) is an ideal of T ), [X) = ↑⊑(X) (that is ↑⊑(X) is a dual ideal of T ), and X is
p-convex.
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Remark 2.6. [1] The partial order ≤ in SC(T ) has the following alternate description, using
Theorem 2.5: for X,Y ∈ SC(T ), X ≤ Y if and only if “for each x ∈ X , there is a y ∈ Y such
that x ⊑ y” and “for each y ∈ Y , there is a x ∈ X such that x ⊑ y”.

Definition 2.7. [1] Let T be a trellis, and A be a non-empty subset of T . The strongly-convex
subtrellis generated by A is defined by ⟨A⟩ = (A] ∩ [A).

If A = {a}, then the symbol ⟨a⟩ is used in place of
〈
{a}

〉
.

Remark 2.8. [1]

(i) Note that X = (A] ∩ [A) is the smallest strongly-convex subtrellis of T containing A.

(ii) Clearly,
(
⟨A⟩

]
= (A] and

[
⟨A⟩

)
= [A) for any non-empty subset A of a trellis T . Also, A

is strongly-convex if and only if ⟨A⟩ = A. Furthermore, for any two non-empty subsets A
and B of T , if A ⊆ B, then ⟨A⟩ ⊆ ⟨B⟩.

0

a b

c

d
e f

1

{0}

{0, a} {0, b}

{0, a, b, c} {b}{0, b, e} {0, b, f}

{b, f}{b, e}T{b, c}

{c}
{b, c, d, e, f, 1} {e} {f}

{c, d, 1} {e, 1}
{f, 1}

{1}

{d, 1}In the trellis T below, the
dashed line indicates the
removal of transitivity
between its end points.

Figure 1. A trellis T and the corresponding lattice (SC(T ),≤).

3 Main results

3.1 Some results on SC(T ) with respect to the bi-domination order

Let T be a trellis and let P∗(T ) denote the collection of all non-empty subsets of T . For A,B ∈
P∗(T ), define A ≤ B if and only if (A] ⊆ (B] and [A) ⊇ [B). Clearly ≤ is a preorder on
P∗(T ), i.e. ≤ is reflexive and transitive. Now define a new relation θ on P∗(T ) as follows: for
A,B ∈ P∗(T ), define A ≡ B (θ) if and only if A ≤ B and B ≤ A. Clearly, θ is an equivalence
relation on P∗(T ). Note that A ≡ ⟨A⟩ (θ), and A ≡ B (θ) if and only if ⟨A⟩ = ⟨B⟩. Hence the
relation ≤ defined on P∗(T )/θ by, for [A], [B] ∈ P∗(T )/θ, [A] ≤ [B] if and only if ⟨A⟩ ≤ ⟨B⟩,
is a partial order on P∗(T )/θ. It follows that the posets (P∗(T )/θ,≤) and (SC(T ),≤) are order
isomorphic. In fact [A] 7→ ⟨A⟩ is an order isomorphism between the two posets. But since the
poset (SC(T ),≤) is also a lattice, the poset (P∗(T )/θ,≤) must also be a lattice, and hence we
have the following characterization theorem:

Theorem 3.1. For any trellis T ,

(SC(T ),≤) ∼= (P∗(T )/θ,≤).
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Next we determine the distributive, standard, and neutral elements of the lattice (SC(T ),≤).
An element a of a lattice L is called [3]:

(i) distributive if a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y) for all x, y ∈ L.

(ii) standard if x ∧ (a ∨ y) = (x ∧ a) ∨ (x ∧ y) for all x, y ∈ L.

(iii) neutral if (a ∧ x) ∨ (x ∧ y) ∨ (y ∧ a) = (a ∨ x) ∧ (x ∨ y) ∧ (y ∨ a) for all x, y ∈ L.

