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Abstract This research provides a foundation for the study of complex intuitionistic fuzzy
lie superalgebras, which can be useful in various applications such as quantum physics, math-
ematical physics, and other areas of mathematics where Lie superalgebras are relevant, The
introduction of complex intuitionistic fuzzy sets in Lie superalgebras allows for a more flexible
and a nuanced understanding of the structures and properties of these algebraic systems. Fur-
thermore, the investigation of complex intuitionistic fuzzy lie sub-superalgebras and complex
Intuitionistic fuzzy ideals provide valuable insights into the substructures and ideal structures of
Lie superalgebras in the context of complex intuitionistic fuzziness. The study of anti-complex
intuitionistic fuzzy lie sub-superalgebras and anti-complex intuitionistic fuzzy ideals under anti-
homomorphisms expand the understanding of how these structures behave under certain trans-
formations, which can have implications for the study and application of Lie superalgebras in
various mathematical contexts. Overall, this research contributes to the development of a more
comprehensive and sophisticated understanding of complex intuitionistic fuzzy lie superalge-
bras, opening up new avenues for further exploration and application of these algebraic struc-
tures, in various mathematical disciplines.

1 Introduction

The notion of intuitionistic fuzzy sets was introduced by Atanassov (see [6]). He presented in [6]
the idea of intuitionistic fuzzy sets. He also, in [7], defined some properties of intuitionistic fuzzy
sets. Atanassov presented in [8] interesting new operations about intuitionistic fuzzy sets. An
intuitionistic fuzzy set is the generalization of a fuzzy set. Recently, Biswas applied the concepts
of intuitionistic fuzzy sets to the theory. of groups and studied intuitionistic fuzzy subgroups of
a group (see [10]); also, Banerjee studied intuitionistic fuzzy subrings and ideals of a ring (see
[9]). Moreover, Jun investigated the concept of intuitionistic nilradicals of intuitionistic fuzzy
ideals in rings (see [14]), and Davvaz, Dudek, and Jun applied the notion of intuitionistic fuzzy
sets to certain types of modules (see [12]). Then, in [11], W. Chen and S. Zhang introduced the
concept of intuitionistic fuzzy Lie superalgebras and intuitionistic fuzzy ideals. It is known that
fuzzy sets are intuitionistic fuzzy sets, but the converse is not necessarily true (for more details,
see [7]). More recently, Alkouri and Salleh [2] introduced the idea of complex intuitionistic
fuzzy subsets, and then they expanded the basic properties of them. This concept became more
effective and useful in the scientific field because it dealt with the degree of membership and
non-membership in a complex plane. They also initiated the concept of complex intuitionistic
fuzzy relations and developed the fundamental operation of complex intuitionistic fuzzy sets in
[3, 4]. Then Garg and Rani made a huge effort to generalize the notion of complex intuitionistic
fuzzy sets in decision-making problems (see [13]). In [20], S. Shaqaqha introduced the concepts
of complex fuzzy sets to the theory of Lie algebras and studied complex fuzzy Lie subalgebras.
Furthermore, in [1, 23], S. Shaqaqha and M. Al-Deiakeh introduced the concepts of complex
intuitionistic fuzzy Lie algebras and complex intuitionistic fuzzy Lie ideals, and they studied the
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relation between complex intuitionistic fuzzy Lie subalgebras (ideals) and intuitionistic fuzzy
Lie subalgebras (ideals). Also, in [19], S. Shaqaqha characterized the Noetherian and Artinian
Gamma rings by complex, fuzzy ideals. Moreover, in [22], he introduced the notion of intu-
itionistic fuzzy Lie subalgebras and intuitionistic fuzzy Lie ideals of n-Lie algebras, which is
a generalization of intuitionistic fuzzy Lie algebras. More recently, in [21], he introduced the
concept of complex fuzzy G-rings and showed that there are isomorphism theorems concerning
complex fuzzy G-rings as well as rings. I must point out here that the main idea of this article
is to introduce the concepts of complex intuitionistic fuzzy Lie superalgebras and complex in-
tuitionistic fuzzy ideals, which are generalizations of intuitionistic fuzzy Lie superalgebras and
intuitionistic fuzzy ideals applied by W. Chen and S. Zhang in [11]. We prepared this paper as
follows: In Section 2, we recall some basic definitions and notions that will be used in what
follows. In Section 3, we introduce the definition of a Z2-graded complex intuitionistic fuzzy
vector subspace, define complex intuitionistic fuzzy Lie sub-superalgebras, complex intuitionis-
tic fuzzy ideals, and consider their characterization. Finally, in Section 4, we discuss the images
and preimages of complex intuitionistic fuzzy Lie sub-superalgebras and complex intuitionistic
fuzzy ideals under anti-homomorphisms.

2 Complex intuitionistic fuzzy sets

Let X ̸= ϕ. A complex intuitionistic fuzzy set on X is an object having the form A =
{(x, λA(x), ρA(x)) |x ∈ X}, where the complex functions λA : X → C and ρA : X → C
denote the degree of membership (namely λA(x)) and the degree of non-membership (namely
ρA(x)) of each element x ∈ X to the set A, respectively, that assigns to any element x ∈ X com-
plex numbers λA(x), ρA(x) lie within the unit circle with the property |λA(x)| + |ρA(x)| ≤ 1.
For the sake of simplicity, we shall use the symbol A = (λA, ρA) for the complex intuitionistic
fuzzy set A = {(x, λA(x), ρA(x)) |x ∈ X}.
We shall assume λA(x) and ρA(x) will be represented by rA(x)ei2πωA(x) and r̂A(x)ei2πω̂A(x),
respectively, where i =

√
−1, rA(x), r̂A(x), ωA(x), ω̂A(x) ∈ [0, 1]. Thus the property of

|λA(x)| + |ρA(x)| ≤ 1 implies rA(x) + r̂A(x) ≤ 1. Note that the intuitionistic fuzzy set is
a special case of complex intuitionistic fuzzy set with ωA(x) = ω̂A(x) = 0. Also, if ρA(x) =
(1−rA(x))ei2π(1−ωA(x)), then we obtain a complex fuzzy set. Let αei2πβ and γei2πδ be two com-
plex numbers, where α, β, γ, δ ∈ [0, 1]. By αei2πβ ≤ γei2πδ we mean α ≤ γ and β ≤ δ. Through
out this paper,we use the symbols a∧b = min{a, b} and a∨b = max{a, b}. Let A = (λA, ρA) be
a complex intuitionistic fuzzy set on X with the degree of membership λA(x) = rA(x)ei2πωA(x)

and the degree of non-membership ρA(x) = r̂A(x)ei2πω̂A(x). Then A is said to be a homoge-
neous complex intuitionistic fuzzy set if ∀x, y ∈ X , the following two conditions hold:
(1) rA(x) ≤ rA(y) if and only if ωA(x) ≤ ωA(y),
(2) r̂A(x) ≤ r̂A(y) if and only if ω̂A(x) ≤ ω̂A(y).
Let A = (λA, ρA) and B = (λB , ρB) be two complex intuitionistic fuzzy sets on the same set
X. We say that A is homogeneous with B if ∀x, y ∈ X , the following conditions hold:
(1) rA(x) ≤ rB(y) if and only if ωA(x) ≤ ωB(y),
(2) r̂A(x) ≤ r̂B(y) if and only if ω̂A(x) ≤ ω̂B(y).

Definition 2.1. Let K be any field, and let V be a K-vector space. A complex intuitionistic fuzzy
(CIF for short) set on V defined as an object having the form A = {(x, λA(x), ρA(x)) |x ∈ V },
where the complex functions λA : V → C and ρA : V → C denote the degree of membership
(namely λA(x)) and the degree of non-membership (namely ρA(x)) of each element x ∈ V to
the set A, respectively, that assign to any element x ∈ V complex numbers λA(x), ρA(x) lie
within the unit circle with the property |λA(x)|+ |ρA(x)| ≤ 1.

We shall use the symbol A = (λA, ρA) for the CIF set A = {(x, λA(x), ρA(x)) |x ∈ X}.

Definition 2.2. Let V be a K-vector space. A CIF set A = (λA, ρA) of V is called a CIF vector
subspace of V , if it satisfies the following conditions
for any x, y ∈ V , α ∈ K
(1) λA(x+ y) ≥ λA(x) ∧ λA(y), and ρA(x+ y) ≤ ρA(x) ∨ ρA(y)
(2) λA(αx) ≥ λA(x), and ρA(αx) ≤ ρA(x).
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From the above definition, we know that for any x ∈ V , λA(0) ≥ λA(x) and ρA(0) ≤ ρA(x).
In this paper, we always assume that λA(0) = 1ei2π = 1 and ρA(0) = 0ei2(π)0 = 0.

Definition 2.3. Let A = (λA, ρA) and B = (λB , ρB) be CIF vector subspaces of a vector space
V . Then
(1) A ⊆ B if λA(x) ≤ λB(x) and ρA(x) ≥ ρB(x),
(2) A ∩B = {x, λA(x) ∧ λB(x), ρA(x) ∨ ρB(x)|x ∈ V },
(3) A ∪B = {x, λA(x) ∨ λB(x), ρA(x) ∧ ρB(x)|x ∈ V }.

Definition 2.4. Let A = (λA, ρA) and B = (λB , ρB) be CIF vector subspaces of a vector sub-
space V , where λA = rAe

i2πωA , λB = rBe
i2πωBand ρA = r̂Ae

i2πω̂A , ρB = r̂Be
i2πω̂B . If A is

homogenous with B. Then the complex intuitionistic sum of A = (λA, ρA) and B = (λB , ρB)
is defined to the CIF set A+B = (λA+B , ρA+B) of V given by

λA+B(x) =

{
supx=a+b{(rA(a) ∧ rB(b))}ei2π supx=a+b{(ωA(a)∧ωB(b))} : if x = a+ b

0 : otherwise,

ρA+B(x) =

{
infx=a+b{(r̂A(a) ∨ r̂B(b))}ei2π infx=a+b{(ω̂A(a)∨ω̂B(b))} : if x = a+ b

1 : otherwise.

