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Abstract In this paper we derive an integral formula for hypersurfaces embedded in weighted
manifolds involving the weighted higher order mean curvatures σ∞

k of the hypersurface and
the weighted Newton transformations T∞

k ( see [11] ). This formula generalizes the classical
r−Minkowski integral formula on Riemannian manifolds.

1 Introduction

Integral formulas are useful tools for solving many problems in Riemannian geometry, such
as Alexandrov’s theorem or the characterization of certain hypersurfaces (see [4, 3, 20]) and
references therein.

Let x : Mn −→ M
n+1

be a closed oriented hypersurface immersed into a space form M
n+1

with unit normal vector field N . Then we have for 1 ≤ r ≤ n :

∫

Mn

Hr−1dv +

∫

Mn

〈Y,N〉.Hrdv = 0, (1.1)

where Y is a conformal vector field, and Hr is the higher order mean curvature of the hypersur-
face.

Higher order Minkowski formulae were first obtained by Hsiung [15] in Euclidean space,
and by Bivens [9] in the Euclidean sphere and hyperbolic space.

Many generalizations of the previous results have been investigated in the case where the
ambient space is not a space form and in other contexts, see for instance [3, 4, 9, 16, 17, 20].

In a series of recent papers, the first author together with M. Benalili [1, 2] obtained a series
of integral formulas on weighted manifolds . The idea is to compute the divergence of certain
vector fields and applying the divergence theorem.

In this paper, using the weighed symmetric functions σ∞

k and the weighted Newton transfor-
mations T∞

k introduced by J. S. Case [11], we derive some new integral formulae on manifolds
with density. We give also some applications and special cases.

2 Preliminaries

In this section, we will fix the notations and recall some definitions and basic results of weighted
manifolds and the weighted Newton transformations. For more details, see [2, 11, 12, 13].

A weighted manifold (M, 〈, 〉 , dvf ) is a Riemannian manifold M endowed with a weighted
volume form dvf = e−fdv, where f is a real-valued smooth function on M, and dv is the
Riemannian volume form associated with the metric 〈, 〉 .

Let M
n+1
f be an (n + 1)−dimensional oriented weighted Riemannian manifold, and ψ :

Mn −→ M
n+1
f be an isometrically immersed hypersurface with unit normal vector field N in

the normal bundle NMn. It’s Weingarten operator A is defined by

AX = − (▽XN)
⊺
,
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where ▽ is the Levi-Civita connection on M
n+1
f , and X∈ κ(Mn).

By the Codazzi equation, we can see that the normal component of the curvature tensor R of

M
n+1
f is given in terms of A by

〈
R(U, V )W,N

〉
=

〈(
∇V A

)
U −

(
∇UA

)
V,W

〉
,

where U, V,W ∈ κ(Mn). In particular if the ambient space has constant sectional curvature,
then we have (

∇VA
)
U =

(
∇UA

)
V.

It is well known that A is a linear self adjoint operator and at each point p ∈ Mn, its eigen-
values µ1, ..., µn are the principal curvatures of Mn.

The weighted elementary symmetric polynomial σ∞

k : R×R
n −→ R are defined recursively

by (see [11] )




σ∞

0 (u, µ) = 1,

kσ∞

k (u, µ) = uσ∞

k−1(u, µ) +
k−1∑
j=0

n∑
i=1

(−1)j σ∞

k−1−j(u, µ)µ
j+1
i for 1 ≤ k ≤ n,

σ∞

k (u, µ) = 0 for k > n,

(2.1)

where u ∈ R and µ = (µ1, ..., µn) ∈ R
n. The weighted elementary symmetric functions

σ∞

k (u,A) of A are defined by
σ∞

k (u,A) = σ∞

k (u, µ),

where µ1, ..., µn are the eigenvalues of A.
In particular, for u = 0, σ∞

k (0, A) = σk(A) is the classical elementary symmetric functions
defined in [19].

Associate to A, we can define the weighted Newton transformations T∞

k (µ0, A) by
{
T∞

0 (u,A) = I,

T∞

k (u,A) = σ∞

k (u,A)I −AT∞

k−1(u,A) for k ≥ 1.

