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Abstract In this paper we derive an integral formula for hypersurfaces embedded in weighted
manifolds involving the weighted higher order mean curvatures o}° of the hypersurface and
the weighted Newton transformations 7>° ( see [11] ). This formula generalizes the classical
r—Minkowski integral formula on Riemannian manifolds.

1 Introduction

Integral formulas are useful tools for solving many problems in Riemannian geometry, such
as Alexandrov’s theorem or the characterization of certain hypersurfaces (see [4, 3, 20]) and
references therein.

Leta: M" — """ be aclosed oriented hypersurface immersed into a space form !
with unit normal vector field N. Then we have for 1 <r <n:

H,_idv +/ (Y,N).H,dv =0, (1.1)
M Mn
where Y is a conformal vector field, and H, is the higher order mean curvature of the hypersur-
face.

Higher order Minkowski formulae were first obtained by Hsiung [15] in Euclidean space,
and by Bivens [9] in the Euclidean sphere and hyperbolic space.

Many generalizations of the previous results have been investigated in the case where the
ambient space is not a space form and in other contexts, see for instance [3, 4, 9, 16, 17, 20].

In a series of recent papers, the first author together with M. Benalili [1, 2] obtained a series
of integral formulas on weighted manifolds . The idea is to compute the divergence of certain
vector fields and applying the divergence theorem.

In this paper, using the weighed symmetric functions o}° and the weighted Newton transfor-
mations 7 introduced by J. S. Case [11], we derive some new integral formulae on manifolds
with density. We give also some applications and special cases.

2 Preliminaries

In this section, we will fix the notations and recall some definitions and basic results of weighted
manifolds and the weighted Newton transformations. For more details, see [2, 11, 12, 13].

A weighted manifold (M, (,),dvy) is a Riemannian manifold M endowed with a weighted
volume form dvy = e~ Tdv, where f is a real-valued smooth function on M, and dv is the
Riemannian volume form associated with the metric (, ) .

Let M;’H be an (n + 1)—dimensional oriented weighted Riemannian manifold, and ¢ :

M" — W;H be an isometrically immersed hypersurface with unit normal vector field N in
the normal bundle N M™. It’s Weingarten operator A is defined by

AX = —(VxN)T,
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= e . —n+l
where V is the Levi-Civita connection on M ?+ , and X€ »(M™).
By the Codazzi equation, we can see that the normal component of the curvature tensor R of
—n+l . . .
M7y is given in terms of A by

(B(UV)W,N) = (Vv A) U — (VyA) V, W),

where U, V,W € s(M™). In particular if the ambient space has constant sectional curvature,
then we have - -
(VvA)U = (VyA) V.

It is well known that A is a linear self adjoint operator and at each point p € M", its eigen-
values 1, ..., i, are the principal curvatures of M™.

The weighted elementary symmetric polynomial o;° : R x R — R are defined recursively
by (see [11])

0-80<u’/'l') = 1’

koo (u, ) = uop® | (u, p) + Z:: (— ) o2y j(u, u)u{“ for 1 <k <n, 2.1

i Ms

o (u,p) =0 for k> n,

where v € R and p = (p1,..., 1) € R™. The weighted elementary symmetric functions
o (u, A) of A are defined by

Jzo(ua A) = Ulio(ua ﬂ)v
where i1, ..., iy, are the eigenvalues of A.
In particular, for u = 0, 0°(0, A) = 01 (A) is the classical elementary symmetric functions
defined in [19].
Associate to A, we can define the weighted Newton transformations 7;2°(p, A) by

(u, A)
T (u, A) = o°(u, A) — AT (u, A) fork > 1.

This is equivalent to
k

TR (u, A) =Y (=1) 072, (u, A) A", 2.2)

=0

If w = 0, then T72°(0, A) = Ty (A) is just the classical Newton transformations introduced
and studied by R. C. Reilly [19].

