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Abstract In this paper, we investigate the existence of meromorphic solutions of hyper-order

strictly less than 1 to the Fermat-type q-shift equations f 3(z) + f 3(qz + c) = h(z) over the

complex plane C, where h(z) = a(z), eP (z) for a small function a(z) of f with two Borel

exceptional values 0 and ∞, and for a polynomial P (z). We have exhibited some examples for

showing the accuracy of the results.

1 Introduction, Definitions and Results

By a meromorphic (resp. entire) function, we shall always mean meromorphic (resp. entire)

function over the complex plane C. We assume that the reader is familiar with the standard no-

tations and results such as proximity function m(r, f), counting function N(r, f), characteristic

function T (r, f), the first and second main theorems, lemma on the logarithmic derivatives etc.

of Nevanlinna theory (see e.g. [9, 13, 16]). A meromorphic function α is said to be a small

function of f , if T (r, α) = S(r, f), where S(r, f) is used to denote any quantity that satisfies

S(r, f) = o(T (r, f)) as r → ∞, possibly outside of a set of r of finite logarithmic measure.

We denote the order and the hyper-order of a meromorphic function f respectively by ρ(f) and

ρ2(f) such that

ρ(f) = lim sup
r−→∞

log+ T (r, f)

log r
and ρ2(f) = lim sup

r−→∞

log+ log+ T (r, f)

log r
.

Next definitions are necessary in this paper.

Definition A. Let f be a transcendental meromorphic function. A complex number a is said to

be a Borel exceptional value if lim sup
r−→∞

log+ N(r,a,f)
log r

< ρ(f).

Let f be of finite positive order ρ and has two Borel exceptional values 0 and ∞. If ω(z) =

zk
P0(z)
P∞(z) and g(z) = f(z)

ω(z) , where P0(z) and P∞(z) are respectively the canonical products of

f(z) formed with the zeros and poles of f(z) in C \ {0}, then we see that

ρ(P0) = ρ1(f) ≤ lim sup
r−→∞

log+ N(r, 0, f)

log r
< ρ(f)

and

ρ(P∞) = ρ1

(

1

f

)

≤ lim sup
r−→∞

log+
N(r,∞, f)

log r
< ρ(f),

where we denote by ρ1(f) the exponent of convergence of zeros of f . And thus we have

ρ(ω) ≤ max {ρ(zk), ρ(P0), ρ(P∞)} = max {ρ(P0), ρ(P∞)} < ρ(f) = ρ(g).

Also for two distinct Borel exceptional values a1 and a2, one can consider the function f−a1

f−a2
,

and obtain the same result as previous.
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Definition B. Given a meromorphic function f(z), f(z + c) (resp. f(qz + c)) is called a shift

(resp. q-shift) of f , where c, q ∈ C \ {0}. Also for given a meromorphic function f(z), f(qz) is

called a q-difference of f , where q ∈ C \ {0}.

Given three meromorphic functions f(z), g(z) and h(z), fn(z) + gn(z) = hn(z) is called

a Fermat-type functional equation on C, where n ∈ N. Actually the functional equation is due

to the assertion in Fermat’s Last Theorem in 1637 for the solutions of the Diophantine equation

xn+yn = zn over some function fields, where n ∈ N. For uniqueness related study see [11, 14].

We now consider the Fermat-type functional equation

f 3(z) + g3(z) = 1. (1.1)

Gross [7] and Baker [1] showed that the non-constant meromorphic solutions of (1.1) is as

(1.2)

f(z) =
1

2

{

1 +
P ′(h(z))√

3

}

/

P(h(z)) and g(z) =
η

2

{

1 − P ′(h(z))√
3

}

/

P(h(z)),

where η3 = 1, h(z) is a non-constant entire function and P(z) denotes the Weierstrass P-

function with periods ω1 and ω2 defined as

P(z;ω1, ω2) =
1

z2
+

∑

µ,ν;µ2+ν2 6=0

{

1

(z + µω1 + νω2)2
− 1

(µω1 + νω2)2

}

,

which is even and satisfies, after appropriately choosing ω1 and ω2,

(P ′)
2
= 4P

3 − 1. (1.3)

Also Bank and Langley [2] indicates that

T (r,P) =
π

A
r2 (1 + o(1)) and ρ(P) = 2, (1.4)

where A is the area of the parallelogram with vertices 0, ω1, ω2, ω1 + ω2.