This is equivalent to

T∞

k (u,A) =
k∑

i=0

(−1)i σ∞

k−i(u,A)A
i. (2.2)

If u = 0, then T∞

k (0, A) = Tk(A) is just the classical Newton transformations introduced
and studied by R. C. Reilly [19].

Since A is self-adjoint operator, then T∞

k are self-adjoint as well and their eigenvectors are
the same as those of A, and we have the following properties, whose proof can be found in [11].

Proposition 2.1. For any reals u1, u2 ∈ R and µ ∈ R
n, we have

σ∞

k (u1 + u2, µ) =
k∑

i=0

ui1
i!
σ∞

k−i(u2, µ).

In particular

σ∞

k (u1, µ) =
k∑

i=0

ui1
i!
σk−i (µ) ,

and
trace(AT∞

k (u, µ)) = (k+ 1)σ∞

k+1(u, µ)− uσ∞

k (u, µ).

The ith eigenvalue of T∞

k (u, µ) is equal to σ∞

k,i(u, µ), where

σ∞

k,i(u, µ) = σ∞

k (u, µ̂i) = σ∞

k (u, µ)− µiσ
∞

k−1,i (u, µ) ,

where µ = (µ1, ..., µn), and µ1, ..., µn are the eigenvalues of A.
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Definition 2.2. Let M be an immersed hypersurface of Mf with shape operator A with relation
to an unit normal vector field N . The weighted k-curvature σ∞

k of the hypersurface M is defined
by,

σ∞

k = σ∞

k (u,A) for u = 〈∇f,N〉.

The weighted Newton transformations will be denoted by,

T∞

k = T∞

k (u,A) for u = 〈∇f,N〉.

And we have

T∞

k =

{
I, for k = 0,

σ∞

k I −AT∞

k−1, for k ≥ 1.

In particular, for k = 1, we get

σ∞

1 = Hf = σ1 +
〈
∇f,N

〉
,

which is the classical definition of the weighted mean curvature of the hypersurface M studied
by Gromov [14].

The divergence of the weighted Newton transformations is define by

div (T∞

k ) = trace
(
∇T∞

k

)
=

n∑

i=1

(
∇eiT

∞

k

)
(ei) ,

where {e1, . . . , en} is a local orthonormal frame on Mn.
Before to start our computations, we need the following results

Proposition 2.3. 1. For 0 ≤ k ≤ n, we have

T∞

k =
k∑

j=0

uj

j!
Tk−j , where u = 〈∇f,N〉. (2.3)

2. The divergence of the weighted Newton transformations is given by

divT∞

0 = 0,

and for 1 ≤ k ≤ n

divT∞

k = T∞

k−1 ◦ ∇u+
k∑

j=1

uj

j!
divTk−j ,

where divTk−j is given by (3.3) in [4].

In particular, if M
n+1

has constant sectional curvature, then we have

divT∞

k =
k−1∑

j=0

(−1)j σ∞

k−1−jA
j ◦ ∇u. (2.4)

Proof. 1. The relation (2.3) can be deduced directly from the definition of T∞

k .

In fact we have for 0 ≤ k ≤ n

T∞

k =
k∑

i=0

(−1)i σ∞

k−iA
i,

=
k∑

i=0

k−j∑

l=0

(−1)j
ul

l!
σ∞

k−j−lA
j ,

=
k∑

l=0

ul

l!
Tk−l.
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Where the first equality combines equation (2.3) with the definition of T∞

k , the second equal-
ity switches the order of the summation, and the third equality uses the definition of the (un-
weighted) Newton transformations.

2. For 0 ≤ k ≤ n, we have

divT∞

k = tr (∇T∞

k ) ,

=
n∑

i=1

∇ei (T
∞

k ) (ei) ,

=
n∑

i=1

∇ei




k∑

j=0

(
uj

j!
Tk−j

)
 (ei) ,

=
n∑

i=1

∇ei




k∑

j=0

(
uj

j!
Tk−j

)
 (ei) ,

=
n∑

i=1

∇ei




k∑

j=0

(
uj

j!
Tk−j

)
 (ei) ,

=
n∑

i=1

k∑

j=0

1
j!
∇ei

(
ujTk−j

)
(ei) ,

= divTk +
n∑

i=1

k∑

j=1

1
j!
∇ei

(
ujTk−j

)
(ei) .

