
Palestine Journal of Mathematics

Vol 14(2)(2025) , 904–914 © Palestine Polytechnic University-PPU 2025

On P-essential Submodules and P-uniform Modules

Muna Abbas Ahmed

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16D10; Secondary 16D70, 16D80.

Keywords and phrases: Essential submodule; Pure submodule; P-essential submodule; Uniform module; P-uniform
module.

The author of this article would like to thank the referees for their valuable suggestions and
helpful comments.

Abstract.
Significant areas of study in module theory include expansions of the concepts of essential

submodules and uniform modules. This paper focuses on two well-known concepts: the P-
essential submodule and the P-uniform module, which were introduced by Nada M. Al-Thani
and Maria M. Baher with Muna A. Ahmed, respectively. They did not emphasize these concepts
in their original work, as they were not central to their research.

A thorough exploration and development of the P-essential submodule is advantageous be-
cause it enables researchers to create and discover various types of modules, serving as a foun-
dation for their structures. Consequently, this paper is dedicated to advancing the understanding
of the P-essential submodule. We introduce and discuss numerous characteristics and other char-
acterizations of this type of submodule. Additionally, we provide proof under certain conditions
that the P-socle of a module, denoted as Socp(M), is a finitely pure cogenerated and P-essential
submodule of M if and only if M is finitely pure cogenerated. Furthermore, we examined the
P uniform module structurally dependent on the P-essential submodule in greater detail. The
relationships between P-essential and P-uniform modules with semi-essential submodules and
semi-uniform modules are also investigated.

1 Introduction

A submodule N of M is called essential (briefly, N ≤e M ), if ∀ K ≤ M , the condition N∩K = 0
implies K = 0, [15]. A non-zero module M is named uniform if each non-zero submodule of M
is essential, [12, 15]. A submodule T of M is called pure (for short, T ≤pu M ) if T ∩ IM = IT
for every ideal I of R, [7]. A submodule T of M is P-essential (briefly, N ≤pe M ) if, for all
S ≤pu M , T ∩ S = 0, implying that S = 0, [2, 5], it is denoted by T ≤pe M . Al-Thani in-
troduced the concept of P-essential in 1997, but she didn’t discuss all its properties. P-essential
submodule forms the nucleus and basis for the structure of several modules, such as the pure
closed submodule which appeared in [5].

No one developed or used P-essential in their work except Maria M. Baher and Muna A.
Ahmed, [9]. They used it to introduce the notion of P-uniform module, where a non-zero mod-
ule M is P-uniform if each non-zero submodule of M is P-essential, [1, 2, 9]. Every uniform
module is P-uniform.

This paper is interested in a comprehensive study of P-essential submodules and P-uniform
modules. We will endeavour to discuss and develop these types of submodules in more detail to
answer the following question:

How can we find results about the P-essential submodule and P-uniform module correspond-
ing to those results known in the essential submodule and uniform module?
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This article consists of nine sections. Section 2 presents several features of P-essential sub-
modules that had appeared in [5]. In Section 3, more properties about P-essential submodules
are introduced, for example, if N ′ is a pure relative complement of a non-zero submodule N in
M, then N⊕N ′ ≤pe M , see Proposition 3.16. Other characterizations of P-essential submodules
are considered, see Propositions 3.1 and 3.19. Also, we will show in Proposition 3.25 that when
an R-module M satisfies GPSP, every P-essential R-submodule of M is finitely generated if and
only if M is Noetherian. In Section 4, the direct sum of P-essential submodules is studied, see
Propositions 4.1, 4.2, and 4.3. In Section 5, the P-socle of any module is established and studied,
see Proposition 5.3. Furthermore, under certain conditions, Theorem 5.8 proved that Socp(M)
is a finitely pure cogenerated and P-essential in M if and only if M is a finitely pure cogenerated.
Section 6 investigates the relationship between P-essential and semi-essential submodules, see
Propositions 6.2 and 6.4. Section 7 develops the concept of a P-uniform module; for instance, the
hereditary property of P-uniform property between M and its submodules is studied, as shown
in Propositions 7.2 and 7.4. Besides that, Theorem 7.3 gives another characterization of the P-
uniform module. Additionally, the relationship between P-uniform and semi-uniform modules
is discussed, see Propositions 7.6 and 7.8.

Finally, it should be noted that in this study, the symbols R and M denote commutative rings
with unity and unitary left R-modules, respectively.