First, note that for any X,Y ∈ SC(T ), using the Theorem 2.2, we have

(X ∧ Y ] = (X] ∧ (Y ] = (X] ∩ (Y ] (3.1)

and [X ∧ Y ) = [X) ∧ [Y ) =
[
[X) ∪ [Y )

)
. (3.2)

Also,

(X ∨ Y ] = (X] ∨ (Y ] =
(
(X] ∪ (Y ]

]
(3.3)

and [X ∨ Y ) = [X) ∨ [Y ) = [X) ∩ [Y ). (3.4)

Hence if p is any n-ary lattice polynomial, and X1, . . . , Xn ∈ SC(T ), then(
p(X1, . . . , Xn)

]
= p

(
(X1], . . . , (Xn]

)
(3.5)

and
[
p(X1, . . . , Xn)

)
= p

(
[X1), . . . , [Xn)

)
. (3.6)

Consequently, the result below follows immediately:

Lemma 3.2. Let T be a trellis and let A,B ∈ SC(T ). Suppose p, q are any two (n + 1)-ary
lattice polynomials. Then

p(A,X1, . . . , Xn) = q(B,X1, . . . , Xn) ∀X1, . . . , Xn ∈ SC(T ) (3.7)

if and only if

p
(
(A], I1, . . . , In

)
= q

(
(B], I1, . . . , In

)
∀ I1, . . . , In ∈ I(T ) (3.8)

and

p
(
[A), D1, . . . , Dn

)
= q

(
[B), D1, . . . , Dn

)
∀D1, . . . , Dn ∈ D(T ). (3.9)

Taking A = B in the above lemma, we have the following theorem:

Theorem 3.3. Let T be a trellis and A ∈ SC(T ). Suppose p, q are any two n-ary lattice polyno-
mials. Then A satisfies the polynomial identity p = q in the lattice (SC(T ),≤) if and only if (A]
satisfies the polynomial identity p = q in I(T ), and [A) satisfies the polynomial identity p = q in
D(T ).

As a special case, we have the following:

Corollary 3.4. Let T be a trellis and A ∈ SC(T ). Then

(i) A is a distributive element of (SC(T ),≤) if and only if (A] is a distributive element of
(I(T ),⊆) and [A) is a distributive element of (D(T ),⊇).

(ii) A is a standard element of (SC(T ),≤) if and only if (A] is a standard element of (I(T ),⊆)
and [A) is a standard element of (D(T ),⊇).

(iii) A is a neutral element of (SC(T ),≤) if and only if (A] is a neutral element of (I(T ),⊆)
and [A) is a neutral element of (D(T ),⊇).
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3.2 A study of SC(T ) with respect to the inclusion order

Theorem 3.5. For any trellis T , the poset (SC(T ) ∪ {∅},⊆) forms a complete lattice, where for
X,Y ∈ SC(T ),

X ∧ Y = X ∩ Y, (3.10)

X ∨ Y = ⟨X ∪ Y ⟩. (3.11)

Proof. Follows by noting that the intersection of any collection of strongly-convex subtrellises
of T is either empty or strongly-convex.

Lemma 3.6. Let T be a trellis. If {Xα} is a chain in (SC(T ) ∪ {∅},⊆), then X =
⋃

α Xα ∈
SC(T ).

Proof. To prove that X is p-convex, let x, y ∈ X and a ∈ T be such that x ⊑ a ⊑ y. Since
{Xα} is a chain with respect to ⊆, it follows that x, y ∈ Xα for some α. Then a ∈ Xα, as Xα is
p-convex. Thus a ∈ X .

To prove that ↓⊑(X) is an ideal, let a, b ∈ ↓⊑(X). Then a ⊑ x and b ⊑ y for some x, y ∈ X .
Again, since {Xα} is a chain with respect to ⊆, it follows that x, y ∈ Xα for some α. Then
a, b ∈ (Xα], and hence a∨ b ∈ (Xα] = ↓⊑(Xα), as Xα is strongly convex. Thus a∨ b ∈ ↓⊑(X).
Hence ↓⊑(X) is an ideal of T .