In [4] authors give some properties of the Weierstrass P-function as follows

N(r,P) =
π

k
(1 + o(1))r2, N

(

r,
1

P − a

)

=
π

k
(1 + o(1))r2, (1.5)

m(r,P) = O(log r), T (r,P) = m(r,P) +N(r,P) =
π

k
(1 + o(1))r2, (1.6)

N(r,P ′) =
3π

2k
(1 + o(1))r2, N

(

r,
1

P ′ − a

)

=
3π

2k
(1 + o(1))r2, (1.7)

N(r,P) =
1

2
N(r,P) =

π

2k
(1 + o(1))r2, (1.8)

N

(

r,
1

P

)

= N

(

r,
1

P

)

=
π

k
(1 + o(1))r2,

N(r,P ′) =
1

3
N(r,P ′) =

π

2k
(1 + o(1))r2, (1.9)

N

(

r,
1

P ′ − a

)

= N

(

r,
1

P ′ − a

)

=
3π

2k
(1 + o(1))r2.

In the same paper Bi and Lü [4] obtained the following two theorems:
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Theorem A. [4] Let f be a non-constant meromorphic function of hyper-order strictly less than

1, and let a be a small meromorphic function of f with two Borel exceptional values 0 and ∞.

Then f does not satisfy the following equation

f 3(z) + f 3(z + c) = a(z). (1.10)

Theorem B. [4] Let P be a polynomial. Then the functional equation

f 3(z) + f 3(z + c) = eP (z) (1.11)

does not admit meromorphic solutions f( 6= de
αz+β

3 with d3(1 + eαc) = 1, where d( 6= 0), c( 6=
0), α, β ∈ C) of hyper-order strictly less than 1.

Question 1. What happens if the function f(z+ c) in Theorem A and Theorem B is replaced by

the q-shift function f(qz + c), where q( 6= 1), c ∈ C \ {0}?

In the above connection, for the difference equation, in 2017, Lü and Han [15] showed that

the Fermat-type equation f 3(z) + f 3(z + c) = 1 has no non-constant meromorphic solution of

finite order on C. In 2019, Han and Lü [8] showed that there is no meromorphic solution of finite

order for the difference equation f 3(z) + f 3(z + c) = eαz+β on C, where α, β ∈ C.

2 Main results

For affirmative answer of Question 1, we obtain the following results.

Theorem 2.1. Let f be a non-constant meromorphic function of hyper-order strictly less than 1,

and let a be a small function of f with two Borel exceptional values 0 and ∞, satisfying

f 3(z) + f 3(qz + c) = a(z), (2.1)

where q( 6= 1), c ∈ C \ {0}. Then a(z) = ω(z)eh(z), where h(z) is a polynomial with degh(z) =
n, ρ(ω) < n and qn = 1.

Theorem 2.2. Let f be a non-constant meromorphic solution of

f 3(z) + f 3(qz + c) = eP (z), (2.2)

with hyper-order strictly less than 1, where q( 6= 1), c ∈ C \ {0} and P (z) is a polynomial with

degP (z) = m. Then (2.2) has no solution for qm 6= 1.

2.1 Some examples

Following examples are showing the sharpness of Theorems 2.1 and 2.2.

Example 2.1. Let h(z) = z + 1, q = −1 and c = −2. Then f(z) = 1
2P(h(z))

{

1 + P
′(h(z))√

3

}

e
P (z)

3 is a meromorphic solution of finite order satisfying (2.2), where P (z) = h2(z). Clearly

qdeg P = 1 and ρ(P(h(z))) = degP (z).