2 Preliminaries

This section investigates the main characteristics of P-essential submodules, which appeared
in [5]. Before that, let us highlight some known notes.

Remark 2.1.

1. Each module is a P-essential submodule of itself.

2. Every essential submodule is P-essential. The converse holds when M is uniform.

3. In any F-regular module, there is no difference between P-essential and essential submod-
ules, where an R-module M is F-regular if every submodule of M is pure, [13].

The following proposition appeared in [5]; we give the proof for completeness.

Proposition 2.2. ([5], Theorem 4.2)

The following statements are equivalent for any module M:

i. K ≤pe M .

ii. ∀ N ≤ M with h ∈ PHR(M,N), if kerh ∩K = 0 then h is a monomorphism,
where PHR(M,N)={h|h : M → N such that ker h is a pure submodule of M}.

Proof.

⇒) is followed directly by the definition of the P-essential submodule.

⇐) Because each N ≤pu M is the kernel of some h ∈ PHR(M,A) and some R-module
A, then L ∩K = 0, and by (ii), L is zero. Thus, K ≤pe M .

An R-module M has the pure intersection (pure finite intersection) property if the intersection
of any family (finite family) of a pure submodule of M is again pure ([5], Definition 2.16). It is
denoted by PIP (and we use the symbol PFIP for the pure finite intersection property).

Theorem 2.3. ([5], Theorem 4.4)

For submodules K and N of M with K ≤ N ≤ M , the statements below are satisfied:

a. If K ≤pe M then N ≤pe M .

b. If N ≤pu M and K ≤pe M , then N ≤pe M .

c. Let M has PFIP and N ≤pu M , then K ≤pe M if and only if K ≤pe N&N ≤pe M .
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Proposition 2.4. ([5], Corollary 4.5)

Assume that M has PFIP. If H is pure in M then H ∩K ≤pe M if and only if H ≤pe M and
K ≤pe M for any K ≤ M .

Remember that if T and K are submodules of M with K ≤pu M , then K is called a pure
relative complement of T in M if K is the maximal submodule with the property K ∩T = 0, [5].

Remark 2.5. ([5], Proposition 4.14 and Proposition 4.15)

1. Every submodule of module M has a pure relative complement in M.

2. Given the ideals A and B of a ring R. If B is a pure relative complement of A in R, then
A⊕B ≤pe R.

3 More properties of P-essential submodules

This section introduces other characteristics of P-essential submodules as analogues of those
known in the essential submodules. Firstly, we will provide another characterization of the
definition of P-essential.

Proposition 3.1. Let A be a submodule of a module M. Then A ≤pe M if and only if A ∩ L ̸= 0
for each 0 ̸= L ≤pu M .

Proof.

⇒) Let 0 ̸= L ≤pu M , to prove A ∩ L ̸= 0. If A ∩ L = 0 then L = 0 since A ≤pe M . But
L ̸= 0, so we get a contradiction.

⇐) Let L ≤pu M with A ∩ L = 0, to prove L = 0. Suppose that L ̸= 0, by assumption
A ∩ L ̸= 0, which is a contradiction. Thus, A ≤pe M .

Proposition 3.2. Let M have the PIP and B1, B2 are submodules of M, with A1 ≤ B1 ≤ M ,
A2 ≤ B2 ≤ M . Assume that A1 ≤pu M and A2 ≤pu M . If A1 and A2 are P-essential in B1 and
B2, respectively, then A1 ∩A2 ≤pe B1 ∩B2.

Proof. Let 0 ̸= N ≤ B1 ∩ B2 ≤pu M . To show that A1 ∩ A2 ≤pe B1 ∩ B2, we must verify that
(A1 ∩A2)∩N ̸= 0. Since A1 and A2 are P-essential in B1 and B2, respectively, then A1 ∩N ̸= 0
and A2 ∩N ̸= 0. On the other hand, A1 ≤pu M and N ≤pu M , as well as M has PIP therefore,
A1 ∩N ≤pu M . This implies that A1 ∩N ≤pu B2, [22]. But A2 ≤pe B2 then (A1 ∩N)∩A2 ̸= 0,
hence (A1 ∩A2) ∩N ̸= 0. Thus, A1 ∩A2 ≤pe B1 ∩B2.

When B1 = B2 = M , we deduce the following.

Corollary 3.3. Let M have the PIP. If the pure submodules A1 and A2 are P-essential in M, then
A1 ∩A2 ≤pe M .