Furthermore, if A ∩B = (λA∩B , ρA∩B), where

λA∩B(x) =

{
0 : x ̸= 0
1 : x = 0,

and ρA∩B(x) =

{
1 : x ̸= 0
0 : x = 0,

.

Then A+B is said to be the direct sum and denoted by A⊕B.

Lemma 2.1. Let A = (λA, ρA) and B = (λB , ρB) be CIF vector subspaces of a vector space V
such that A is homogenous with B. Then A+B = (λA+B , ρA+B) is also a CIF vector subspaces
of V .

Proof. A+B is homogenous, since A is homogenous with B. Let x, y ∈ V , then

λA+B(x) ∧ λA+B(y) = rA+B(x)e
i2πωA+B(x) ∧ rA+B(y)e

i2πωA+B(y)

= (rA+B(x) ∧ rA+B(y))e
i2π(ωA+B(x)∧ωA+B(x)),

and

rA+B(x) ∧ rA+B(y) = sup
x=a+b

{rA(a) ∧ rB(b)} ∧ sup
y=c+d

{rA(c) ∧ rB(d)}

= sup
x=a+b,y=c+d

{(rA(a) ∧ rB(b)) ∧ (rA(c) ∧ rB(d))}

= sup
x=a+b,y=c+d

{(rA(a) ∧ rA(c)) ∧ (rB(b) ∧ rB(d))}

≤ sup
x=a+b,y=c+d

{rA(a+ c) ∧ rB(b+ d)}

= rA+B(x+ y).

Similarly, ωA+B(x) ∧ ωA+B(y) ≤ ωA+B(x+ y). Therefore,

λA+B(x) ∧ λA+B(y) = (rA+B(x) ∧ rA+B(y))e
i2π(ωA+B(x)∧ωA+B(x))

≥ rA+B(x+ y)ei2πωA+B(x+y) = λA+B(x+ y).

Furthermore,

ρA+B(x) ∨ ρA+B(y) = r̂A+B(x)e
i2πω̂A+B(x) ∨ r̂A+B(y)e

i2πω̂A+B(y)

= (r̂A+B(x) ∨ r̂A+B(y))e
i2π(ω̂A+B(x)∨ω̂A+B(x)),
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and

r̂A+B(x) ∨ r̂A+B(y) = inf
x=a+b

{r̂A(a) ∨ r̂B(b)} ∨ inf
y=c+d

{r̂A(c) ∨ r̂B(d)}

= inf
x=a+b,y=c+d

{(r̂A(a) ∨ r̂B(b)) ∨ (r̂A(c) ∨ r̂B(d))}

= inf
x=a+b,y=c+d

{(r̂A(a) ∨ r̂A(c)) ∨ (r̂B(b) ∨ r̂B(d))}

≥ inf
x=a+b,y=c+d

{r̂A(a+ c) ∨ r̂B(b+ d)}

= r̂A+B(x+ y).

Similarly, ω̂A+B(x) ∨ ω̂A+B(y) ≥ ω̂A+B(x+ y). Therefore,

ρA+B(x) ∨ ρA+B(y) = (r̂A+B(x) ∨ r̂A+B(y))e
i2π(ω̂A+B(x)∨ω̂A+B(x))

≥ r̂A+B(x+ y)ei2πω̂A+B(x+y) = ρA+B(x+ y).

Also, if α ∈ K, then λA+B(x) = rA+B(x)ei2πωA+B(x), and

rA+B(x) = sup
x=a+b

{rA(a) ∧ rB(b)}

≤ sup
αx=αa+αb

{rA(αa) ∧ rB(αb)}

≤ sup
αx=c+d

{rA(c) ∧ rB(d)}

= rA+B(αx).

Similarly, ωA+B(x) ≤ ωA+B(αx). Hence,

λA+B(x) = rA+B(x)e
i2πωA+B(x) ≤ rA+B(αx)e

i2πωA+B(αx) = λA+B(αx).

Because ρA+B(x) = r̂A+B(x)ei2πω̂A+B(x), and

r̂A+B(x) = inf
x=a+b

{r̂A(a) ∨ r̂B(b)}

≥ inf
αx=αa+αb

{r̂A(αa) ∨ r̂B(αb)}

≥ inf
αx=c+d

{r̂A(c) ∨ r̂B(d)}

= r̂A+B(αx),

then we also have ω̂A+B(x) ≥ ω̂A+B(αx). As a result,

ρA+B(x) = r̂A+B(x)e
i2πω̂A+B(x) ≥ r̂A+B(αx)e

i2πω̂A+B(αx) = ρA+B(αx).

Consequently, A+B = (λA+B , ρA+B) is a CIF vector subspaces of V .

Definition 2.5. Let A = (λA, ρA) be a CIF vector subspace of a K-vector space V . For α ∈ K
and x ∈ V , define αA = (λαA, ραA), where

λαA(x) =


λA(α−1x) = rA(α−1x)ei2πωA(α−1x) : α ̸= 0
1 : α = 0, x = 0
0 : α = 0, x ̸= 0

and

ραA(x) =


ρA(α−1x) = r̂A(α−1x)ei2πω̂A(α−1x) : α ̸= 0
0 : α = 0, x = 0
1 : α = 0, x ̸= 0
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Definition 2.6. Let V , V ′ be K-vector spaces and let f : V → V ′ be any map. If A = (λA, ρA),
B = (λB , ρB) are CIF vector subspaces of V , V ′, respectively, then the preimage of B under f
is defined to be a CIF set f−1(B) = (λf−1 , ρf−1), where λf−1(x) = λB(f(x)) and ρf−1(x) =
ρB(f(x)) for any x ∈ V and the image of A = (λA, ρA) under f is defined to be the CIF set
f(A) = (λf(A), ρf(A)) where

λf(A)(y) =

 sup
x∈f−1(y)

{λA(x)} = sup
x∈f−1(y)

{rA(x)ei2πωA(x)} : y ∈ f(V )

0 : y ̸∈ f(V )

and

ρf(A)(y) =

 inf
x∈f−1(y)

{ρA(x)} = inf
x∈f−1(y)

{r̂A(x)ei2πω̂A(x)} : y ∈ f(V )

1 : y ̸∈ f(V ).

The following results are easy to get. Here we omit the proofs.

Lemma 2.2. Let A = (λA, ρA), where λA = rAe
i2πωA and ρA = r̂Ae

i2πω̂A , be a CIF vector
subspace of V . Then αA = (λαA, ραA) is also a CIF vector subspace of V .

Lemma 2.3. Let A = (λA, ρA), where λA = rAe
i2πωA and ρA = r̂Ae

i2πω̂A , be a CIF vector
subspace of V ′ and f : V → V ′ any map. Then f−1(A) = (λf−1(A), ρf−1(A)) is also a CIF vector
subspace of V , where λf−1(A)(x) = λA(f(x)) and ρf−1(A)(x) = ρA(f(x)) for all x ∈ V .

Lemma 2.4. Let f : V → V ′ be any map. If A = (λA, ρA), where λA = rAe
i2πωA and

ρA = r̂Ae
i2πω̂A , is a CIF vector subspace of V , then f(A) = (λf(A), ρf(A)) is a CIF vector

subspace of V ′.

Lemma 2.5. Let A = (λA, ρA) and B = (λB , ρB) be CIF vector subspace of V such that A
is homogenous with B, where λA = rAe

i2πωA , ρA = r̂Ae
i2πω̂A and λB = rBe

i2πωB , ρB =
r̂Be

i2πω̂B . Then A ∩B = (λA∩B , ρA∩B) is a CIF vector subspace of V , where

λA∩B(x) = λA(x) ∧ λB(x)

= (rA(x) ∧ rB(x))e
i2π(ωA(x)∧ωB(x))

and

ρA∩B(x) = ρA(x) ∨ ρB(x)

= (r̂A(x) ∨ r̂B(x))e
i2π(ω̂A(x)∨ω̂B(x))

Definition 2.7. A Z2-graded vector space V = V0 + V1 possessing the operation called the
bilinear bracket product,

[ , ] : V × V
bilinear−→ [x, y] ∈ V

is called a Lie superalgebra, if it satisfies the following conditions
(1) [Vi, Vj ] ⊆ Vi+j

(2) [x, y] = −(−1)|x||y|[y, x] ∀x, y ∈ V0 ∪ V1
(3) [x, [y, z]]− (−1)|x||y|[y, [x, z]] = [[x, y], z]

3 Complex intuitionistic fuzzy lie sub-superalgebras and ideals

In this section we assume that V is a Lie superalgebra over a field K.

Definition 3.1. Let V = V0 +V1 be a Z2-graded vector space. Suppose that A0 = (λA0 , ρA0) and
A1 = (λA1 , ρA1) are CIF vector subspaces of V0 and V1, respectively. Define a0 = (λa0 , ρa0),
where

λa0(x) =

{
λA0(x) : x ∈ V0

0 : x ̸∈ V0
and ρa0(x) =

{
ρA0(x) : x ∈ V0

1 : x ̸∈ V0,

and define a1 = (λa1 , ρa1) where

λa1(x) =

{
λA1(x) : x ∈ V1

0 : x ̸∈ V1
and ρa1(x) =

{
ρA1(x) : x ∈ V1

1 : x ̸∈ V1.
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Then a0 = (λa0 , ρa0) and a1 = (λa1 , ρa1) are the CIF vector subspaces of V . Moreover, we
have a0 ∩ a1 = (λa0∩a1 , ρa0∩a1), where

λa0∩a1(x) = λa0(x) ∧ λa1(x) =

{
1 : x = 0
0 : x ̸= 0,

and

ρa0∩a1(x) = ρa0(x) ∨ ρa1(x) =

{
0 : x = 0
1 : x ̸= 0.

So a0+a1 is the direct sum and is denoted by A0 ⊕A1. If A = (λA, ρA) is a CIF vector subspace
of V and A = A0 ⊕A1, then A = (λA, ρA) is called a Z2-graded CIF vector subspace of V .