Similarly ↑⊑(X) is a dual ideal of T . Thus X ∈ SC(T ) by Theorem 2.5.

Theorem 3.7. Let T be a trellis, and let A ⊆ T , A ̸= ∅. Then

⟨A⟩ =
⋃{

⟨F ⟩ : F ⊆ A, F finite
}
. (3.12)

Proof. The proof is by transfinite induction on |A|. If A is finite, then the result holds trivially.
Assume that A is infinite and the result holds for all sets of cardinality smaller than |A|. We
well-order the set A in the order type of its cardinal. Then for each a ∈ A, the initial segment
S(a) = {x ∈ A : x < a } determined by a has cardinality strictly less than |A|. Furthermore, as
A is infinite, its cardinal is a limit ordinal, and hence it follows that

A =
⋃
a∈A

S(a). (3.13)

Let C = { ⟨S(a)⟩ : a ∈ A }. Since A is a chain with respect to ≤, it follows that C is a chain with
respect to ⊆. For, if a, b ∈ A with a ≤ b, then S(a) ⊆ S(b). Now the last part of Remark 2.8(ii)
implies that ⟨S(a)⟩ ⊆ ⟨S(b)⟩. Let

C =
⋃

C =
⋃
a∈A

〈
S(a)

〉
.

By Lemma 3.6, it follows that C is strongly-convex. For each a ∈ A, since S(a) ⊆ ⟨S(a)⟩ ⊆ C,
it follows from (3.13) that A ⊆ C. Hence ⟨A⟩ ⊆ ⟨C⟩ = C as C ∈ SC(T ). Also for any a ∈ A,
the fact that S(a) ⊆ A implies that ⟨S(a)⟩ ⊆ ⟨A⟩, and hence C ⊆ ⟨A⟩. Thus we get

⟨A⟩ = C =
⋃
a∈A

〈
S(a)

〉
.

Note that, by induction hypothesis, for each a ∈ A, we have

⟨S(a)⟩ =
⋃{

⟨F ⟩ : F ⊆ S(a), F finite
}
,

as |S(a)| < |A|. Thus

⟨A⟩ =
⋃
a∈A

〈
S(a)

〉
=

⋃{
⟨F ⟩ : F ⊆ A, F finite

}
,

as any finite subset F of A is contained in S(a) for some a ∈ A.
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An element a of a complete lattice L is compact if whenever a ≤ ∨S for a subset S of L,
then a ≤ ∨F for a finite subset F of S. A complete lattice L is said to be algebraic (compactly
generated) if every element of L is a join of some compact elements of L.

Lemma 3.8. Let T be a trellis and F = {x1, . . . , xn} be a non-empty finite subset of T . Then

⟨F ⟩ =
n∨

i=1

⟨xi⟩. (3.14)

Proof. As xi ∈ ⟨xi⟩ for each i, clearly

F ⊆
n⋃

i=1

⟨xi⟩ and hence ⟨F ⟩ ⊆

〈
n⋃

i=1

⟨xi⟩

〉
=

n∨
i=1

⟨xi⟩.

For the reverse inclusion, observe that xi ∈ F implies that ⟨xi⟩ ⊆ ⟨F ⟩ for each i. Thus

n⋃
i=1

⟨xi⟩ ⊆ ⟨F ⟩, and hence
n∨

i=1

⟨xi⟩ =

〈
n⋃

i=1

⟨xi⟩

〉
⊆ ⟨F ⟩.

This completes the proof.

Corollary 3.9. For any trellis T , the complete lattice (SC(T ) ∪ {∅},⊆) is algebraic. The set of
all compact elements of this lattice is{

⟨F ⟩ : F finite subset of T
}
. (3.15)

Proof. Let F = {f1, . . . , fn} be a finite subset of T , and suppose

⟨F ⟩ ⊆
∨
α∈Λ

Xα =

〈⋃
α

Xα

〉

for some sub-collection {Xα : α ∈ Λ } in SC(T ). By Theorem 3.7, we have〈⋃
α

Xα

〉
=

⋃{
⟨S⟩ : S ⊆

⋃
α

Xα, S finite
}
.