Recall that a ring R is called regular if, for each r ∈ R there exists x ∈ R such that r = rxr,
[15].

Corollary 3.4. Let M be a module over a regular ring R, and let B1 and B2 be submodules of
M with A1 ≤ B1 ≤ M , A2 ≤ B2 ≤ M . If A1 and A2 are P-essential in B1 and B2, respectively,
then A1 ∩A2 ≤pe B1 ∩B2.

Proof. Since R is a regular ring, then M is F - regular ([22], Remark 1.2(2), P.29). This means
every submodule of M is pure; in particular, both A1 and A2 pure. Hence, the result follows from
proposition 3.2.

Remember that M is a multiplication module if each T ≤ M can be written as T=IM, [8, 20].
It is known that every multiplication module has the PIP, so we have the following.

Corollary 3.5. Let M be a multiplication module, B1 and B2 are submodules of M with A1 ≤
B1 ≤ M , A2 ≤ B2 ≤ M . Assume that A1 ≤pu M and A2 ≤pu M . If A1 and A2 are P-essential
in B1 and B2, respectively, then A1 ∩A2 ≤pe B1 ∩B2.
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Recall that any monomorphism f : N → M is P-essential monomorphism whenever f(N) ≤pe

M , [5]. The proof of the remark below is obvious, so it is omitted.

Remark 3.6. N ≤pe M if and only if the inclusion i : N → M is a P-essential monomorphism.

Remark 3.7. If A ≤pe B and R ≤pe S then in general A + R ≰pe B + S as shown in the
example below.

Example 3.8. Consider the Z-module M = Z ⊕ (Z/2Z), assume that A = R = Z(2, 0),
B = Z(1, 0) and S = Z(1, 1). Note that A ≤pe B and R ≤pe S, while A+R is not P-essential in
B+S. Take Z(0, 1). One can show that the submodule Z(0, 1) is pure in B+S. Since A+R = A,
then A ∩ Z(0, 1) = 0. Thus A+R ≰pe B + S.

Proposition 3.9. Given two P-essential submodules S and T of M. If S + T ≤pu M , then
S + T ≤pe M .

Proof. We have S ≤ S+T ≤ M . Since S+T ≤pu M then by Theorem 2.3(b), S+T ≤pe M .

A module M has "pure sum property" (for short, PSP) if the sum of any two pure submodules
of M is again pure, [4]. This property is applicable as follows.

Proposition 3.10. If a module M has PSP, then the sum of any two P-essential submodules of M
is also P-essential.

To generalize Proposition 3.10, we introduce the following.

Definition 3.11. A module M has a “generalized pure sum property” (simply, GPSP) if the sum
of any number (finite or infinite) of pure submodules of M is again pure.

Proposition 3.12. Take a module M that satisfies GPSP. The sum of any number (finite or infi-
nite) of P-essential submodules of M is P-essential.

Proof. Take a family of P-essential submodules {N}i∈I of M, where I is the index set of
numbers. Since M satisfies GPSP,

∑
i∈I Ni is pure. So, we have Ni ≤

∑
i∈I Ni ≤ M . By

Theorem 2.3(b),
∑

i∈I Ni ≤pe M .

We need the following lemma.

Lemma 3.13. ([19], Remark 1.4, P.37)

Let K ≤ T ≤ M with T ≤pu M , then T/K is pure in M/K.

Proposition 3.14. Let M be an R-module, K ≤ M , with π : M → M/K a natural epimorphism.
If T/K ≤pe M/K, then T ≤pe M ∀ T ≤ M .

Proof. Take L ≤pu M with T ∩ L = 0, to prove that L = 0. We can easily show that
π(T ∩ L) = (T ∩ L)/K = T/K ∩ L/K. But T ∩ L = 0, thus T/K ∩ L/K = 0. On the
other hand, L ≤pu M , so by Lemma 3.8, L/K is pure in M/K. Since T/K ≤pe M/K, then
L/K = 0, hence L = 0. That is T ≤pe M .

Proposition 3.15. Let T and V be non-zero submodules of M with a pure submodule V. If V is a
pure relative complement of T in M, then (T ⊕ V )/V ≤pe M/V .