Remark 3.2. (1)

λA(x) = λA0⊕A1(x)

= sup
x=α+β

{λa0(α) ∧ λa1(β)}

= sup
x=α+β

{λa0(α0 + α1) ∧ λa1(β0 + β1)}, where α = α0 + α1, β = β0 + β1

= sup
x=α+β

{λa0(α0) ∧ λa1(β1)}

= sup
x=α+β

{ra0(α0)e
i2πωa0 (α0) ∧ ra1(β1)e

i2πωa1 (β1)}

= ra0(x0)e
i2πωa0 (x0) ∧ ra1(x1)e

i2πωa1 (x1)

= rA0(x0)e
i2πωA0 (x0) ∧ rA1(x1)e

i2πωA1 (x1)

= λA0(x0) ∧ λA1(x1).

(2) A0 = (λA0 , ρA0) and A1 = (λA1 , ρA1) are the even and odd parts of A = (λA, ρA) (respec-
tively).
(3) a0 = (λa0 , ρa0) and a1 = (λa1 , ρa1) are extensions of A0 = (λA0 , ρA0) and A1 = (λA1 , ρA1)
(respectively).

Definition 3.3. Let A = (λA, ρA) be CIF set of V . Then A = (λA, ρA) is called a complex fuzzy
lie sub-superalgebra of V , if it satisfies the following two conditions:
(1) A = (λA, ρA) is a Z2-graded CIF vector space and
(2) λA([x, y]) ≥ λA(x) ∧ λA(y) and ρA([x, y]) ≤ ρA(x) ∨ ρA(y).
If the condition(2) is replaced by
(3) λA([x, y]) ≥ λA(x) ∨ λA(y) and ρA([x, y]) ≤ ρA(x) ∧ ρA(y),
then A = (λA, ρA) is called a CIF ideal of V .

Example 3.4. Let N = N0 ⊕ N1, where N0 =< e >, N1 =< a1, ..., an, b1, ..., bn >, and
[ai, bi] = e, i = 1, ..., n, the remaining brackets being zero. Then, N is Lie superalgebra (see
[15, page 11]). Define A0 = (λA0 , ρA0), where

λA0 : N0 → C by λA0(x) =

{
0.7ei(1.4)π : 0 ̸= x ∈ N0

1 : x = 0,

ρA0 : N0 → C by ρA0(x) =

{
0.2ei(0.4)π : 0 ̸= x ∈ N0

0 : x = 0.

Also, define A1 = (λA1 , ρA1), where

λA1 : N1 → C by λA1(x) =

{
0.5eiπ : 0 ̸= x ∈ N1

1 : x = 0,
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ρA1 : N1 → C by ρA1(x) =

{
0.4ei(0.8)π : 0 ̸= x ∈ N1

0 : x = 0.

Define A = (λA, ρA). Then, by Definition 3.1, A = A0 ⊕ A1, and so A = (λA, ρA) is a Z2-
graded CIF vector subspace of N . Moreover, it is easy to check that A = (λA, ρA) is a CIF ideal
of N .

For any complex fuzzy set λ = rei2πω of V , we define the image of λ by

Im(λ) = {(t, s) ∈ [0, 1]× [0, 1] : λ(x) = r(x)ei2πω(x) = tei2πs for some x ∈ V }

Definition 3.5. For any t, s ∈ [0, 1] and complex fuzzy subset λ = rei2πω of V , the set
U(λ, (t, s)) = {x ∈ V | r(x) ⩾ t and ω(x) ⩾ s} is called an upper (t, s)-level cut of λ,
L(λ, (t, s)) = {x ∈ V | r(x) ⩽ t and ω(x) ⩽ s} is called a lower (t, s)-level cut of λ.

Suppose that λA(x) = rA(x)ei2πωA(x) and ρA(x) = r̂A(x)ei2πω̂A(x), then the following result
holds

Theorem 3.6. If A = (λA, ρA) is a CIF lie sub-superalgebra (respectively CIF lie ideal) of V ,
then the sets U(λA, (t, s)) and L(ρA, (t, s)) are lie sub-superalgebras (respectively ideals) of V
for every (t, s) ∈ Im(λA) ∩ Im(ρA).

Proof. Let (t, s) ∈ Im(λA) ∩ Im(ρA) ⊆ [0, 1] × [0, 1], x, y ∈ U(λA, (t, s)). Let α ∈ K. Be-
cause A = (λA, ρA) is a CIF lie sub-superalgebra. Then λA(x + y) = rA(x + y)ei2πω(x+y) ⩾
rA(x)ei2πωA(x) ∧ rA(y)ei2πωA(y) = λA(x) ∧ λA(y) ⩾ tei2πs, since rA(x + y) ⩾ rA(x) ∧
rA(y) ⩾ t and ωA(x + y) ⩾ ωA(x) ∧ ωA(y) ⩾ s. Moreover, λA(αx) = rA(αx)ei2πωA(αx) ⩾
rA(x)ei2πωA(x) ⩾ tei2πs, since rA(αx) ⩾ rA(x) ⩾ t and ωA(αx) ⩾ ωA(x) ⩾ s. As a result,
x+ y, αx ∈ U(λA, (t, s)). Let x ∈ U(λA, (t, s)) ⊆ V, then x = x0 +x1, where x0 ∈ V0, x1 ∈ V1.
Hence,

λA(x) = rA(x)e
i2πωA(x)

= λA0(x0) ∧ λA1(x1)

= rA0(x0)e
i2πωA0 (x0) ∧ rA1(x1)e

i2πωA1 (x1)

⩾ (rA0(x0) ∧ rA1(x1))e
i2π(ωA0 (x0)∧ωA1 (x1))

⩾ tei2πs.

As a result, if λA0(x0) ⩾ λA1(x1), then

λA(x1) = rA(x1)e
i2πωA(x1)

= rA1(x1)e
i2πωA1 (x1)

= λA1(x1)

⩾ tei2πs,

implies that x1 ∈ U(λA, (t, s)) and

λA(x0) = λA0(x0)

= rA0(x0)e
i2πωA0 (x0)

⩾ λA1(x1)

⩾ tei2πs,

implies that x0 ∈ U(λA, (t, s)). Similarly, if λA1(x1) ⩾ λA0(x0), then x0, x1 ∈ U(λA, (t, s)).
Consequently, U(λA, (t, s)) is a Z2-graded vector subspace of V for any (t, s) ∈ Im(λA) ∩
Im(ρA). Let (t, s) ∈ Im(λA) ∩ Im(ρA) and x, y ∈ U(λA, (t, s)). Then λA(x) ⩾ tei2πs implies
that rA(x) ⩾ t, ωA(x) ⩾ s. Also, λA(y) ⩾ tei2πs implies that rA(y) ⩾ t, ωA(y) ⩾ s. As a result,
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λA([x, y]) ⩾ λA(x) ∧ λA(y) ⩾ tei2πs. Which implies that [x, y] ∈ U(λA, (t, s)). Therefore,
U(λA, (t, s)) is a lie sub-superalgebra of V for any (t, s) ∈ Im(λA) ∩ Im(ρA). Similarly, if
x ∈ L(ρA, (t, s)) ⊆ V , then x = x0 + x1, where x0 ∈ V0, x1 ∈ V1. Therefore,

ρA(x) = r̂A(x)e
i2πω̂A(x)

= ρA0(x0) ∨ ρA1(x1)

= r̂A0(x0)e
i2πω̂A0 (x0) ∨ r̂A1(x1)e

i2πω̂A1 (x1)

⩽ (r̂A0(x0) ∨ r̂A1(x1))e
i2π(ω̂A0 (x0)∨ω̂A1 (x1))

⩽ tei2πs.

As a result, if ρA0(x0) ⩾ ρA1(x1), then ρA(x0) = ρA0(x0) ⩽ tei2πs implies that x0 ∈ L(ρA, (t, s)),
and ρA(x1) = ρA1(x1) ⩽ ρA0(x0) ⩽ tei2πs implies that x1 ∈ L(ρA, (t, s)). Similarly, if
ρA1(x1) ⩾ ρA0(x0), then x0, x1 ∈ L(ρA, (t, s)). Consequently, L(ρA, (t, s)) is a Z2-graded
vector subspace of V for any (t, s) ∈ Im(λA) ∩ Im(ρA). Also, if (t, s) ∈ Im(λA) ∩ Im(ρA) and
x, y ∈ L(ρA, (t, s)), then ρA(x) ⩽ tei2πs and ρA(y) ⩽ tei2πs. Which implies that ρA([x, y]) ⩽
ρA(x) ∨ ρA(y) ⩽ tei2πs. As a result, [x, y] ∈ L(ρA, (t, s)). Accordingly, L(ρA, (t, s)) is a lie
sub-superalgebra of V for any (t, s) ∈ Im(λA) ∩ Im(ρA).

Suppose that A = (λA, ρA) is a CIF set of V , where λA(x) = rA(x)ei2πωA(x) and ρA(x) =
r̂A(x)ei2πω̂A(x). Then we define λc

A(x) by λc
A(x) = (1 − rA(x))ei2π(1−ωA(x)) and ρcA by ρcA =

(1 − r̂A(x))ei2π(1−ω̂A(x)).

Definition 3.7.
(1) Ac = {(x, λA(x), λc

A(x)) : x ∈ V }. Shortly Ac = (λA, λ
c
A).

(2) AL = {(x, ρcA(x), ρA(x)) : x ∈ V }. Shortly AL = (ρcA, ρA).

Theorem 3.8.
(1) If A = (λA, ρA) is a CIF lie sub-suberalgebra (respectively CIF ideal) of V , then so is Ac.
(2) If A = (λA, ρA) is a CIF lie sub-superalgebra (respectively CIF ideal) of V , then so is AL.

Proof. (1) Since (λA, ρA) is a Z2-graded CIF vector subspace of V , A = A0 + A1, where
A0 = (λA0 , ρA0), A1 = (λA1 , ρA1) are CIF vector subspaces of V0 and V1 (respectively). Also, if
x ∈ V , then λA(x) = supx=a+b{ λA0(a)∧λA1(b)}. Define Ac

0 = (λA0 , λ
c
A0
), Ac

1 = (λA1 , λ
c
A1
) and

define ac0 = (λa0 , λ
c
a0
) and ac1 = (λa1 , λ

c
a1
). Obviously, (ac0, a

c
1) are the extensions of (Ac

0, A
c
1).