And we have

∇ei

((
ujTk−j

))
(ei) = ∇ei

((
ujTk−j

)
ei
)
− ujTk−j (∇eiei) ,

=
〈
∇uj, ei

〉
Tk−j (ei) + uj∇ei ((Tk−j) ei)− ujTk−j (∇eiei) ,

= juj−1 〈∇u, ei〉Tk−j (ei) + uj [∇ei (Tk−j (ei))− Tk−j (∇eiei)] ,

= juj−1 〈∇u, ei〉Tk−j (ei) + uj [∇ei (Tk−j (ei))− Tk−j (∇eiei)] ,

= juj−1 〈∇u, ei〉Tk−j (ei) + uj∇ei (Tk−j) (ei) .

On the other hand, we have

n∑

i=1

k∑

j=1

1
j!
juj−1 〈∇u, ei〉Tk−j (ei) =

n∑

i=1

〈∇u, ei〉

k∑

j=1

uj−1

(j − 1)!
Tk−j (ei) ,

=
n∑

i=1

〈∇u, ei〉

k−1∑

l=0

ul

l!
Tk−l−1 (ei) ,

=
n∑

i=1

(
T∞

k−1

)
(〈∇u, ei〉 ei) ,

= T∞

k−1 ◦ ∇u.

And
n∑

i=1

k∑

j=1

1
j!
uj∇ei (Tk−j) (ei) =

k∑

j=1

uj

j!
divTk−j .

Summarize all these relations we obtain the desire formula.
In particular, ifM

n+1
has constant sectional curvature, then Tk are divergence-free, divTk−j =

0 ( see [4]). The desire relation can be deduced by a recursive argument.
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3 Main results

In this section we derive some integral formulae on manifolds with density. In order to derive
our formulae,we consider the following configuration.

Let p ∈ Mn and {e1, . . . , en} be an orthonormal basis of TpMn that diagonalizes A. Then
it diagonalizes also T∞

k . Denoting by µ1, ..., µn the eigenvalues of A with respect to the basis
{e1, . . . , en} .

We have

〈
divT∞

k ,∇NN
〉
= div

(
T∞

k ∇NN
)
−

n∑

i=1

〈
T∞

k (ei) ,∇ei∇NN
〉
.

This gives

div
(
T∞

k ∇NN
)

=
〈
divT∞

k ,∇NN
〉
+

n∑

i=1

〈
T∞

k (ei) ,∇ei∇NN
〉
, (3.1)

=
〈
divT∞

k ,∇NN
〉
+

n∑

i=1

σ∞

k,i

〈
ei,∇ei∇NN

〉
.

Where σ∞

k,i is the eigenvalue of T∞

k with respect to ei.
On the other hand

−
〈
ei,∇ei∇NN

〉
=

〈
∇eiei,∇NN

〉
+

〈
∇eiN,∇Nei

〉
+

〈
N,∇ei∇Nei

〉
.

Using now the Codazzi equation, we have

〈
ei,∇ei∇NN

〉
=

〈
∇N

(
∇eiN

)
, ei

〉
+

〈
∇

∇ei
NN, ei

〉
−
〈
∇

∇Nei
N, ei

〉
− 〈R(ei, N)ei, N〉 ,

= N
〈
∇eiN, ei

〉
−
〈
∇eiN,∇Nei

〉
+

〈
A2ei, ei

〉
+

〈
A
(
∇eiN

)
, ei

〉

−〈R(ei, N)ei, N〉 ,

= −
〈
∇µi, N

〉
+

〈
A2ei, ei

〉
−
〈(
∇NA

)
ei, ei

〉
+

〈
∇N (Aei) , ei

〉

−〈R(ei, N)ei, N〉 ,

= −
〈
∇µi, N

〉
+

〈
A2ei, ei

〉
−
〈(
∇NA

)
ei, ei

〉
+

〈
∇N (µiei) , ei

〉

−〈R(ei, N)ei, N〉 ,

= −
〈
∇µi, N

〉
+

〈
A2ei, ei

〉
−
〈(
∇NA

)
ei, ei

〉

+
(
µi

〈
∇Nei, ei

〉
+

〈(
∇Nµi

)
ei, ei

〉)
− 〈R(ei, N)ei, N〉 ,

= −
〈
∇µi, N

〉
+

〈
A2ei, ei

〉
−
〈(
∇NA

)
ei, ei

〉
+ µi

〈
∇Nei, ei

〉
+

〈
∇µi, N

〉

−〈R(ei, N)ei, N〉 ,

=
〈
A2ei, ei

〉
−
〈(
∇NA

)
ei, ei

〉
− 〈R(ei, N)ei, N〉 .