Proof. Consider the natural epimorphism f : M → M/V and a pure relative comple-
ment V of T in M. Take a non-zero A/V ≤pu M/V such that ((T ⊕ V )/V ) ∩ A/V = 0. So
(T ⊕V )∩A = V , and by modular Law, (T ∩A)+V = V . This implies that T ∩A ≤ V as well
as T ∩A ≤ T , hence:

T ∩A ≤ T ∩ V . . . . . . (*)

In contrast, V is a pure relative complement of T; thus, T ∩V = 0, so by (*), T ∩A = 0. But
V is the maximal pure submodule with T ∩ V = 0, therefore A = V , hence A/V = 0. That is
(T ⊕ V )/V ≤pe M/V .
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Proposition 3.16. Given an R-module and 0 ̸= V ≤ M . If V
′

is a pure relative complement of
V in M, then V ⊕ V

′ ≤pe M .

Proof. Take the projection homomorphism π : M → M/V
′
. Since V

′
is a pure relative

complement of V in M, then by Proposition 3.15, (V ⊕ V
′
)/V

′ ≤pe M/V
′
, and by Proposition

3.14, V ⊕ V
′ ≤pe M .

Proposition 3.17. Let M be an R-module, V ≤ M . If ker f ∩ V ̸= 0 for each homomorphism f
from M to any R-module M

′
, then V ≤pe M .

Proof. Given 0 ̸= P ≤pu M , and take the projection homomorphism π : M → M/P . By
hypothesis, kerπ ∩ V ̸= 0, hence P ∩ V ̸= 0. Thus, V ≤pe M .

Proposition 3.18. For any isomorphism f : M → M
′
. If V ≤pe M then f(V ) ≤pe M

′
.

Proof. Take 0 ̸= P ≤pu M
′
. f is an epimorphism implies 0 ̸= f−1(P ) ≤pu M , [14]. Since

V ≤pe M , then V ∩ f−1(P ) ̸= 0. But f is a monomorphism, therefore f(V ) ∩ P ̸= 0. That is
f(V ) ≤pe M

′
.

Next, another characterization of the P-essential submodule is introduced by using elements.

Proposition 3.19. A submodule U of an R-module M is P-essential if and only if, for all V ≤pu

M , (V ̸= 0), ∃ v ∈ V and r ∈ R with 0 ̸= rv ∈U.

Proof. Assume that U ≤pe M , so U ∩ V ̸= 0, ∀V ≤pu M . This implies 0 ̸= v ∈ U ∩ V ,
which means v ∈ U and v ∈ V . Therefore, we found r = 1 ∈ R with 0 ̸= 1.v = v ∈ U .
Conversely, suppose V is a non-zero pure submodule and there exists x ∈ V and r ∈ R such
that 0 ̸= rx ∈ U . Since r and x belong to R and V, respectively, rx ∈ V . This implies that
0 ̸= rx ∈ U ∩ V . Hence U ∩ V ̸= 0, thus, U ≤pe M .

Compare the following theorem with ([11], Theorem 2.13).

Theorem 3.20. Let M be a finitely generated, faithful, and multiplication module. A submodule
N ≤pe M if and only if there is a P-essential ideal I of R with N = IM .

Proof. For the first direction, suppose that N ≤pe M , so there exists I ≤ R such that
N = IM . We must show that I ≤pe R. Assume that I ∩ B = 0 for some B ≤pu R. Now, by
([11], Theorem 1.6):

0 = (I ∩B)M = IM ∩BM = N ∩BM

Hence N ∩ BM = 0. Now, B ≤pu R implice BM ≤pu M ([6], Theorem 1.4(2), P. 67). On
the other hand, N ≤pe M , therefore BM = 0. But M is faithful, thus B = 0. That is, I ≤pe R.
Conversely, assume there is E ≤pe R with N = EM , and take a pure submodule K of M such
that EM ∩ K = 0. M is multiplication, which implies K = CM for some ideal C of R. By
([11], Theorem 1.6):

0 = EM ∩K = EM ∩ CM = (E ∩ C)M

Hence (E ∩ C)M = 0. Because M is faithful, then E ∩ C = 0. In contrast, K is a pure
submodule and M is faithful; therefore, C is pure [6]. Since E ≤pe R, then C = 0, hence K = 0.
Thus, EM ≤pe M . Put EM ≡ N , so N ≤pe M .

Proposition 3.21. Given a non-zero multiplication module M having only one maximal submod-
ule T. If T ̸= 0, then T ≤pe M .

Proof. Assume that P ≤pu M with P ∩ T = 0. If P = M , then M ∩ T = 0, hence T = 0
which is a contradiction. Otherwise, P is a proper submodule. M is a non-zero multiplication
module implies that P is contained in some maximal submodule of M ([11], Theorem 2.5). But
M has only one maximal submodule T, so P ⊆ T ; thus, P = 0.