In order to prove Ac = ac0 + ac1 we only need to show that λc
A(x) = infx=a+b{λc

a0
(a) ∨ λc

a1
(b)}.

Since A is homogeneous indeed,

1 − λc
A(x) = sup

x=a+b

{(1 − λc
a0
(a)) ∧ (1 − λc

a1
(b))}

= sup
x=a+b

{(1 − (λc
a0
(a) ∨ λc

a1
(b))}

= sup
x=a+b

{1 − ((1 − ra0(a))e
i2π(1−wa0 (a)) ∨ (1 − ra1(b))e

i2π(1−ωa1 (b)))}

= sup
x=a+b

{1 − ((1 − ra0(a) ∨ 1 − ra1(b))e
i2π((1−ωa0 (a))∨(1−ωa1 (b))))}

= 1 − inf
x=a+b

{1 − ra0(a) ∨ 1 − ra1(b)}ei2π(1−(1−ωa0 (a)∨1−wa1 (b)))

= 1 − inf
x=a+b

{(1 − ra0(a))e
i2π(1−wa0 (a)) ∨ (1 − ra1(b))e

i2π(1−ωa1 (b))}

= 1 − inf
x=a+b

{λc
a0
(a) ∨ λc

a1
(b)},

which implies that λc
A(x) = inf

x=a+b
{λc

a0
(a) ∨ λc

a1
(b)} = λc

A0
(x0) ∨ λc

A1
(x1). Moreover, it is easy

to see that λc
a0
(x) ∨ λc

a1
(x) =

{
0 : x = 0
1 : x ̸= 0

. As a result, Ac = Ac
0 ⊕ Ac

1 is a Z2-graded CIF

vector subspace of V . Let x, y ∈ V . Since λA([x, y]) ≥ λA(x) ∧ λA(y), 1 − λc
A([x, y]) ≥
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(1 − λc
A(x)) ∧ (1 − λc

A(y)), which implies that 1 − λc
A([x, y]) ≥ 1 − (λc

A(x) ∨ λc
A(y)). Thus,

λc
A([x, y]) ≤ λc

A(x) ∨ λc
A(y). As a result, Ac = (λA, λ

c
A) is a CIF lie sub-superalgebra of V . By

using the same argument used above, we can prove the case of CIF ideal.
(2) The proof is similar to the proof in (1).

By using the above result, it is not difficult to verify that the following theorem is valid.

Theorem 3.9. A = (λA, ρA) is a CIF lie sub-superalgebra (respectively CIF ideal) of V If and
only If Ac and AL are CIF lie sub-superalgebras (respectively CIF ideals) of V .

Theorem 3.10. If A = (λA, ρA) is a CIF set of V such that all non-empty level sets U(λA, (t, s))
and L(ρA, (t, s)) are lie sub-superalgebras (respectively ideals)of V , then A = (λA, ρA) is CIF
lie sub-superalgebra (respectively CIF ideal) of V .

Proof. Let x, y ∈ V and let α ∈ K. We may assume that λA(y) ≥ λA(x) = t1e
i2πs1 ρA(y) ≤

ρA(x) = t0e
i2πs0 , where t1, s1, t0, s0 ∈ [0, 1]. Then x, y ∈ U(λA, (t1, s1)) and x, y ∈ L(ρA, (t0, s0)).

Because U(λA, (t1, s1)) and L(ρA, (t0, s0)) are vector subspaces of V , x+y, αx ∈ U(λA, (t1, s1))
and x+y, αx ∈ L(ρA, (t0, s0)). As a result, λA(αx) ≥ λA(x) = t1e

i2πs1 , λA(x+y) ≥ t1e
i2πs1 =

λA(x)∧λA(y) and ρA(αx) ⩽ t0e
i2πs0 = ρA(x), ρA(x+y) ⩽ t0e

i2πs0 = ρA(x)∨ρA(y). Now, we
show that A = (λA, ρA) has a Z2-graded structure. Define A0 = (λA0 , ρA0), where λA0 : V0 → C
by x 7→ λA(x), ρA0 : V0 → C, by x 7→ ρA(x). Also, define A1 = (λA1 , ρA1), where λA1 : V1 → C
by x 7→ λA(x), ρA1 : V1 → C by x 7→ ρA(x). We extend A0 = (λA0 , ρA0), A1 = (λA1 , ρA1) to
a0 = (λa0 , ρa0), a1 = (λa1 , ρa1) as follows. Define a0 = (λa0 , ρa0) by

λa0(x) =

{
λA0(x) if x ∈ V0

0 if x ̸∈ V0
, ρa0(x) =

{
ρA0(x) if x ∈ V0

1 if x ̸∈ V0.

Also, define a1 = (λa1 , ρa1) by

λa1(x) =

{
λA1(x) if x ∈ V1

0 if x ̸∈ V1
, ρa1(x) =

{
ρA1(x) if x ∈ V1

1 if x ̸∈ V1.

Then it is obvious that a0, a1 are CIF vector subspaces of V , and for any 0 ̸= x ∈ V we have
a0 ∩ a1 = (λa0(x) ∧ λa1(x), ρa0(x) ∨ ρa1(x)) = (0, 1). To show that A = A0 ⊕ A1, let x ∈ V .
We may assume that λA(x) = tei2πs, for some t, s ∈ [0, 1], then x ∈ U(λA, (t, s)). Because
U(λA, (t, s)) is a Z2 -graded vector subspace of V , x = x0 + x1, where x0 ∈ V0 ∩ U(λA, (t, s))
and x1 ∈ V1 ∩ U(λA, (t, s)). Since tei2πs = λA(x) = λA(x0 + x1) ≥ λA(x0) ∧ λA(x1), if
λA(x0) ≥ λA(x1), then tei2πs ≥ λA(x1) ≥ tei2πs. As a result, λA(x1) = tei2πs. Similarly, if
λA(x1) ≥ λA(x0), then λA(x0) = tei2πs. Hence

λA(x) = tei2πs

= {λA(x0) ∧ λA(x1)|x = x0 + x1}
= {λA0(x0) ∧ λA1(x1)|x = x0 + x1}
= sup

x=a+b

{λa0(a) ∧ λa1(b)}

= λa0+a1(x)

= λA0⊕A1(x) ( Since a0 ∩ a1 = (0, 1) ).

Similarly, if we assume that ρA(x) = tei2πs, for some t, s ∈ [0, 1], then x ∈ L(ρA, (t, s)).
Because L(ρA, (t, s)) is a Z2-graded vector subspace of V , x = x0 + x1, where x0 ∈ V0 ∩
L(ρA, (t, s)) and x1 ∈ V1∩L(ρA, (t, s)). Since tei2πs = ρA(x) = ρA(x0+x1) ≤ ρA(x0)∧ρA(x1),
if ρA(x0) ≥ ρA(x1), then tei2πs ≤ ρA(x0) ≤ tei2πs. As a result, ρA(x0) = tei2πs. Similarly, if
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ρA(x1) ≥ ρA(x0), then ρA(x1) = tei2πs. Hence

ρA(x) = tei2πs

= {ρA(x0) ∨ ρA(x1)|x = x0 + x1}
= {ρA0(x0) ∨ ρA1(x1)|x = x0 + x1}
= inf

x=a+b
{ρa0(a) ∨ ρa1(b)}

= ρa0+a1(x)

= ρA0⊕A1(x).

Therefore, A = A0 ⊕ A1. Consequently, A = (λA, ρA) is a CIF vector subspace of V . Let
x, y ∈ V. Assume that λA(y) ≥ λA(x) ≥ tei2πs, where t, s ∈ [0, 1]. Then x, y ∈ U(λA, (t, s)).
Because U(λA, (t, s)) is a lie sub-superalgebra of V , [x, y] ∈ U(λA, (t, s)). Hence, λA([x, y]) ≥
tei2πs = λA(x) ∧ λA(y).
Furthermore, assume that ρA(x) ≤ tei2πs ≤ ρA(y) for some t, s ∈ [0, 1]. Then x, y ∈ L(ρA, (t, s)).
Because L(ρA, (t, s)) is a lie sub-superalgebra of V , [x, y] ∈ L(ρA, (t, s)). Hence, ρA([x, y]) ≤
tei2πs ≤ ρA(x) ∨ ρA(y). Accordingly, A = (λA, ρA) is CIF lie sub-superalgebra of V . The case
of CIF ideal is similar to show.

Let A = (λA, ρA), B = (λB , ρB) be CIF vector subspaces of V , where λA = rAe
i2πωA , λB =

rBe
i2πωBand ρA = r̂Ae

i2πω̂A , ρB = r̂Be
i2πω̂B . We recall that if A is homogenous with B, then,

by definition 2.4, the CIF set A+B = (λA+B , ρA+B) of V is defined by

λA+B(x) = sup
x=a+b

{(rA(a) ∧ rB(b))}ei2π supx=a+b{(ωA(a)∧ωB(b))}

= rA+B(x)e
i2πωA+B(x),

and

ρA+B(x) = inf
x=a+b

{(r̂A(a) ∨ r̂B(b))}ei2π infx=a+b{(ω̂A(a)∨ω̂B(b))}

= r̂A+B(x)e
i2πω̂A+B(x).

We show that the following two results hold.

Theorem 3.11. If A = (λA, ρA) and B = (λB , ρB) are CIF lie sub-superalgebras (CIF ideals)
of V = V0 + V1, respectively, then so is A+B = (λA+B , ρA+B).

Proof. For α = 0, 1, define (A+B)α = (λ(A+B)α , ρ(A+B)α), where λ(A+B)α = λAα + λBα and
ρ(A+B)α = ρAα

+ρBα
. By Lemma 2.1, we know that they are CIF subspaces of Vα (respectively).