Since fi ∈ F ⊆ ⟨F ⟩, for each i, there exists a finite subset Si of ∪αXα such that fi ∈ ⟨Si⟩. Since
Si is a finite subset of ∪αXα, for each i, there is a finite subset Λi of Λ such that

Si ⊆
⋃

α∈Λi

Xα.

Put ΛF = ∪n
i=1Λi. Then ΛF is a finite subset of Λ and

F = { f1, . . . , fn } ⊆
n⋃

i=1

⟨Si⟩

⊆

〈
n⋃

i=1

Si

〉

⊆

〈
n⋃

i=1

⋃
α∈Λi

Xα

〉
=

〈 ⋃
α∈ΛF

Xα

〉
.

Hence we conclude that

⟨F ⟩ ⊆

〈 ⋃
α∈ΛF

Xα

〉
=

∨
α∈ΛF

Xα.

Thus ⟨F ⟩ is a compact element in (SC(T ) ∪ {∅},⊆).
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Next let X ∈ SC(T ) be any compact element. We prove that X = ⟨F ⟩ for some finite subset
F of T . Clearly

X ⊆
⋃
x∈X

⟨x⟩

⊆

〈 ⋃
x∈X

⟨x⟩

〉
=

∨
x∈X

⟨x⟩.

As X is compact, there exist finitely many elements x1, . . . , xn ∈ X such that

X ⊆
n∨

i=1

⟨xi⟩.

Put F = {x1, . . . , xn}. Then

⟨F ⟩ =
n∨

i=1

⟨xi⟩, by Lemma 3.8.

Also since F ⊆ X , we have ⟨F ⟩ ⊆ ⟨X⟩ = X . Thus we conclude that X = ⟨F ⟩, where F is a
finite subset of T .

Thus the set of all compact elements of the complete lattice (SC(T ) ∪ {∅},⊆) is{
⟨F ⟩ : F finite subset of T

}
.

We now show that this lattice is algebraic by proving that every element of SC(T ) is a join
of some compact elements in SC(T ). Let X ∈ SC(T ) be arbitrary. Then by Theorem 3.7, we
have

X =
⋃{

⟨F ⟩ : F ⊆ X, F finite
}
.

But then ∨{
⟨F ⟩ : F ⊆ X, F finite

}
=

〈⋃{
⟨F ⟩ : F ⊆ X, F finite

}〉
= ⟨X⟩
= X, as X is strongly convex.

Thus X is a join of some compact elements in SC(T ). Hence (SC(T ) ∪ {∅},⊆) is algebraic.

For the trellis T of Figure 1, the lattice (SC(T ) ∪ {∅},⊆) is shown in Figure 2.

4 An application

Lemma 4.1. Let Θ be a congruence relation on a trellis T and a, b ∈ T . Suppose that [a]Θ, [b]Θ ∈
SC(T ). Then [a] ≤ [b] in SC(T ) if and only if [a] ⊴ [b] in the quotient trellis T/Θ.

Proof. Assume that [a] ≤ [b] in SC(T ). To prove that [a] ⊴ [b] in T/Θ, it suffices to show that
a∨ b ≡ b (Θ). As [a] ≤ [b] in SC(T ), there is a x ∈ [b] such that a ⊑ x. Since ↓⊑([b]) is an ideal
of T , we have a ∨ b ∈↓⊑([b]). Thus a ∨ b ⊑ y for some y ∈ [b]. As b, y ∈ [b] and b ⊴ a ∨ b ⊑ y,
we have a ∨ b ∈ [b], by p-convexity of [b].

Conversely, assume that [a] ⊴ [b] in T/Θ. To show that [a] ≤ [b] in SC(T ), consider an
element x ∈ [a]. As [a] = [a ∧ b], x ≡ a ∧ b (Θ). Hence x ∨ b ≡ b (Θ). Take y = x ∨ b. Then
y ∈ [b] and x ⊴ y. Similarly for each y ∈ [b], there is a x ∈ [a] such that x ⊴ y. Thus [a] ≤ [b]
holds in SC(T ).