Proposition 3.22. Take a finitely generated module M having only one non-zero maximal sub-
module T, then T ≤pe M .
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Proof. Since M is finitely generated, then as in the same proof of Proposition 3.16, using
([21], Proposition 1.6, P. 7) instead of ([11], Theorem 2.5), we obtain T ≤pe M .

An R-module M satisfies the ascending chain condition (simply, ACC) if all ascending chains
of submodules of M are stationary. For a P-essential submodule, we introduce the following:

Definition 3.23. An R-module M satisfies the ascending chain condition on P-essential sub-
modules if any ascending chain of P-essential submodules:

V1 ≤ V2 ≤ V3 ≤ · · ·Vn ≤ · · ·
is stationary.

Proposition 3.24. Given a module M satisfying GPSP. If each P-essential submodule of M is
finitely generated, then M satisfies ACC on P-essential submodules.

Proof. Suppose that:
V1 ≤ V2 ≤ V3 ≤ · · ·Vn ≤ · · ·

It is an ascending chain of P-essential submodules in M. Put
∑

i Vi = V . Since M satisfies
GPSP, then by Proposition 3.12, V ≤pe M , and by assumption, V is finitely generated, so there
is a finite set I0 of I with V =

∑
i∈I0

Vi. Hence, the chain is stationary.

Any module is Noetherian if all its submodules are finitely generated, equivalently, any mod-
ule is Noetherian if it satisfies ACC [16].

Proposition 3.25. Let M be an R-module satisfying GPSP. Every P-essential R-submodule of M
is finitely generated if and only if M is Noetherian.

Proof. The necessity follows from Proposition 3.24. For the converse, since M is a Noethe-
rian module, then every submodule of M is finitely generated, hence every P-essential submodule
is finitely generated.

4 Direct sum of P-essential submodules

This section investigates and discusses the direct sum of P-essential submodules.

Proposition 4.1. Consider M = M1 ⊕ M2, where M1 and M2 are submodules of M. Take the
submodules K1 and K2 of M1 and M2 respectively. If K1 ⊕K2 ≤pe M1 ⊕M2 then K1(K2) ≤pe

M1(M2), provided that each pure submodule of M1(M2) is also pure in M.

Proof. Take P1 ≤pu M1 with K1 ∩ P1 = 0. One can easily show that (K1 ⊕K2) ∩ P1 = 0.
Since P1 ≤pu M1, then by assumption, P1 ≤pu M . Besides that K1 ⊕K2 ≤pe M , Thus, P1 = 0.
This means K1 ≤pe M1. Use a similar proof for K2.

Recall that a non-zero module M is fully P-essential if every P-essential submodule is essen-
tial [10].

Proposition 4.2. Consider the fully P-essential module M = M1 ⊕ M2, where M1 and M2
are submodules of M . Suppose that T1 ≤ M1 and T2 ≤ M2. If T1 ⊕ T2 ≤pe M1 ⊕ M2 then
T1 ≤pe M1 and T2 ≤pe M2.

Proof. M is a fully P-essential module implying T1 ⊕ T2 ≤e M1 ⊕M2. By ([7], Proposition
5.16, P.74 ), T1 ≤e M1 and T2 ≤e M2. But every essential submodule is P-essential. Therefore,
the desired is achieved.

Proposition 4.3. Given M = M1 ⊕M2, where M1 and M2 are fully P-essential submodules of
M. Assume that T1 ≤ M1 and T2 ≤ M2. If T1 ≤pe M1 and T2 ≤pe M2 then T1⊕T2 ≤pe M1⊕M2.

Proof. Because M1 and M2 are fully P-essential modules, then both T1 and T2 are essential
in M1 and M2, respectively. Thus, T1 ⊕ T2 ≤e M1 ⊕ M2, ([7], Proposition 5.20(2), P.75). But
each essential is P-essential, so T1 ⊕ T2 ≤pe M1 ⊕M2.
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Corollary 4.4. Suppose that M = M1 ⊕M2, where all submodules of M are fully P-essential.
Given T1 ≤ M1 and T2 ≤ M2. Then T1 ⊕ T2 ≤pe M1 ⊕ M2 if and only if T1 ≤pe M1 and
T2 ≤pe M2 .