Example 2.2. Let h(z) = (z+i)7, q = −1 and c = −2i. Then f(z) is a meromorphic solution of

finite order satisfying (2.2), where P (z) = (z+i)2. Also qdeg P = 1 and ρ(P(h(z))) > degP (z).

Example 2.3. Let h(z) = a2z
2 + a1z + a2

1

4a2
, q = i, a1, a2( 6= 0) ∈ C and c = a1(1−i)

−2a2
. Then

f(z) is a meromorphic solution of finite order satisfying (2.2), where P (z) = h10(z). Note that

qdeg P = 1 and ρ(P(h(z))) < degP (z).

An infinite order solution of (2.2) has given below.

Example 2.4. Let h(z) = sin z, P (z) = (z − π)2 and c = 2π with q = −1, then f(z) =
1

2P(h(z))

{

1 + P
′(h(z))√

3

}

e
P (z)

3 is an infinite order meromorphic solution satisfying (2.2).
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2.2 The technical lemmas

The following lemmas are necessary in this paper.

Lemma 2.5. [10] Let f be a meromorphic function, and let P (z) = amzm + · · · + a1z + a0

be a complex polynomial of degree m ≥ 1. For a given δ ∈ (0, |am|), let µ = |am| − δ and

λ = |am|+ δ, then for a ∈ C,

N

(

µrm,
1

f − a

)

+O(log r) ≤ N

(

r,
1

f ◦ P − a

)

≤ N

(

λrm,
1

f − a

)

+O(log r).

Lemma 2.6. [12] Let f be a non-rational meromorphic function also let ω(z) = czn+pn−1z
n−1+

· · ·+p0 and φ(z) = czn+qn−1z
n−1+· · ·+q0 be non-constant polynomials, where c( 6= 0), pi, qj ∈

C for 0 ≤ i, j ≤ n− 1. If

lim sup
r−→∞

log logT (r, f)

log r
<

1

n2
,

then

m

(

r,
f ◦ ω
f ◦ φ

)

= o (T (|c|rn, f))

for all r outside of an exceptional set of finite logarithmic measure.

Lemma 2.7. [3, 5] Let f be meromorphic and h be entire in C. If 0 < ρ(f), ρ(h) < ∞, then

ρ(f ◦ h) = ∞. If ρ(f ◦ h) < ∞ and h is transcendental, then ρ(f) = 0.

Lemma 2.8. [6] Let F, f be two transcendental meromorphic functions, and g be a polynomial

of degree m such that F = f ◦ g. Then ρ(F ) = mρ(f).

Remark A. The conclusion of Lemma 2.5 still holds when a = ∞, one can check it by replacing

g with 1
f

in Lemma 2.5.

3 Proof of the theorems

Proof of Theorem 2.1. From (2.1), we have f 3(qz + c) = −
(

f 3(z)− a(z)
)

, which implies that

the zeros of f 3(z)− a(z) are of multiplicities at least 3. Similarly the zeros of f 3(qz+ c)− a(z)

are of multiplicities at least 3. Thus the zeros of f 3(z)− a
(

z−c
q

)

are of multiplicities at least 3.

Set G(z) = f 3(z). Let the functions a(z) and a
(

z−c
q

)

be distinct. Here a is non-constant, since

a has Borel exceptional value. Then applying the second main theorem of Nevanlinna to G, one

gets that

2T (r,G) ≤ N



r,
1

G(z)− a
(

z−c
q

)



+N

(

r,
1

G(z)− a(z)

)

+N(r,G) +N

(

r,
1

G

)

+O(log rT (r,G))

≤ 4

3
T (r,G) +O(log rT (r,G)),

which implies G is a rational function, a contradiction. Thus we conclude that

a(z) = a

(

z − c

q

)

⇒ a(qz + c) = a(z).