Theorem 4.2. Let Θ be a congruence relation on a trellis T . Then [a]Θ ∈ SC(T ) for all a ∈ T
if and only if the quotient trellis T/Θ is a lattice.
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∅

{0} {b} {c} {e} {f} {1}

{0, a}
{0, b} {b, c} {b, e} {b, f} {e, 1} {f, 1} {d, 1}

{0, a, b, c}
{0, b, e} {0, b, f}

{c, d, 1}

{b, c, d, e, f, 1}

T

Figure 2. The lattice (SC(T ) ∪ {∅},⊆) corresponding to the trellis T given in Figure 1.

Proof. Assume that [a] ∈ SC(T ) for all a ∈ T . Let [a] ⊴ [b] ⊴ [c] in T/Θ. Then by Lemma 4.1,
[a] ≤ [b] ≤ [c] holds in SC(T ). Therefore [a] ≤ [c], as SC(T ) is a poset. Hence [a] ⊴ [c] in T/Θ

by Lemma 4.1 again.
Conversely, assume that the quotient trellis T/Θ is a lattice. Let a ∈ T . To prove that [a]

is p-convex, consider any x, y, z ∈ T with x ⊑ y ⊑ z, where x, z ∈ [a]. Then [x] ⊑ [y] ⊑ [z]
holds in T/Θ, where [x] = [z] = [a]. But then, as the pseudo-order in T/Θ is a partial order,
we have [y] = [a]. Hence y ∈ [a], and thus [a] is p-convex. Next we prove that ↓⊑([a]) is an
ideal of T . Let x ⊑ p and y ⊑ q for some p, q ∈ T with p, q ∈ [a]. Then [x] ⊑ [p] = [a] and
[y] ⊑ [q] = [a] hold in T/Θ. Thus, as T/Θ is a lattice, we have [x] ∨ [y] ⊴ [a], and hence by
Lemma 4.1, [x ∨ y] ≤ [a] holds in SC(T ). Thus x ∨ y ⊑ z for some z ∈ [a]. This proves that
↓⊑([a]) is an ideal of T . By the dual argument, ↑⊑([a]) is a dual ideal of T .

Theorem 4.3. Let T be a trellis, and let A be the collection of all congruence relations Θ on
T such that T/Θ is a lattice. Then A forms a principal dual ideal in Con(T ), the congruence
lattice of T .

Proof. We have,

A = {Θ ∈ Con(T ) : T/Θ is a lattice }
= {Θ ∈ Con(T ) : [a]Θ ∈ SC(T ) for all a ∈ T }, using Theorem 4.2.

The universal relation ι—that is, the relation in which every pair of elements in T is related—lies
in A. Thus, A ≠ ∅. Let

π =
∧

Θ∈A

Θ.

Clearly π is a congruence relation on T . Further, for any a ∈ T , we have

[a]π =
⋂{

[a]Θ : Θ ∈ A
}
,

which is a non-empty intersection of a collection of strongly-convex subtrellises of T . Thus
[a]π ∈ SC(T ) for all a ∈ T . Thus T/π is a lattice, by Theorem 4.2, and hence π ∈ A. In
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fact, A = [π), the dual ideal of Con(T ) generated by π. This follows from the fact that A is
closed under intersection, and if Θ is a congruence relation on T with Θ ≥ π, then T/Θ is a
homomorphic image of T/π.

The congruence lattice of the trellis T , shown in Figure 1, is a 3-element chain, with the only
non-trivial element being the congruence relation Θ(0, a)—the smallest congruence on T under
which 0 is congruent to a. The set all of congruence classes of Θ(0, a) is

{
{0, a}, {b, c, d, e, f, 1}

}
.

The congruence relation π referred to in the above theorem for T is simply Θ(0, a).
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