Proof. M is a submodule of itself, so it is fully P-essential, and the necessity follows directly
from Proposition 4.2. For sufficiency, since M1 and M2 are submodules of M, then they are
entirely essential, and the result obtained from Proposition 4.3.

5 P-Socle of modules

This section studies in detail the intersection of all P-essential submodules.

Definition 5.1. Let M be an R-module. We call the set
⋂
{K \K ≤pe M}

P -socle of M. It is denoted by Socp(M).

Remarks and Examples 5.2.

1. Socp(M) ̸= ϕ and it is a submodule of M.

2. Socp(Z) = 0, Socp(Z10) = Z10, Socp(Z12) = 2Z12.

3. Socp(Zp∞) = ( 1
p + Z).

4. Socp(M) ⊆ Soc(M).

5. L ⊆ M implies Socp(L) ⊆ Socp(M).

6. If R is a regular ring, then Socp(M) = Soc(M).

A module M is pure split if every pure submodule of M is a direct summand [5].

Proposition 5.3. For any R-module M the implications (1) ⇒ (2) ⇒ (3) hold:

1. Socp(M) = M .

2. M has no proper P-essential submodule.

3. M is pure split.

Also, (3) ⇒ (1) when R is a regular ring.

Proof.

(1) ⇒ (2). Take L ≤pe M . Since Socp(M) =
⋂
{K \K ≤pe M}, then Socp(M) ⊆ L. On

the other hand, Socp(M) = M , therefore, M = L.

(2) ⇒ (3). Given N ≤ M . Let N
′

be a pure relative complement of N ; by Proposition
3.16, N ⊕N

′ ≤pe M . But if M has no proper P-essential submodule, then N ⊕N
′
= M .

Thus, N is a direct summand of M.

(3) ⇒ (1). Suppose that R is a regular ring, so there is no difference between a pure and
any other submodule. By (3), every submodule of M is a direct summand. This implies that
Soc(M) = M , ([15], P.26). Since R is regular, so by Remark 5.2(6), Socp(M) = Soc(M).
Hence Socp(M) = M .

An R-module M is called finitely cogenerated if, for every set {Ai \ i ∈ I} of submodules Ai

of M with
⋂

i∈I Ai = 0, there is a finite subset {Ai \ i ∈ I0} with
⋂

i∈I0
Ai = 0 (i.e. I0 ⊂ I and

I0 is finite), ([16], Definition 2.3.14, P.29). This motivates us to introduce the concept below.

Definition 5.4. A module M is finitely pure cogenerated if for every set {Ai \ i ∈ I} of a pure
submodules Ai of M with

⋂
i∈I Ai = 0, there is a finite subset {Ai\i ∈ I0} of a pure submodules

with
⋂

i∈I0
Ai = 0.

Proposition 5.5. Let M be a module that has PFIP. If Socp(M) is a finitely pure cogenerated
and P-essential submodule of M, then M is a finitely pure cogenerated.
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Proof. Assume that Socp(M) is a finitely cogenerated submodule and Socp(M) ≤pe M . Let
T = {Ai \ i ∈ I} be a set of submodules of M with

⋂
i∈I Ai = 0, then

⋂
i∈I{Ai ∩ Socp(M) \

i ∈ I} = 0. Now, Ai ∩ Socp(M) ⊂ Socp(M) and Socp(M) is finitely cogenerated, so there
exists a finite set I0 ⊂ I with

⋂
i∈I0

{Ai ∩ Socp(M)} = 0. Hence (
⋂

i∈I0
Ai) ∩ Socp(M) = 0.

Because Ai is pure ∀i ∈ I0 and M has PIFP, then
⋂

i∈I0
Ai is a pure submodule of M. Moreover,

Socp(M) ≤pe M , therefore
⋂

i∈I0
Ai = 0. Thus, M is a finitely pure cogenerated.

It is known that the intersection of two P-essential submodules may not be P-essential. For
the following result, we need to provide the following.

Condition 5.6. The intersection of any number of P-essential submodules is again P-essential.

Proposition 5.7. Given a module that satisfies condition 5.6. If M is a finitely pure cogenerated,
then Socp(M) is a finitely pure cogenerated and Socp(M) ≤pe M .

Proof. Assume that M is a finitely pure cogenerated. It is clear that any submodule (es-
pecially, Socp(M)) of a finitely pure cogenerated module is also finitely pure cogenerated. To
prove that Socp(M) ≤pe M , take a pure submodule K of M with Socp(M) ∩K = 0. By defini-
tion of Socp(M), ∃ U1, U2, . . . . . . . . . , Un ≤pe M such that (U1 ∩ U2, . . . . . . . . . ,∩Un) ∩K = 0.
Since M satisfies condition 5.6, then U1 ∩ U2, . . . . . . . . . ,∩Un ≤pe M , hence K = 0.