Since a has two Borel exceptional values 0 and ∞, then by definition of Borel exceptional value

and Hadamard factorization theorem, one has

a(z) = ω(z)eh(z),
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where ω(z) is a meromorphic function of finite order such that ρ(ω) < ρ(a) = ρ(eh) and h is an

entire function satisfying ρ2(a) = ρ(h) < 1. Then the fact a(z) = a(qz + c) yields that

ω(z)eh(z) = ω(qz + c)eh(qz+c)

⇒ ω(z)

ω(qz + c)
= eh(qz+c)−h(z), (3.1)

which implies that ρ
(

eh(qz+c)−h(z)
)

= ρ
(

ω(z)
ω(qz+c)

)

< ∞. Thus h(qz + c) − h(z) reduces to a

polynomial, say Q. Differentiating h(qz + c)− h(z) = Q(z), s(≥ degQ+ 1) times, we get

qsh(s)(qz + c)− h(s)(z) = 0. (3.2)

Now if a(z) is of finite order, then h(z) must be a polynomial of degree n, say. Let qn 6= 1. Then

ρ(eh(qz+c)−h(z)) = n, but ρ
(

ω(z)
ω(qz+c)

)

< n, which contradicts (3.1).

And if a(z) is of infinite order, then h(z) is a transcendental entire function with ρ(h) < 1.

Clearly, h(s)(z) is also a transcendental entire function with ρ(h(s)) < 1. Now if h(s) does not

have any zero, then h(s)(z) = eH(z), where H(z) is an entire function. Further since ρ(h(s)) < 1,

we must have H(z) as constant i.e. h(z) as a polynomial. Here we consider following cases.

Case 1. Let |q| > 1. If z0 is a zero of h(s), from (3.2) we have,
z0−c

∑m−1
k=0

qk

qm
, m = 1, 2, · · ·

as a sequence of zeros of h(s). Then c
1−q

would be an essential singularity of h(s), which is a

contradiction.

Case 2. Let |q| < 1. If z0 is a zero of h(s), from (3.2) we get, qmz0 + c
∑m−1

k=0 qk, m = 1, 2, · · ·
is a sequence of zeros of h(s). Which implies that c

1−q
would be an essential singularity of h(s),

again a contradiction.

Case 3. Let |q| = 1. Then there exists m ∈ R+ such that qm = 1. Since q 6= 1, from (3.2),

it is clear that if z0 is a zero of h(s), then there are exactly [m] distinct zeros of h(s). Those are

z0, qz0 + c, q2z0 + qc+ c, q3z0 + q2c+ qc+ c, · · · , qm−1z0 + c
∑m−2

k=0 qk. Therefore, h must be a

polynomial of degree k(= [m]+degQ+1), which is not the case. This completes the proof.

Proof of Theorem 2.2. From (2.2), we have

(

f(z)

e
P (z)

3

)3

+

(

f(qz + c)

e
P (z)

3

)3

= 1.

Using (1.2), one has

f(z) =
1

2

{

1 + P
′(h(z))√

3

}

P(h(z))
e

P (z)
3 (3.3)

and f(qz + c) =
η

2

{

1 − P
′(h(z))√

3

}

P(h(z))
e

P (z)
3 ,

where h is an entire function and P (z) is a polynomial of degree m. From (3.3), we get

η
{

1 − P
′(h(z))√

3

}

P (h(z))
=

{

1 + P
′(h(qz+c))√

3

}

P (h(qz + c))
e

P (qz+c)−P (z)
3 . (3.4)

Then, from (1.3) and the first equation of (3.3), one has

f 2(z)P2(h(z))

e
2P (z)

3

=
1

4

{

1 +
P

′(h(z))√
3

}2

⇒ 3f 2(z)P2(h(z))

e
2
3
P (z)

− 3f(z)P(h(z))

e
1
3
P (z)