Since A is self-adjoint operator, then T are self-adjoint as well and their eigenvectors are
the same as those of A, and we have the following properties, whose proof can be found in [11].

Proposition 2.1. For any reals u;, uy € R and y € R", we have

k i
o (un + uz, E SO (u2,
In particular
k
ul
k U’la E _|
and

trace( AT (u, p)) = (k+ 1)o7, (u, 1) — uoi® (u, p).

The i'" eigenvalue of T° (u, p) is equal to o7, (u, 1), where

U;?i(ua :U) = UISO (u7 /77) = 0'130 (u7 M) - Mialiil,i (U'a :U) )

where 1 = (p11, ..., iin ), and puy, ..., p, are the eigenvalues of A.
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Definition 2.2. Let M be an immersed hypersurface of M ; with shape operator A with relation
to an unit normal vector field N. The weighted k-curvature o;° of the hypersurface M is defined
by,

o’ = o (u, A) for u=(Vf N).

The weighted Newton transformations will be denoted by,
T = T(u, A) for u=(Vf.N).

And we have

T 1, for k =0,
P ol - AT, for k> L.

In particular, for £ = 1, we get
0'100 :Hf =01 —|—<ﬁf,N>,

which is the classical definition of the weighted mean curvature of the hypersurface M studied
by Gromov [14].
The divergence of the weighted Newton transformations is define by

n
div (T¢°) = trace (VI°) = > (Ve, T7°) (ei) ,
i=1

where {ey, ..., e,} is a local orthonormal frame on M".
Before to start our computations, we need the following results

Proposition 2.3. /. For 0 < k < n, we have

k .
J _
zz%Tk,j, where u = (V f,N). (2.3)
3=0 7"

2. The divergence of the weighted Newton transformations is given by
divTy® =0,
andfor1 <k<n
k .
, u
divTy° =132 o Vu + Z ﬁdszk,j,
j=1

where divTy,_; is given by (3.3) in [4].

In particular, if """ has constant sectional curvature, then we have

k—1
divT® = (1) o7 ;A7 0 Vu. (2.4)
j=0

Proof. 1. The relation (2.3) can be deduced directly from the definition of 7}>°.
In fact we have for0 < k& <n

k
T = Z(_l)zago—ini,
i=0
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Where the first equality combines equation (2.3) with the definition of 7°, the second equal-
ity switches the order of the summation, and the third equality uses the definition of the (un-
weighted) Newton transformations.

2. For 0 < k < n, we have

divTye = tr(VTEF),

=1 J
no_ k j
= Zvei Z .—'kag (ei),
i=1 §=0 J:
n k 1
= Z ﬁvei (U/JTk—j) (ez) 5
i=1 j=0""
n k 1
= divTy, + Z Z ﬁvel (u Tkﬁ) (el)
i=1 j=1""
And we have
Ve (W) () = Ve ((WThey) ) = Wiy (Verer)

On the other hand, we have

n k k J
> j_l!j“j_l (Vu,e) Te—j(ei) = ) (Vues) Y (ju_ 11 Tk (ei),
j=1

i=1 j=1 3

n k—1 4l

— Z <VU7 @1,> l_'Tkilil (67) ,
=1 1=0

= (T]Sil) (<VU;,€7>67)7
=1

= T2 oVu

And
Z Z ﬁujv@ (Th—j) (ei) = Z — divTy—;

Summarize all these re+lzi1tions we obtain the desire formula.
. P . . .
In particular,if A/~ has constant sectional curvature, then 7}, are divergence-free, divTj,_; =
0 ( see [4]). The desire relation can be deduced by a recursive argument. m|
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3 Main results

In this section we derive some integral formulae on manifolds with density. In order to derive
our formulae,we consider the following configuration.

Letp € M™ and {ey,...,e,} be an orthonormal basis of T, A/" that diagonalizes A. Then
it diagonalizes also 7%°. Denoting by 1, ..., i, the eigenvalues of A with respect to the basis
{61,...,€n}.