Also, for α = 0, 1, define (a + b)α = (λ(a+b)α , ρ(a+b)α), where λ(a+b)α = λaα + λbα
and

ρ(a+b)α = ρaα
+ρbα

. Obviously, (a+b)α are extensions of (A+B)α for α = 0, 1 (respectively).
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Let x ∈ V . Then

λ(A+B)(x) = sup
x=a+b

{λA(a) ∧ λB(b)}

= sup
x=a+b

{λa0+a1(a) ∧ λb0+b1(b)}

= sup
x=a+b

{ sup
a=m+n

{λa0(m) ∧ λa1(n)} ∧ sup
b=k+l

{λb0(k) ∧ λb1(l)}}

= sup
x=a+b

{ sup
a=m+n

{ra0(m)ei2πωa0 (m) ∧ ra1(n)e
i2πωa1 (n)}

∧ sup
b=k+l

{rb0(k)e
i2πωb0 (k) ∧ rb1(l)e

i2πωb1 (l)}}

= sup
x=a+b

{ sup
a+b=m+n+k+l

{ra0(m)ei2πωa0 (m) ∧ ra1(n)e
i2πωa1 (n)

∧ rb0(k)e
i2πωb0 (k) ∧ rb1(l)e

i2πωb1 (l)}}

= sup
a+b=m+n+k+l

{ra0(m)ei2πωa0 (m) ∧ rb0(k)e
i2πωb0 (k)} ∧ sup

a+b=m+n+k+l

{ra1(n)e
i2πωa1 (n)

∧ rb1(l)e
i2πωb1 (l)}

= sup
a+b=m+n+k+l

{ sup
m+k

{(ra0(m) ∧ rb0(k))e
i2π(ωa0 (m)∧ωb0 (k))}

∧ sup
n+l

{(ra1(n) ∧ rb1(l))e
i2π(ωa1 (n)∧ωb1 (l))}}

= sup
x=m+n+k+l

{ra0+b0(m+ k)ei2πωa0+b0 (m+k) ∧ ra1+b1(n+ l)ei2πωa1+b1 (n+l)}

= ra0+b0+a1+b1(x)e
i2πωa0+b0+a1+b1 (x)

= λ(a+b)0+(a+b)1
(x),

and

ρ(A+B)(x) = inf
x=a+b

{ρA(a) ∨ ρB(b)}

= inf
x=a+b

{ρa0+a1(a) ∨ ρb0+b1(b)}

= inf
x=a+b

{ inf
a=m+n

{ρa0(m) ∨ ρa1(n)} ∨ inf
b=k+l

{ρb0(k) ∨ ρb1(l)}}

= inf
x=a+b

{ inf
a=m+n

{r̂a0(m)ei2πω̂a0 (m) ∨ r̂a1(n)e
i2πω̂a1 (n)}

∨ inf
b=k+l

{r̂b0(k)e
i2πω̂b0 (k) ∨ r̂b1(l)e

i2πω̂b1 (l)}}

= inf
x=a+b

{ inf
a+b=m+n+k+l

{r̂a0(m)ei2πω̂a0 (m) ∨ r̂a1(n)e
i2πω̂a1 (n)

∨ r̂b0(k)e
i2πω̂b0 (k) ∨ r̂b1(l)e

i2πω̂b1 (l)}}

= inf
a+b=m+n+k+l

{r̂a0(m)ei2πω̂a0 (m) ∨ r̂b0(k)e
i2πω̂b0 (k)}

∨ inf
a+b=m+n+k+l

{r̂a1(n)e
i2πω̂a1 (n) ∨ r̂b1(l)e

i2πω̂b1 (l)}

= inf
a+b=m+n+k+l

{ inf
m+k

{(r̂a0(m) ∨ r̂b0(k))e
i2π(ω̂a0 (m)∨ω̂b0 (k))}

∨ inf
n+l

{(r̂a1(n) ∨ r̂b1(l))e
i2π(ω̂a1 (n)∨ω̂b1 (l))}}

= inf
x=m+n+k+l

{r̂a0+b0(m+ k)ei2πω̂a0+b0 (m+k) ∨ r̂a1+b1(n+ l)ei2πω̂a1+b1 (n+l)}

= r̂a0+b0+a1+b1(x)e
i2πω̂a0+b0+a1+b1 (x)

= ρ(a+b)0+(a+b)1
(x).
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Moreover, if 0 ̸= x ∈ V then

λ(a+b)0
(x) ∧ λ(a+b)1

(x) = sup
x=a+b

{λa0(a) ∧ λb0(b)} ∧ sup
x=a+b

{λa1(a) ∧ λb1(b)}

= 0

ρ(a+b)0
(x) ∨ ρ(a+b)1

(x) = inf
x=a+b

{ρa0(a) ∨ ρb0(b)} ∨ inf
x=a+b

{ρa1(a) ∨ ρb1(b)}

= 1.

As a result, A+B is a Z2-CIF vector subspaces of V .
(1) Let x, y ∈ V , we need to show that λA+B([x, y]) ≥ λA+B(x)∨ λA+B(y) and ρA+B([x, y]) ≤
ρA+B(x)∧ ρA+B(y). Suppose that λA+B([x, y]) < λA+B(x)∨ λA+B(y). Without loss of gener-
ality, we may assume that λA+B([x, y]) < λA+B(x). Then

λA+B([x, y]) = rA+B([x, y])e
i2πωA+B([x,y]) < rA+B(x)e

i2πωA+B(x).

Hence, rA+B([x, y]) < rA+B(x) or ωA+B([x, y]) < ωA+B(x), since A + B is homogenous.
Again, without loss of generality, we may assume that rA+B([x, y]) < rA+B(x). Choose a
number t ∈ [0, 1], such that rA+B([x, y]) < t < rA+B(x). Then there exist a, b ∈ V with
x = a+ b such that rA(a) > t and rB(b) > t. So,

rA+B([x, y]) = sup
[x,y]=[a′ ,y]+[b′ ,y]

{rA([a
′
, y]) ∧ rB([b

′
, y])}

≥ sup
[x,y]=[a′ ,y]+[b′ ,y]

{rA(a
′
) ∧ rB(b

′
)} (A,B are ideals)

> t > rA+B([x, y]),

which is a contradiction. Similarly, suppose that ρA+B([x, y]) > ρA+B(x) ∧ ρA+B(y). Then
ρA+B([x, y]) > ρA+B(x) or ρA+B([x, y]) > ρA+B(y). Without loss of generality, we may as-
sume that ρA+B([x, y]) > ρA+B(x). Then r̂A+B([x, y]) > r̂A+B(x) or ω̂A+B([x, y]) > ω̂A+B(x),
since A+B is homogenous. Again, without loss of generality, we may assume that r̂A+B([x, y]) >
r̂A+B(x). Choose a number t ∈ [0, 1], such that r̂A+B([x, y]) > t > r̂A+B(x). Then there exist
a, b ∈ V with x = a+ b such that r̂A(a) < t and r̂B(b) < t. So,

r̂A+B([x, y]) = inf
[x,y]=[a′ ,y]+[b′ ,y]

{r̂A([a
′
, y]) ∨ r̂B([b

′
, y])}

≤ inf
[x,y]=[a′ ,y]+[b′ ,y]

{r̂A(a
′
) ∨ r̂B(b

′
)} (A,B are ideals)

< t < r̂A+B([x, y]),

which is a contradiction. Therefore, A+B = (λA+B , ρA+B) is a CIF ideal of V .
(2) Let x, y ∈ V , we need to show that λA+B([x, y]) ≥ λA+B(x)∧ λA+B(y) and ρA+B([x, y]) ≤
ρA+B(x) ∨ ρA+B(y). Suppose that λA+B([x, y]) < λA+B(x) ∧ λA+B(y), then

rA+B([x, y])e
i2πωA+B([x,y]) < rA+B(x)e

i2πωA+B(x) ∧ rA+B(y)e
i2πωA+B(y)

implies that rA+B([x, y])ei2πωA+B([x,y]) < (rA+B(x) ∧ rA+B(y))ei2π(ωA+B(x)∧ωA+B(y)). Hence,

rA+B([x, y]) < rA+B(x) ∧ rA+B(y) or ωA+B([x, y]) < ωA+B(x) ∧ ωA+B(y).

If rA+B([x, y]) < rA+B(x) ∧ rA+B(y), then rA+B([x, y]) < rA+B(x) and rA+B([x, y]) <
rA+B(y). Choose a number t ∈ [0, 1] such that rA+B([x, y]) < t < rA+B(x) ∧ rA+B(y). Then
there exist a, b, c, d ∈ V with x = a+ b and y = c+ d such that rA(a) > t, rB(b) > t, rA(c) > t,
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rB(d) > t. Thus,

rA+B([x, y]) = sup
[x,y]=[a′ ,y]+[b′ ,y]

{rA([a
′
, y]) ∧ rB([b

′
, y])}

= sup
[x,y]=[a′+b′ ,c′+d′ ]

{rA([a
′
, c

′
+ d

′
]) ∧ rB([b

′
, c

′
+ d

′
])}

= sup
[x,y]=[a′+b′ ,c′+d′ ]

{rA([a
′
, c

′
]) ∧ rA([a

′
, d

′
]) ∧ rB([b

′
, c

′
]) ∧ rB([b

′
, d

′
])}

= sup
x=a′+b′ ,y=c′+d′

{ sup
[a′ ,c′+d′ ]

{rA(a
′
) ∧ rA(c

′
) ∧ rA(d

′
)}

∧ sup
[a′ ,c′+d′ ]

{rA(a
′
) ∧ rA(c

′
) ∧ rA(d

′
)}}

= sup
x=a′+b′

{rA(a
′
) ∧ rB(b

′
)} ∧ sup

y=c′+d′
{rA(c

′
) ∧ rA(d

′
)}

∧ sup
y=c′+d′

{rB(c
′
) ∧ rB(d

′
)}

≥ sup
x=a′+b′

{rA(a
′
) ∧ rB(b

′
)} ∧ rA(c) ∧ rB(d)

≥ rA(a) ∧ rB(b) ∧ rA(c) ∧ rB(d)