+ 1 = P
3(h(z))

⇒ 3f(z)P(h(z))

e
1
3
P (z)

{

3f(z)P(h(z))

e
1
3
P (z)

− 1

}

+ 1 = P
3(h(z))

⇒ T (r,P(h)) ≤ 2T (r, f) + 2T (r, e
P (z)

3 ) +O(1). (3.5)
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The first equation of (3.3) also yields that

T (r, f) ≤ 3T (r,P(h)) + T (r, e
P (z)

3 ) +O(log rT (r,P(h))). (3.6)

Now if h is a transcendental entire function, by Lemma 2.7, (3.5) and (3.6), we have ρ(f) =
ρ(P(h)) = ∞ and since P is a polynomial, eP is a small function of f . Note that qm 6= 1,

then we can get a contradiction by Theorem 2.1. Thus, h is a polynomial. We assume h(z) =
anz

n + an−1z
n−1 + · · · + a0, where an( 6= 0), an−1, · · · , a0 ∈ C. Now we consider following

cases.

Case 1. Suppose that degP < ρ(P(h)). Then ρ(eP ) = degP < ρ(P(h)) = ρ(f). Thus, eP is

a small function of f . By Theorem 2.1, we get a contradiction.

Case 2. Let degP > ρ(P(h)). Then there exists ǫ > 0 such that ρ(P(h)) + ǫ < degP − ǫ. We

rewrite (3.4) as

e
P (z)−P (qz+c)

3 =
P(h(z))

P(h(qz + c))

1 + P
′(h(qz+c))√

3

η
(

1 − P′(h(z))√
3

) (3.7)

=
1

η

P(h(z))

P(h(qz + c))

[

2
√

3√
3 − P ′(h(z))

−
√

3 − P
′(h(qz + c))√

3 − P ′(h(z))

]

,

which implies,

m(r, e
P (z)−P (qz+c)

3 ) ≤ m

(

r,
1

η

P(h(z))

P(h(qz + c))

)

+m

(

r,
2
√

3√
3 − P ′(h(z))

)

(3.8)

+m

(

r,

√
3 − P ′(h(qz + c))√

3 − P ′(h(z))

)

+O(1)

= m

(

r,
1√

3 − P ′(h(z))

)

+O(rρ(P(h))+ǫ)

≤ T (r,P ′(h(z))) +O(rρ(P(h))+ǫ)

≤ 2T (r,P(h(z)))+O(rρ(P(h))+ǫ)

= O(rρ(P(h))+ǫ) = O(rdeg P−ǫ).

Since, P (z) is a polynomial of degree m and qm 6= 1, we have

m
(

r, e
P (z)−P (qz+c)

3

)

= A(1 + o(1))rdegP , (3.9)

where A is a positive number. Thus, from (3.8) and (3.9), we get a contradiction.

Case 3. Let degP = ρ(P(h)). Then using Lemma 2.8, we have degP = ρ(P(h)) = 2 deg h =
2n = m.

Let φ be an argument of an. Then by (1.6), one has

m(r,P(anz
n)) =

1

2π

∫ 2π

0

log+ |P(an(re
iθ)n)|dθ (3.10)

=
1

2π

∫ 2π

0

log+ |P(|an|rneiφeinθ)|dθ

=
1

2π

∫ 2π

0

log+ |P(|an|rneiθ)|dθ

= m(|an|rn,P(z)) = O(log |an|rn) = O(log r).
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By Lemma 2.6 and (3.10), we have

m(r,P(h(z))) ≤ m

(

r,
P(h(z))

P(anzn)

)

+m(r,P(anz
n)) (3.11)

= o(T (|an|rn,P(z))) +O(log r)

≤ o
{π

k
(1 + o(1))(|an|rn)2

}

+O(log r)

= o(r2n) +O(log r)

= o(rm).