The following is obtained from Proposition 5.5 and Proposition 5.7.

Theorem 5.8. Take module M, which has PFIP and satisfies condition 5.6. Then Socp(M) ≤pe

M and a finitely pure cogenerated in M if and only if M is a finitely pure cogenerated.

6 P-essential and semi-essential submodules

This section discusses the relationship between P-essential and semi-essential submodules,
where a submodule N of M is semi-essential if N ∩ L ̸= 0 for each prime submodule LofM
[18]. An R-module M is called torsion-free if T (M) = 0, where T (M) = {m ∈ M |rm = 0,
for some non-zero r ∈ R}, [15]. And module M is prime if annR(M) = annR(N) for every
non-zero submodule N of M , [3].

Firstly, we need the following lemma.

Lemma 6.1.

1. Given a torsion-free module M, a proper submodule T of M is pure if and only if it is prime
and (T : RM) = 0 [17].

2. Given a prime R-module M, a proper submodule T of M is pure if and only if it is a prime
and (T : RM) = annR(M) [3].

Proposition 6.2. Let M be a non-zero torsion-free R-module. A submodule T of M is P-essential
if and only if T is a semi-essential submodule, provided that (T : RM) = 0.

Proof. Suppose that T ≤pe M , so T ∩ L ̸= 0 ∀L ≤pu M . Since M is torsion-free as well
as (T : RM) = 0, by Lemma 6.1(1), every pure submodule T of M is prime. Thus, T ∩ L ̸= 0
for each prime submodule L of M, and T is a semi-essential submodule. In the same way, the
converse can be done.

Corollary 6.3. Take a faithful and multiplication module M. Any submodule T of M is P-essential
if and only if T is semi-essential, provided that (T : RM) = 0.

Proof. M is a faithful and multiplication module implies that M is torsion-free ([11], Lemma
4.1, P. 773), and the result follows from Proposition 6.2.

Proposition 6.4. Let M be a non-zero prime R-module. A submodule T of M is P-essential if
and only if T is a semi-essential submodule, provided that (T : RM) = annR(M).

Proof. Assume that T ≤pe M , this means T ∩ L ̸= 0 ∀ L ≤pu M . Because M is a prime
module and (T : RM) = annR(M), then every pure submodule is prime by Lemma 6.1(2).
Therefore, T ∩ L ̸= 0 for each prime L ≤ M .
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7 P-uniform Modules

As mentioned earlier, a P-uniform module is a non-zero module in which all non-zero sub-
modules are P-essential. This section aims to develop this category of modules.

Proposition 7.1. If M/T is a P-uniform module for any R-module M, then M is P-uniform.

Proof. Take 0 ̸= L ≤ M . L/T is a non-zero submodule of M/T . Because M/T is P-
uniform, so L/T ≤pe M/T . By Proposition 3.14, L ≤pe M ; therefore, M is a P-uniform
module.

It is known that any submodule of a uniform module is uniform. As an analogue to this idea,
we introduce the following.

Proposition 7.2. Every pure submodule of a P-uniform module is P-uniform.

Proof. Given a pure submodule N of M, assume that 0 ̸= K ≤ N . Since K ≤ M and M is
P-uniform, then K ≤pe M . But N ≤pu M , therefore K ≤pe N , [5]. Thus, N is P-uniform.

In the following, we give another characterization of the P-uniform module.

Theorem 7.3. An R-module M is P-uniform if and only if any non-zero submodule N of M
satisfies N ∩ L ̸= 0 for any 0 ̸= L ≤pu M .

Proof. Let M be a P-uniform module and 0 ̸= N ≤ M . Take 0 ̸= L ≤pu M with N ∩L ̸= 0.
If N ∩ L = 0, then N ≰pe M , hence M is not P-uniform. But this is not true; thus, N ∩ L ̸= 0.
For the converse, suppose that 0 ̸= N ≤ M and take L ≤pu M with N ∩ L = 0. If L ̸= 0 then
by assumption; N ∩ L ̸= 0. But this contradicts our assumption; therefore, L = 0. This implies
N ≤pe M , hence M is P-uniform.

As a consequence of Theorem 7.3, we have the following.