> t > rA+B([x, y]),

a contradiction. The other case can be proved similarly, so λA+B([x, y]) ≥ λA+B(x)∧λA+B(y).
Similarly, if we assume that ρA+B([x, y]) > ρA+B(x) ∨ ρA+B(y), then

r̂A+B([x, y])e
i2πω̂A+B([x,y]) > (r̂A+B(x) ∨ r̂A+B(y))e

i2π(ω̂A+B(x)∨ω̂A+B(y)),

which implies that r̂A+B([x, y]) > r̂A+B(x)∨ r̂A+B(y) or ω̂A+B([x, y]) > ω̂A+B(x)∨ ω̂A+B(y).
Without loss of generality we may assume that r̂A+B([x, y]) > r̂A+B(x) ∨ r̂A+B(y), since A,B
are homogenous. Choose a number t ∈ [0, 1], such that r̂A+B([x, y]) > t > r̂A+B(x)∨ r̂A+B(y).
Then there exist a, b, c, d ∈ V with x = a+ b and y = c+ d such that r̂A(a) < t, r̂B(b) < t and
r̂A(c) < t, r̂B(d) < t. Therefore,

r̂A+B([x, y]) = inf
[x,y]=[a′ ,y]+[b′ ,y]

{r̂A([a
′
, y]) ∨ r̂B([b

′
, y])}

= inf
[x,y]=[a′+b′ ,c′+d′ ]

{r̂A([a
′
, c

′
+ d

′
]) ∨ r̂B([b

′
, c

′
+ d

′
])}

= inf
[x,y]=[a′+b′ ,c′+d′ ]

{r̂A([a
′
, c

′
]) ∨ r̂A([a

′
, d

′
]) ∨ r̂B([b

′
, c

′
]) ∨ r̂B([b

′
, d

′
])}

= inf
x=a′+b′ ,y=c′+d′

{ inf
[a′ ,c′+d′ ]

{r̂A(a
′
) ∨ r̂A(c

′
) ∨ r̂A(d

′
)}

∨ inf
[a′ ,c′+d′ ]

{r̂A(a
′
) ∨ r̂A(c

′
) ∨ r̂A(d

′
)}}

= inf
x=a′+b′

{r̂A(a
′
) ∨ r̂B(b

′
)} ∨ inf

y=c′+d′
{r̂A(c

′
) ∨ r̂A(d

′
)}

∨ inf
y=c′+d′

{r̂B(c
′
) ∨ r̂B(d

′
)}

≤ inf
x=a′+b′

{r̂A(a
′
) ∨ r̂B(b

′
)} ∨ r̂A(c) ∨ r̂B(d)

≤ r̂A(a) ∨ r̂B(b) ∨ r̂A(c) ∨ r̂B(d)

< t < r̂A+B([x, y]),

a contradiction. The other case can be proved similarly, so ρA+B([x, y]) ≤ ρA+B(x)∨ ρA+B(y).
Accordingly, we conclude that A+B = (λA+B , ρA+B) is a CIF lie subsuperalgebra of V .
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Theorem 3.12. If A = (λA, ρA) and B = (λB , ρB) are CIF lie sub-superalgebras (respectively
CIF ideals) of V = V0 + V1, then so is A ∩B = (λA∩B , ρA∩B).

Proof. By Definition 3.1 and Definition 3.3, A = A0 ⊕ A1 and B = B0 ⊕ B1. For α = 0, 1
define (A∩B)α = (λ(A∩B)α , ρ(A∩B)α), where λ(A∩B)α = λAα

∩λBα
and ρ(A∩B)α = ρAα

∩ρBα
.

Then, by Lemma 2.5, they are CIF subspaces of Vα. Also, for α = 0, 1, we can define (a∩b)α =
(λ(a∩b)α , ρ(a∩b)α), where λ(a∩b)α = λaα

∩ λbα
and ρ(a∩b)α = ρaα

∩ ρbα
. Obviously, (a ∩ b)α

are extensions of (A ∩ B)α for α = 0, 1 (respectively). Moreover, it is easy to check that
(a ∩ b)0 ∩ (a ∩ b)1 = (0, 1) for any nonzero x ∈ V . Let x ∈ V , as A,B are homogenous, then

(λ(a∩b)0
+ λ(a∩b)1

)(x) = sup
x=a+b

{λ(a∩b)0
(a) ∧ λ(a∩b)1

(b)}

= sup
x=a+b

{r(a∩b)0
(a)ei2πω(a∩b)0

(a) ∧ r(a∩b)1
(b)ei2πω(a∩b)1

(b)}

= sup
x=a+b

{(ra0(a) ∧ rb0(a))e
i2π(ωa0 (a)∧ωb0 (a)) ∧ (ra1(b) ∧ rb1(b))e

i2π(ωa1 (b)∧ωb1 (b))}

= sup
x=a+b

{(ra0(a) ∧ ra1(b))e
i2π(ωa0 (a)∧ωa1 (b))}

∧ sup
x=a+b

{(rb0(a) ∧ rb1(b))e
i2π(ωb0 (a)∧ωb1 (b))}

= rA(x)e
i2πωA(x) ∧ rB(x)e

i2πωB(x)

= λA(x) ∧ λB(x)

= λA∩B(x),

and

(ρ(a∩b)0
+ ρ(a∩b)1

)(x) = inf
x=a+b

{ρ(a∩b)0
(a) ∨ ρ(a∩b)1

(b)}

= inf
x=a+b

{r̂(a∩b)0
(a)ei2πω̂(a∩b)0

(a) ∨ r̂(a∩b)1
(b)ei2πω̂(a∩b)1

(b)}

= inf
x=a+b

{(r̂a0(a) ∨ r̂b0(a))e
i2π(ω̂a0 (a)∨ω̂b0 (a)) ∨ (r̂a1(b) ∨ r̂b1(b))e

i2π(ω̂a1 (b)∨ω̂b1 (b))}

= inf
x=a+b

{(r̂a0(a) ∨ r̂a1(b))e
i2π(ω̂a0 (a)∨ω̂a1 (b))}

∨ inf
x=a+b

{(r̂b0(a) ∨ r̂b1(b))e
i2π(ω̂b0 (a)∨ω̂b1 (b))}

= r̂A(x)e
i2πω̂A(x) ∨ r̂B(x)e

i2πω̂B(x)

= ρA(x) ∨ ρB(x)

= ρA∩B(x).

Hence, A ∩ B = (λA∩B , ρA∩B) is a CIF vector subspace of V . To show that A ∩ B =
(λA∩B , ρA∩B) is a CIF lie subsuperalgebra of V , let x, y ∈ V . Then

λA∩B([x, y]) = λA([x, y]) ∧ λB([x, y])

= rA([x, y])e
i2πωA([x,y]) ∧ rB([x, y])e

i2πωB([x,y])

≥ (rA(x) ∧ rA(y))e
i2π(ωA(x)∧ωA(y)) ∧ (rB(x) ∧ rB(y))e

i2π(ωB(x)∧ωB(y))

= (rA(x) ∧ rB(x))e
i2π(ωA(x)∧ωB(x)) ∧ (rA(y) ∧ rB(y))e

i2π(ωA(y)∧ωB(y))

= λA∩B(x) ∧ λA∩B(y),
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and

ρA∩B([x, y]) = ρA([x, y]) ∨ ρB([x, y])

= r̂A([x, y])e
i2πω̂A([x,y]) ∨ r̂B([x, y])e

i2πω̂B([x,y])

≤ (r̂A(x) ∨ r̂A(y))e
i2π(ω̂A(x)∨ω̂A(y)) ∨ (r̂B(x) ∨ r̂B(y))e

i2π(ω̂B(x)∨ω̂B(y))

= (r̂A(x) ∨ r̂B(x))e
i2π(ω̂A(x)∨ω̂B(x)) ∨ (r̂A(y) ∨ r̂B(y))e

i2π(ω̂A(y)∨ω̂B(y))

= ρA∩B(x) ∨ ρA∩B(y).

Consequently, A ∩B = (λA∩B , ρA∩B) is a CIF lie subsuperalgebra of V .

4 On Lie-superalgebra Anti-homomoiphisms

Recall that if ϕ : V → V ′ is a linear map between lie superalgebras such that ϕ(aαbβ) =
(−1)αβϕ(bβ)ϕ(aα) for all aα, bβ ∈ h(V ), α, β = 0, 1, then ϕ is called an anti-homomorphism
from V into V ′. In this case, if aα, bβ ∈ h(V ), where α, β = 0, 1, then

ϕ([aα, bβ]) = ϕ(aαbβ − (−1)αβbβaα)

= ϕ(aαbβ)− (−1)αβϕ(bβaα)

= (−1)αβϕ(bβ)ϕ(aα)− ϕ(aα)ϕ(bβ)

= −(ϕ(aα)ϕ(bβ)− (−1)αβϕ(bβ)ϕ(aα))

= −[ϕ(aα), ϕ(bβ)].

As a result, if x = x0 + x1, y = y0 + y1 ∈ V , then

ϕ([x, y]) = ϕ([x0, y0] + [x0, y1] + [x1, y0] + [x1, y1])

= ϕ([x0, y0]) + ϕ([x0, y1]) + ϕ([x1, y0]) + ϕ([x1, y1])

= −([ϕ(x0), ϕ(y0)] + [ϕ(x0), ϕ(y1)] + [ϕ(x1), ϕ(y0)] + [ϕ(x1), ϕ(y1)])

= −[ϕ(x), ϕ(y)].

Therefore, the following definition is an equivalent definition of anti-homomorphism of lie su-
peralgebras.

Definition 4.1. If ϕ : V → V ′ is a linear map between lie superalgebras V, V ′ which satisfies:

ϕ(Vα) ⊆ V ′
α, (α = 0, 1), (4.1)

ϕ([x, y]) = −[ϕ(x), ϕ(y)] (4.2)

Then ϕ is called an anti-homomorphism of lie-superalgebras.

For example, the transpose and inversion maps both give anti-homomorphisms in matrices.