Similarly, one can show

m(r,P(h(qz + c))) = o(rm). (3.12)

Now from (3.4), we have

e
P (z)−P (qz+c)

3 (3.13)

=
P(h(z))

η
(

1 − P′(h(z))√
3

)

1 + P
′(h(qz+c))√

3

P(h(qz + c))

=
P(h(z))

η
(

1 − P′(h(z))√
3

)

[

1

P(h(qz + c))
+

P ′(h(qz + c))h′(qz + c)q√
3P(h(qz + c))h′(qz + c)q

]

.

Then using (3.11), (3.12) into (3.13), we get

m
(

r, e
P (z)−P (qz+c)

3

)

(3.14)

≤ m (r,P(h(z)))+m

(

r,
1√

3 − P ′(h(z))

)

+m

(

r,
1

P(h(qz + c))

)

+ S(r,P(h(qz + c)))

= m

(

r,
1√

3 − P ′(h(z))

)

+m

(

r,
1

P(h(qz + c))

)

+S(r,P(h(z))) + S(r,P(h(qz + c)))

≤ T

(

r,
1√

3 − P ′(h(z))

)

−N

(

r,
1√

3 − P ′(h(z))

)

+T

(

r,
1

P(h(qz + c))

)

−N

(

r,
1

P(h(qz + c))

)

+S(r,P(h(z))) + S(r,P(h(qz + c)))

≤ T (r,P ′(h(z)))−N

(

r,
1√

3 − P ′(h(z))

)

+T (r,P(h(qz + c)))−N

(

r,
1

P(h(qz + c))

)

+S(r,P(h(z))) + S(r,P(h(qz + c)))

≤ m (r,P ′(h(z))) +N (r,P ′(h(z)))−N

(

r,
1√

3 − P ′(h(z))

)

+m (r,P(h(qz + c))) +N (r,P(h(qz + c)))−N

(

r,
1

P(h(qz + c))

)

+ o(rm).



MEROMORPHIC SOLUTIONS 855

Further by Lemma 2.5 and Remark A, for δ ∈ (0, |anqn|), µ = |anqn| − δ and λ = |anqn|+ δ,

we get

N (r,P(h(qz + c)))−N

(

r,
1

P(h(qz + c))

)

(3.15)

≤ 2N (r,P(h(qz + c)))−N

(

r,
1

P(h(qz + c))

)

+O(log r)

≤ 2N (λrn,P(h(z)))−N

(

µrn,
1

P(h(z))

)

+O(log r)

≤ π

k
(1 + o(1))(λrn)2 − π

k
(1 + o(1))(µrn)2 +O(log r)

≤ π

k
[λ2 − µ2](1 + o(1))rm.

And similarly for δ′ ∈ (0, |an|), µ′ = |an| − δ′ and λ′ = |an|+ δ′, we have

N (r,P ′(h(z)))−N

(

r,
1√

3 − P ′(h(z))

)

(3.16)

≤ 3N (r,P(h(qz + c)))−N

(

r,
1

P ′(h(qz + c))

)

+O(log r)

≤ 3π

2k
[λ′2 − µ′2](1 + o(1))rm.

We can choose positive δ, δ′ so small such that

π

k
[λ2 − µ2] =

π

k
[(|anqn|+ δ)2 − (|anqn| − δ)2] =

π

k
4|anqn|δ <

A

3
(3.17)

and

3π

2k
[λ′2 − µ′2] =

3π

2k
[(|an|+ δ′)2 − (|an| − δ′)2] =

3π

2k
4|an|δ′ <

A

3
.

By (3.9),(3.14), (3.15), (3.16) and (3.17), we get

A(1 + o(1))rm ≤ π

k
[λ2 − µ2](1 + o(1))rm +

3π

2k
[λ′2 − µ′2](1 + o(1))rm

<
A

3
(1 + o(1))rm +

A

3
(1 + o(1))rm =

2

3
A(1 + o(1))rm,

which is a contradiction. This completes the proof.
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