Corollary 7.4. Let M be an R-module having PIP, and N is a pure and essential submodule of
M. If N is a P-uniform submodule, then M is a P-uniform module.

Proof. Given non-zero submodules L and K of M with L ≤pu M . Since N is essential,
N∩K ̸= 0 and N∩L ̸= 0. Since N is pure and M has PIP, then N∩L ≤pu N . On the other hand,
N is P-uniform and both N ∩K, N ∩L belong to N, so by Theorem 7.3 (N ∩K)∩ (N ∩L) ̸= 0,
hence N ∩ (K ∩ L) ̸= 0. But N ≤e M then K ∩ L ̸= 0. Again, by Theorem 7.3, we obtain that
M is a P-uniform module.

Next, the relationships between P-uniform and the two concepts of uniform and semi-uniform
modules are given in the following two propositions.

Proposition 7.5.

1. Any module M is a P -uniform module and fully P -essential if and only if M is a uniform
module.

2. Any module M is a P-uniform and F-regular if and only if M is a uniform module.

Proof.

1. For the sufficiency, take 0 ̸= T ≤ M . Because M is a P-uniform module, then T ≤pe M .
But M is fully P-essential; therefore, T ≤e M . That is, M is uniform. The necessity is
obvious.

2. It is similar to point (1), except replacing the concept fully P-essential with F-regular and
using Remark 2.1(3).

Proposition 7.6. Let M be a non-zero torsion-free R-module and (T : RM) = 0 for each sub-
module T of M. Then M is a P-uniform module if and only if M is a semi-uniform module.
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Proof. Given 0 ̸= T ≤ M . Because M is a P-uniform module, then T ≤pe M . But M is
a torsion-free R-module and (T : RM) = 0, so by Proposition 6.2, T ≤sem M , hence M is a
semi-uniform module. The other direction is done similarly.

It is known that any faithful and multiplication module is torsion-free. This fact helps us to
obtain the following.

Corollary 7.7. Any faithful and multiplication module M that satisfies (T : RM) = 0 ∀ T ≤ M ,
is a semi-uniform module if and only if M is a P-uniform module.

Proposition 7.8. Given a non-zero prime module M and (T : RM) = annR(M) ∀ T ≤ M .
Then M is a semi-uniform module if only if M is a P-uniform module.

Proof. For the necessity, take 0 ̸= T ≤ M . Because M is semi-uniform, then T ≤sem M .
But M is a prime R-module and (T : RM) = annR(M), so by Proposition 6.4, T ≤pe M .
Hence, M is a P-uniform module. The sufficiency is proved similarly.

8 Results and Discussion

Proposition 3.2 determined the condition under which the intersection of two P-essential sub-
modules is P-essential. Proposition 3.16 presents the important result that the direct sum of any
non-zero submodule with its pure relative complement is a P-essential submodule. Besides, it has
illustrated in Propositions 3.19 and 7.3 other characterizations of the definitions of P-essential
submodules and P-uniform modules, respectively. In the same context, we found the connec-
tion between P-essential submodules and P-essential ideals if they satisfy certain conditions, and
these conditions exist in Theorem 3.20. Based on Proposition 4.1, Propositions 4.2 and 4.3, we
explain how the finite direct sum of the P-essential submodules is P-essential and vice versa if
they have specific criteria. Moreover, we introduced P -socal of modules and show in Theorem
5.8, that if a module M has PFIP and satisfies condition 5.6, then Socp is a finitely pure cogener-
ated and P-essential in M if and only if M is a finitely pure cogenerated. Also, we found the link
between the P-uniform module and both uniform and semi-uniform modules, where they were
equivalent under a certain condition, which is clarified in Propositions 7.5, 7.6, and Proposition
7.8.

9 Conclusions

Nada M. Al-Thani first proposed P-essential submodules in 1997, while P-uniform modules
were first proposed by Maria M. Baher and Muna A. Ahmed in their work in 2023. In this paper,
these important notions were studied in more detail. The reason that motivated us to study these
kinds of modules is their important role in module theory, as we mentioned at the beginning of
this paper. This study answered several questions related to the characteristics of P-essential sub-
modules and P-uniform modules. Many results, analogous to those in essential submodules and
uniform modules, were discussed. P-Socle of any R-module was given and established. Other
characterizations of these concepts were explored. In addition, the relationships of P-essential
and P-uniform with semi-essential submodules and semi-uniform modules, respectively, were
considered.
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