On the other hand, we have

n∑

i=1

σ∞

k,i

〈
A2ei, ei

〉
= tr(A2T∞

k ),

= σ∞

k+1trA − tr(AT∞

k+1),

= σ∞

k+1

(
σ∞

1 −
〈
∇f,N

〉)
− (k + 2) σ∞

k+2 +
〈
∇f,N

〉
σ∞

k+1,

= σ∞

1 σ∞

k+1 − (k + 2)σ∞

k+2,

and [2]

n∑

i=1

σ∞

k,i

〈(
∇NA

)
ei, ei

〉
= tr

(
T∞

k ◦ ∇NA
)
= N(σ∞

k+1)−N(
〈
∇f,N

〉
)σ∞

k .



846 M. Abdelmalek and K. Mokhtari

It is not difficult to see that

div(σ∞

k+1N) = N(σ∞

k+1) + σ∞

k+1.divN,

= N(σ∞

k+1)− σ∞

1 σ∞

k+1 +
〈
∇f,N

〉
σ∞

k+1.

Finally

n∑

i=1

σ∞

k,i

〈(
∇NA

)
ei, ei

〉
= div(σ∞

k+1N) + σ∞

1 σ∞

k+1 −
〈
∇f,N

〉
σ∞

k+1 −N(
〈
∇f,N

〉
)σ∞

k .

Replacing in (3.6) we get

div
(
T∞

k ∇NN + σ∞

k+1N
)

=
〈
divT∞

k ,∇NN
〉
− (k + 2) σ∞

k+2 +
〈
∇f,N

〉
σ∞

k+1 +N(
〈
∇f,N

〉
)σ∞

k

+tr(R(N)T∞

k .

Integrating the two sides of the above relation and applying the divergence theorem, we obtain

Theorem 3.1. Let ψ : Mn −→ M
n+1
f be a closed oriented hypersurface of a weighted manifold

M
n+1
f . Denoting by N a unit vector field normal to Mn in M

n+1
f . Then for every 0 ≤ k ≤ n−2,

we have :

∫

Mn

[〈
divT∞

k ,∇NN
〉
− (k + 2)σ∞

k+2 +
〈
∇f,N

〉
σ∞

k+1 +N(
〈
∇f,N

〉
)σ∞

k + tr(R(N)T∞

k

]
dvf = 0.

(3.2)
Taking k = 0, we have

Lemma 3.2. Under the hypothesis of the above theorem, we have
∫

Mn

2σ∞

2 dvf =

∫

Mn

〈
∇f,N

〉
σ∞

1 dvf +

∫

Mn

〈
∇f,∇NN

〉
dvf +

∫

Mn

Ricf(N,N)dvf . (3.3)

Where Ricf is the Bakry–Émery–Ricci tensor define in []equation* Ricf = Ric+Hessf.

In particular if M
n+1

is non weighted, then (3.3) reduced to the well known formula
∫

Mn

2σ2dv =
M
Ric(N,N)dv.

Let consider the case where M
n+1

is a non weighted Riemannian manifold, then we have

Theorem 3.3. Let ψ : Mn −→ M
n+1

be a closed oriented hypersurface of M
n+1

. Denoting by

N a unit vector field normal to Mn in M
n+1

. Then for every 0 ≤ k ≤ n− 2, we have :

∫

Mn

[〈
divTk,∇NN

〉
− (k + 2)σk+2 + tr(R(N)Tk

]
dv = 0 (3.4)

In this case if M
n+1

has constant sectional curvature c, then Tk are divergence-free and

tr(R(N)Tk = c.(n− k)σk.

Hence

(k + 2)
∫

Mn

σk+2dv = c.(n− k)

∫

Mn

σkdv.
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