Definition 4.2. Let A = (λA, ρA) be a CIF set of V and let x, y ∈ V . Then A = (λA, ρA) is
called an anti-complex intuitionistic fuzzy lie sub-superalgebra of V (anti-CIF for short), if it
satisfies the following conditions:
(1) A = (λA, ρA) is a Z2-graded CIF vector subspace of V
(2) λA(−[x, y]) ≥ λA(x) ∧ λA(y) and ρA(−[x, y]) ≤ ρA(x) ∨ ρA(y).
If the condition(2) is replaced by (3) λA(−[x, y]) ≥ λA(x) ∨ λA(y) and ρA(−[x, y]) ≤ ρA(x) ∧
ρA(y), then A = (λA, ρA) is called an anti-CIF ideal of V .

Proposition 4.3. Let ϕ : V → V ′ be an anti-homomorphism of lie-superalgebras. If A =
(λA, ρA) is an anti-CIF lie sub-superalgebra (respectively an anti-CIF ideal) of V ′, then the CIF
set ϕ−1(A) of V is also an anti-CIF lie sub-superalgebra (respectively an anti-CIF ideal).
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Proof. Let x = x0 + x1 ∈ V , then ϕ(x) = ϕ(x0) + ϕ(x1) ∈ V ′. Define
ϕ−1(A)α = (λϕ−1(A)α , ρϕ−1(A)α), where λϕ−1(A)α = ϕ−1(λAα

) and ρϕ−1(A)α = ϕ−1(ρAα
), α =

0, 1. Then, by Lemma 2.1, they are CIF subspaces of Vα, α = 0, 1 (respectively). Define
ϕ−1(a)α = (λϕ−1(a)α , ρϕ−1(a)α), where λϕ−1(a)α = ϕ−1(λaα

) and ρϕ−1(a)α = ϕ−1(ρaα
), α =

0, 1. Clearly,

λϕ−1(a)α(x) =

{
λϕ−1(A)α(x) : x ∈ Vα

0 : x ̸∈ Vα

and ρϕ−1(a)α(x) =

{
ρϕ−1(A)α(x) : x ∈ Vα

1 : x ̸∈ Vα

,

for α = 0, 1. Which implies that ϕ−1(a)α are CIF vector subspace of V , for α = 0, 1. Moreover,
if 0 ̸= x ∈ V , then λϕ−1(a)0

(x) ∧ λϕ−1(a)1
(x) = ϕ−1(λa0)(x) ∧ ϕ−1(λa1)(x) = λa0(ϕ(x)) ∧

λa1(ϕ(x)) = 0. Similarly, if 0 ̸= x ∈ V , then ρϕ−1(a)0
(x) ∨ ρϕ−1(a)1

(x) = 1. Furthermore, if
0 ̸= x ∈ V , then

λϕ−1(a)0+ϕ−1(a)1
(x) = sup

x=a+b

{λϕ−1(a)0
(a) ∧ λϕ−1(a)1

(b)}

= sup
x=a+b

{λa0(ϕ(a)) ∧ λa1(ϕ(b))}, (a = a0 + a1, b = b0 + b1)

= sup
x=a+b

{λa0(ϕ(a0)) ∧ λa1(ϕ(b1))}

= sup
x=a+b

{ra0(ϕ(a0))e
i2πωa0 (ϕ(a0)) ∧ ra1(ϕ(b1))e

i2πωa1 (ϕ(b1))}

= ra0(ϕ(x0))e
i2πωa0 (ϕ(x0)) ∧ ra1(ϕ(x1))e

i2πωa1 (ϕ(x1))

= λa0(ϕ(x0)) ∧ λa1(ϕ(x1))

= λa0+a1(ϕ(x)), (x = x0 + x1)

= λA(ϕ(x))

= λϕ−1(A)(x),

and

ρϕ−1(a)0+ϕ−1(a)1
(x) = inf

x=a+b
{ρϕ−1(a)0

(a) ∨ ρϕ−1(a)1
(b)}

= inf
x=a+b

{ρa0(ϕ(a)) ∨ ρa1(ϕ(b))}, (a = a0 + a1, b = b0 + b1)

= inf
x=a+b

{ρa0(ϕ(a0)) ∨ ρa1(ϕ(b1))}

= inf
x=a+b

{r̂a0(ϕ(a0))e
i2πω̂a0 (ϕ(a0)) ∨ r̂a1(ϕ(b1))e

i2πω̂a1 (ϕ(b1))}

= r̂a0(ϕ(x0))e
i2πω̂a0 (ϕ(x0)) ∨ r̂a1(ϕ(x1))e

i2πω̂a1 (ϕ(x1))

= ρa0(ϕ(x0)) ∨ ρa1(ϕ(x1))

= ρa0+a1(ϕ(x)), (x = x0 + x1)

= ρA(ϕ(x))

= ρϕ−1(A)(x).

Hence, ϕ−1(A) = ϕ−1(A)0 ⊕ ϕ−1(A)1 is a Z2-graded CIF vector subspace of V . Let x, y ∈ V .
Then

λϕ−1(A)(−[x, y]) = λA(−ϕ([x, y])) = λA([ϕ(x), ϕ(y)])

≥ λA(ϕ(x)) ∧ λA(ϕ(y))

= λϕ−1(A)(x) ∧ λϕ−1(A)(y),

and

ρϕ−1(A)(−[x, y]) = ρA(−ϕ([x, y])) = ρA([ϕ(x), ϕ(y)])

≤ ρA(ϕ(x)) ∨ ρA(ϕ(y))

= ρϕ−1(A)(x) ∨ ρϕ−1(A)(y).
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As a result, ϕ−1(A) is an anti-CIF Lie subsuperalgebra of V . Finally, we show that ϕ−1(A) is an
anti-CIF ideal of V . Let x, y ∈ V , then

λϕ−1(A)(−[x, y]) = λA(−ϕ([x, y])) = λA([ϕ(x), ϕ(y)])

≥ λA(ϕ(x)) ∨ λA(ϕ(y))

= λϕ−1(A)(x) ∨ λϕ−1(A)(y),

and

ρϕ−1(A)(−[x, y]) = ρA(−ϕ([x, y])) = ρA([ϕ(x), ϕ(y)])

≤ ρA(ϕ(x)) ∧ ρA(ϕ(y))

= ρϕ−1(A)(x) ∧ ρϕ−1(A)(y).

Consequently, ϕ−1(A) is an anti-CIF ideal of V .

Proposition 4.4. Let ϕ : V → V ′ be a surjective anti-homomorphism of lie-superalgebras. If
A = (λA, ρA) is an anti-CIF lie sub-superalgebra (respectively an anti-CIF ideal) of V , then the
CIF set ϕ(A) of V ′ is also an anti-CIF lie sub-superalgebra (respectively an anti-CIF ideal).

Proof. By Definition 3.1 and Definition 3.3, A = A0 ⊕ A1 where A0 = (λA0 , ρA0), A1 =
(λA1 , ρA1) are CIF vector subspaces of V0, V1 (respectively). For α = 0, 1, define ϕ(A)α =
(λϕ(A)α , ρϕ(A)α), where λϕ(A)α = ϕ(λAα

), ρϕ(A)α = ϕ(ρAα
). Then, by Lemma 2.4, ϕ(A)α

is an anti-CIF subspace of Vα. Define ϕ(a)α = (λϕ(a)α , ρϕ(a)α), as an extension of ϕ(A)α =
(λϕ(A)α , ρϕ(A)α), where λϕ(a)α = ϕ(λaα

), ρϕ(a)α = ϕ(ρaα
). Clearly

λϕ(a)α(x) =

{
λϕ(A)α(x) : x ∈ V ′

α

0 : x ̸∈ V ′
α

and ρϕ(a)α(x) =

{
ρϕ(A)α(x) : x ∈ V ′

α

1 : x ̸∈ V ′
α

.

Let 0 ̸= x ∈ V ′. Then

λϕ(a)0
(x) ∧ λϕ(a)1

(x) = ϕ(λa0)(x) ∧ ϕ(λa1)(x)

= sup
x=ϕ(a)

{λa0(a)} ∧ sup
x=ϕ(a)

{λa1(a)}

= sup
x=ϕ(a)

{λa0(a) ∧ λa1(a)} = 0,

and

ρϕ(a)0
(x) ∨ ρϕ(a)1

(x) = ϕ(ρa0)(x) ∨ ϕ(ρa1)(x)

= inf
x=ϕ(a)

{ρa0(a)} ∨ inf
x=ϕ(a)

{ρa1(a)}

= inf
x=ϕ(a)

{ρa0(a) ∨ ρa1(a)} = 1.
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Let 0 ̸= y ∈ V ′. Then

λϕ(a)0+ϕ(a)1
(y) = sup

y=a+b

{λϕ(a)0
(a) ∧ λϕ(a)1(b)}

= sup
y=a+b

{ϕ(λa0)(a) ∧ ϕ(λa1)(b)}

= sup
y=a+b

{ sup
a=ϕ(m)

{λa0(m)} ∧ sup
b=ϕ(n)

{λa1(n)}}

= sup
y=ϕ(x)

{ sup
x=m+n

{λa0(m) ∧ λa1(n)}}

= sup
y=ϕ(x)

{ sup
x=m+n

{ra0(m)ei2πωa0 (m) ∧ ra1(n)e
i2πωa1 (n)}}

= sup
y=ϕ(x)

{ sup
x=m+n

{ra0(m) ∧ ra1(n)}e
i2π sup

x=m+n
{ωa0 (m)∧ωa1 (n)}}

= sup
y=ϕ(x)

{ra0+a1(x)e
i2πωa0+a1 (x)}

= sup
y=ϕ(x)

{λa0+a1(x)} = sup
y=ϕ(x)

{λA(x)} = λϕ(A)(y),

and

ρϕ(a)0+ϕ(a)1
(y) = inf

y=a+b
{ρϕ(a)0

(a) ∨ ρϕ(a)1(b)}

= inf
y=a+b

{ϕ(ρa0)(a) ∨ ϕ(ρa1)(b)}

= inf
y=a+b

{ inf
a=ϕ(m)

{ρa0(m)} ∨ inf
b=ϕ(n)

{ρa1(n)}}

= inf
y=ϕ(x)

{ inf
x=m+n

{ρa0(m) ∨ ρa1(n)}}

= inf
y=ϕ(x)

{ inf
x=m+n

{r̂a0(m)ei2πω̂a0 (m) ∨ r̂a1(n)e
i2πω̂a1 (n)}}

= inf
y=ϕ(x)

{ inf
x=m+n

{r̂a0(m) ∨ r̂a1(n)}e
i2π inf

x=m+n
{ω̂a0 (m)∨ω̂a1 (n)}}

= inf
y=ϕ(x)

{r̂a0+a1(x)e
i2πω̂a0+a1 (x)}

= inf
y=ϕ(x)

{ρa0+a1(x)} = inf
y=ϕ(x)

{ρA(x)} = ρϕ(A)(y).