We have

(divT°, VyN) = div (TZPVNN) = > (T3 (ei) , Ve, VNN) .

This gives

3

div (T°VNN) = (divT°, VaN) + > (T3° (&), Ve, VNN), (3.1)
=1

= <divT,‘§°,vNN> + ZUE% <€ia v@ivNN> :
i=1

Where 0%, is the eigenvalue of T>° with respect to e;.
On the other hand

— <ei,veiVNN> = <V6iei,VNN> + <VeiN, vN€i> + <N, VsiVNeZ) .

Using now the Codazzi equation, we have

(e, Ve VyN) = (Vn (Vo N), &)+ <V§61NN, ei> — (Vo o V&) — (R(ei, N)ew, N,

= N <veiN7 €i> — <VeiN,VNei> + <A2€i,€i> + <A (VELN) ,€i>
- <R(€i,N)€i,N>,

= - <Vui, N> + <A2€i, ei> — <(VNA) €, ei>
(i (Vneier) + (V) i, e:)) — (Rles, N)ey, N,
= —(Vui,N)+ (A%, ei) — ((VNnA) e, e;) + i (Ve ei) + (Vi N)
—(R(e;, N)ei, N,
= (A%, ei) — ((VnA)ei,e;) — (R(ei,N)es, N).

On the other hand, we have

Za,‘fi<Azei,ei> = tr(AZT,fO),
i=1

= optrA —tr(ATgS),
= 0-133—1(Uloo_<vf7N>)_(k+2)0-133—2+<vf7N>0133-1a

o orsy — (k+2) ogsa,

and [2]

S o (VnA) eies) = tr (T 0 VnA) = N(0f2y) — N((VF,N))oge.

i=1
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It is not difficult to see that

div(op N) = N(o3%) + oi5.divN,
= N(op3y) — oo + <Vf,N> ORi-

Finally

> o5 (VnA) eiyei) = div(035 N) + 0i%07%, — (V. NY oy, — N((VF. N))oe.

i=1

Replacing in (3.6) we get

div (T°V NN + 070 N) = (divT°, VNN) = (k+2) o35, + (Vf,N)oiZ, + N(Vf,N))o®
+tr(R(N)T®.

Integrating the two sides of the above relation and applying the divergence theorem, we obtain

Theorem 3.1. Let ¢ : M™ — W?H be a closed oriented hypersurface of a weighted manifold

M;:l Denoting by N a unit vector field normal to M™ in M?H. Then for every 0 < k < n-—2,
we have :

/ [divTE VNN) = (k+2) 075, + (VF, N) o7y + N((VS,N))o + tr(R(N)TE] dvg = 0.

3.2)
Taking k& = 0, we have

Lemma 3.2. Under the hypothesis of the above theorem, we have

/ 2a§°dvf:/ <W,N>af°dvf+/ <vf,VNN>dvf—|—/ Ricy(N,N)dvs. (3.3)
n n Mn M

n

Where Ricy is the Bakry—Emery—Ricci tensor define in [ Jequation* Ricy = Ric+ Hessf.
In particular if " is non weighted, then (3.3) reduced to the well known formula

/ 20,dv = Ric(N, N)dwv.
Mn M
Let consider the case where 3" is a non weighted Riemannian manifold, then we have
Theorem 3.3. Let ¢ : M"™ — ! be a closed oriented hypersurface of m Denoting by
N a unit vector field normal to M™ in MHH. Then for every 0 < k <n — 2, we have :
/ (divTy, VNN) = (k +2) 042 + tr(R(N)T}] dv = 0 (3.4)
A, n

. ot . .

In this case if M has constant sectional curvature ¢, then 7T}, are divergence-free and
tr(R(N)Ty = c.(n — k)og.

Hence

(k+ 2)/ Opi2dv = c.(n — k)/ ordv.

n
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