So, ϕ(A) = ϕ(A)0 ⊕ ϕ(A)1 is a Z2 graded CIF vector subspace of V ′.
Let x, y ∈ V ′. We show that ϕ(A) is an anti-CIF ideal of V ′. That is we need to prove that
λϕ(A)(−[x, y]) ≥ λϕ(A)(x) ∨ λϕ(A)(y) and ρϕ(A)(−[x, y]) ≤ ρϕ(A)(x) ∧ ρϕ(A)(y). On contrary,
suppose that λϕ(A)(−[x, y]) < λϕ(A)(x)∨ λϕ(A)(y) = rϕ(A)(x)e

i2πωϕ(A)(x) ∨ rϕ(A)(y)e
i2πωϕ(A)(y).

Then

λϕ(A)(−[x, y]) = rϕ(A)(−[x, y])ei2πωϕ(A)(−[x,y]) < {rϕ(A)(x) ∨ rϕ(A)(y)}ei2π{ωϕ(A)(x)∨ωϕ(A)(y)}.

Since ϕ(A) is homogeneous, rϕ(A)(−[x, y])< rϕ(A)(x)∨rϕ(A)(y) or ωϕ(A)(−[x, y]) < ωϕ(A)(x)∨
ωϕ(A)(y). If rϕ(A)(−[x, y]) < rϕ(A)(x)∨rϕ(A)(y), then rϕ(A)(−[x, y]) < rϕ(A)(x) or rϕ(A)(−[x, y])
< rϕ(A)(y). Suppose rϕ(A)(−[x, y]) < rϕ(A)(x), then choose t ∈ [0, 1] such that rϕ(A)(−[x, y]) <

t < rϕ(A)(x), so there exists a ∈ ϕ−1(x) such that rA(a) > t. Let b ∈ ϕ−1(y), since ϕ is onto.
As ϕ([a, b]) = −[ϕ(a), ϕ(b)] = −[x, y], we get

rϕ(A)(−[x, y]) = sup
−[x,y]=ϕ([a′ ,b′ ])

{rA([a
′
, b

′
])}

= sup
−[x,y]=ϕ([a′ ,b′ ])

{rA(a
′
) ∨ rA(b

′
)}

≥ rA(a) ∨ rA(b)

> t > rϕ(A)(−[x, y]),
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which is a contradiction. We can use the same argument above for the case ωϕ(A)(−[x, y]) <
ωϕ(A)(x) ∨ ωϕ(A)(y). Therefore, λϕ(A)(−[x, y]) ≥ λϕ(A)(x) ∨ λϕ(A)(y). Again, on contrary,
suppose that ρϕ(A)(−[x, y]) > ρϕ(A)(x) ∧ ρϕ(A)(y). Then

r̂ϕ(A)(−[x, y])ei2πω̂ϕ(A)(−[x,y]) > {r̂ϕ(A)(x) ∧ r̂ϕ(A)(y)}ei2π{ω̂ϕ(A)(x)∧ω̂ϕ(A)(y)}.

Since ϕ(A) is homogenous, r̂ϕ(A)(−[x, y]) > r̂ϕ(A)(x)∧ r̂ϕ(A)(y) or ω̂ϕ(A)(−[x, y]) > ω̂ϕ(A)(x)∧
ω̂ϕ(A)(y). If r̂ϕ(A)(−[x, y]) > r̂ϕ(A)(x)∧r̂ϕ(A)(y), then r̂ϕ(A)(−[x, y]) > r̂ϕ(A)(x) or r̂ϕ(A)(−[x, y])
> r̂ϕ(A)(y). Without loss of generality, we may assume that r̂ϕ(A)(−[x, y]) > r̂ϕ(A)(x), choose
t ∈ [0, 1] such that r̂ϕ(A)(−[x, y]) > t > r̂ϕ(A)(x), then there exists a ∈ ϕ−1(x) such that
r̂A(a) < t. Let b ∈ ϕ−1(y). As ϕ([a, b]) = −[x, y], we get

r̂ϕ(A)(−[x, y]) = inf
−[x,y]=ϕ([a′ ,b′ ])

{r̂A([a
′
, b

′
])}

= inf
−[x,y]=ϕ([a′ ,b′ ])

{r̂A(a
′
) ∧ r̂A(b

′
)}

≤ r̂A(a) ∧ r̂A(b)

< t < r̂ϕ(A)(−[x, y]),

which is a contradiction. We can use the same argument above for the case ω̂ϕ(A)(−[x, y]) >
ω̂ϕ(A)(x) ∧ ω̂ϕ(A)(y). Therefore, ϕ(A) is an anti-CIF ideal of V ′. The case of anti-CIF lie sub-
superalgebra is similar to prove.

Theorem 4.5. Let ϕ : V → V ′ be a surjective anti-homomorphism of lie-superalgebras. If
A = (λA, ρA) and B = (λB , ρB) are anti-CIF ideals of V , then ϕ(A+B) = ϕ(A) + ϕ(B) is an
anti-CIF ideal of V ′.

Proof. We already proved in Proposition 4.4 that ϕ(A+B) is an anti-CIF ideal of V ′. Therefore
the only thing we need to prove is that ϕ(A+B) = ϕ(A) + ϕ(B). Let y ∈ V ′, then

λϕ(A+B)(y) = sup
y=ϕ(x)

{λA+B(x)}

= sup
y=ϕ(x)

{ sup
x=a+b

{λA(a) ∧ λB(b)}}

= sup
y=ϕ(x)

{ sup
x=a+b

{rA(a)ei2πωA(a) ∧ rB(b)e
i2πωB(b)}}

= sup
y=ϕ(x)

{ sup
x=a+b

{(rA(a) ∧ rB(b))e
i2π(ωA(a)∧ωB(b))}}

= sup
y=ϕ(a)+ϕ(b)

{(rA(a) ∧ rB(b))e
i2π(ωA(a)∧ωB(b))} (A,B are homogenous)

= sup
y=m+n

{( sup
m=ϕ(a)

{rA(a)} ∧ sup
n=ϕ(b)

{rB(b)})e
i2π( sup

m=ϕ(a)

{ωA(a)}∧ sup
n=ϕ(b)

{ωB(b)})
}

= sup
y=m+n

{(rϕ(A)(m) ∧ rϕ(B)(n))e
i2π(ωϕ(A)(m)∧ωϕ(B)(n))}

= sup
y=m+n

{rϕ(A)(m)ei2πωϕ(A)(m) ∧ rϕ(B)(n)e
i2πωϕ(B)(n)}

= sup
y=m+n

{λϕ(A)(m) ∧ λϕ(B)(n)}

= λϕ(A)+ϕ(B)(y),
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and

ρϕ(A+B)(y) = inf
y=ϕ(x)

{ρA+B(x)}

= inf
y=ϕ(x)

{ inf
x=a+b

{ρA(a) ∨ ρB(b)}}

= inf
y=ϕ(x)

{ inf
x=a+b

{r̂A(a)ei2πω̂A(a) ∨ r̂B(b)e
i2πω̂B(b)}}

= inf
y=ϕ(x)

{ inf
x=a+b

{(r̂A(a) ∨ r̂B(b))e
i2π(ω̂A(a)∨ω̂B(b))}}

= inf
y=ϕ(a)+ϕ(b)

{(r̂A(a) ∨ r̂B(b))e
i2π(ω̂A(a)∨ω̂B(b))} (A,B are homogenous)

= inf
y=m+n

{( inf
m=ϕ(a)

{r̂A(a)} ∨ inf
n=ϕ(b)

{r̂B(b)})e
i2π( inf

m=ϕ(a)
{ω̂A(a)}∨ inf

n=ϕ(b)
{ω̂B(b)})

}

= inf
y=m+n

{(r̂ϕ(A)(m) ∨ r̂ϕ(B)(n))e
i2π(ω̂ϕ(A)(m)∨ω̂ϕ(B)(n))}

= inf
y=m+n

{r̂ϕ(A)(m)ei2πω̂ϕ(A)(m) ∨ r̂ϕ(B)(n)e
i2πω̂ϕ(B)(n)}

= inf
y=m+n

{ρϕ(A)(m) ∨ ρϕ(B)(n)}

= ρϕ(A)+ϕ(B)(y).

Hence, ϕ(A+B) = ϕ(A) + ϕ(B) is an anti-CIF ideal of V ′.

5 Conclusion

This extension of intuitionistic fuzzy Lie sub-superalgebras and ideals to a complex setting opens
up new possibilities for studying the algebraic structures in a more generalized and comprehen-
sive manner. The study of complex intuitionistic fuzzy Lie sub-superalgebras and ideals not
only provides a deeper understanding of the underlying algebraic structures, but it also allows
for a more flexible and versatile approach in handling fuzzy information in Lie superalgebras.
The concepts introduced in this article can be applied to various fields such as mathematical
physics, quantum mechanics, and control theory, where Lie superalgebras play a crucial role in
modeling and analyzing complex systems. By incorporating fuzzy logic and intuitionistic fuzzy
sets into the framework of Lie superalgebras, we are able to capture and represent uncertain
and imprecise information in a more efficient and effective manner. Future research can focus
on exploring the applications of complex intuitionistic fuzzy Lie sub-superalgebras and ideals
in different mathematical and scientific disciplines. By further investigating the properties and
relationships of these concepts, we can gain deeper insights into the behavior and structure of
complex systems that are characterized by uncertainty and vagueness. Ultimately, the develop-
ment of more advanced and sophisticated algebraic tools based on complex intuitionistic fuzzy
logic can lead to new breakthroughs in our understanding and analysis of complex systems in
the modern world.
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