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Abstract A detour pebbling number of a vertex v in a graph G is defined as least positive
number f∗(v,G) which allows a pebble to be put on v via a detour path by repeatedly performing
pebbling moves (A pebbling move is to remove two pebbles from a vertex and move a pebble
to an adjacent vertex) with any configuration of f∗(v,G) pebbles on G. Then f∗(G), the detour
pebbling number of G, is the maximum f∗(v,G) where v ∈ G. Here, we study the detour
pebbling number for cycle and wheel related graphs.

1 Introduction

One recent development in graph theory suggested by, Lagarias and Saks and called pebbling,
has been the subject of much research. It was first introduced into the literature by Chung [1],
and has been developed by many others including Hulbert, who published a survey of graph
pebbling [3]. Lourdusamy et al. [9] defined the detour pebbling number as follows: “A detour
pebbling number of a vertex v of a graph G is the smallest number f∗(G, v) that allows a peb-
ble to be moved to v via a detour path by a sequence of pebbling moves for any placement of
f∗(G, v) pebbles on the vertices of G. The detour pebbling number of a graph G, denoted by
f∗(G), is the maximum f∗(G, v) over all the vertices of G”. The readers can refer to [4, 6, 8, 10]
for further information about detour pebbling number.

Throughout this article, we denote p(z) for the number of pebbles initially placed on the ver-
tex z and p(S) denote the number of pebbles on the vertices of S. Pi means detour path and P̃i

means the set of vertices which are not on the detour path.

The readers can get the information about the graphs duplicating an arbitrary vertex of a cycle
Cn, duplicating an arbitrary edge of a cycle Cn, Qn, P2 ⊙ Cn, Cm ∗e Cn, Hn, CHn, Wbn and
Gn in [2, 5, 7, 11]. Here, we study the detour pebbling number of above mentioned graphs.

Remark 1.1. ω is assumed to be target. For the initial distribution we take p(ω) = 0.

2 Main Results

Theorem 2.1. If G is a graph obtained by duplicating a vertex of Cn, then f∗(G) = 2n.

Proof. Let V (Cn) = {a1, a2 · · · an}. Then the graph G = D(Cn, a
′
) is obtained by dupli-

cating a1 in Cn. Let V (G) = {ar, a
′

1 : 1 ≤ r ≤ n} and E(G) = {arar+1 : 1 ≤ r ≤
n − 1}

⋃
{ana1, a2a

′

1, ana
′

1}. The detour path P1 be a
′

1a2a3 · · · ana1 is of length n. Placing
2n − 1 pebbles on the vertex a

′

1, we cannot reach a1. Thus f∗(G) ≥ 2n. Now we prove the
sufficient condition. Let D be any configuration of 2n pebbles on the vertices of G.
Case 1. Let ω = a1.
Through the detour path P2 : a

′

1a2 · · · ana1 we can move a pebble to a1. By symmetry the result
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is true for the target vertices a3 and an−1.
Case 2. Let ω = a2.
The detour path P3 : a

′

1anan−1 · · · a3a2 has 2n−1 pebbles. Since the length of P3 is n − 1. We
can move a pebble to a2 using fewer than 2n pebbles. By symmetry we can prove for the vertices
a4, a5 · · · an−2 and an.
Case 3. Let ω = a

′

1.
The detour path P4 : a1an · · · a3a2a1 has 2n pebbles. It is easy to move a pebble to a

′

1 through
P4. Hence f∗(G) = 2n.

Theorem 2.2. If G is a graph obtained by duplicating an edge in cycle Cn, then f∗(G) = 2n+1.

Proof. Let V (Cn) = {a1, a2 · · · an}. Let e = a1a2 and e
′
= a

′

1a
′

2. Consider the graph G =

D(Cn, e
′
) which is obtained by duplicating an arbitrary edge e in Cn. Then V (G) = {ar, a

′

1, a
′

2 :
1 ≤ r ≤ n} and E(G) = {arar+1 : 1 ≤ r ≤ n − 1}

⋃
{ana1, ana

′

1, a3a
′

2, a
′

1a
′

2}. Consider the
detour path P1 : a

′

1a
′

2a3a4 · · · ana1a2 is of length n+ 1. If we place 2n+1 − 1 pebbles on a
′

1, we
cannot move a pebble to a2. So f∗(G) ≥ 2n+1.
Now we prove the sufficient condition. Let D be any configuration of 2n+1 pebbles on G.
Case 1. Let ω = a1.
We distribute 2n+1 pebbles path P2 : a

′

2a
′

1anan−1 · · · a3a2a1. This is also a detour path from a
′

2 to
a1 of length n− 1. So we can put a pebble on a1. By symmetry the proof follows for ω = a2, a4
and an−1.
Case 2. Let ω = a3.
We distribute 2n−1 pebbles on the detour path P3 : a

′

2a
′

1anan−1 · · · a4a3 which is of length n−1.
It is easy to see that a pebble can be moved to a3 using fewer than 2n−1 pebbles. By symmetry
we can proof follows for ω = an.
Case 3. Let ω = an−2.
We distribute 2n pebbles on the detour path P4 : a

′

2a
′

1ana1a2 · · · an−3an−2 which is of length
n. So we can move a pebble to an−2 using P4. By symmetry the follows for ω = ar, r ̸=
1, 2, 3, 4, n− 1, n.
Case 4. Let ω = a

′

1.
We distribute 2n+1 pebbles on the path P5 : a2a1anan−1 · · · a3a

′

2a
′

1 which is a detour path of
length n + 1. Obviously we can put a pebble on a

′

1 using the path P5. By symmetry the proof
follows for ω = a

′

2.
Hence f∗(G) = 2n+1.

Theorem 2.3. For quadrilateral snake Qn, f∗(Qn) = 23n.

Proof. Let V (Qn) = {ur : 1 ≤ r ≤ n + 1} ∪ {vr, wr : 1 ≤ r ≤ n} and E(Qn) =
{urur+1, vrwr, wrur+1, urvr : 1 ≤ r ≤ n}. Put 23n − 1 pebbles on v1. Then we cannot move a
pebble to un+1. Since the length of the detour path from v1 to un+1 is 3n. Thus f∗(Qn) ≥ 23n.
Let us now prove the sufficiency part, let D be any configuration of 23n pebbles on V (Qn).
Case 1. Let ω = un+1.
Consider the detour path P : u1v1w1u2v2w2 · · ·unvnwnun+1. Through the path P we can put a
pebble on ω. Through the path P we can put a pebble on ω. By symmetry the proof follows for
ω = u1.
Case 2. Let ω = ur, 2 ≤ r ≤ n.
Consider the path P1 : u1v1w1u2v2w2 · · ·ur of length 3r−3 and the path P2 : urvrwrur+1 · · ·un+1
of length 3n− 3r + 3. Either P1 contains at least 23r−3 pebbles or P2 contains at least 23n−3r+3

pebbles. Using the pebbles in either P1 or P2 we can move a pebble to ω using fewer than 23n

pebbles.
Case 3. Let ω = vr, 1 ≤ r ≤ n.
We consider the paths P3 : u1v1w1u2v2w2 · · ·urur+1wrvr of length 3r and the paths P4 :
vrwrur+1vr+1wr+1 · · ·un+1 of length 3n − 3r + 2. Then either P3 contains 23r pebbles or P4
contains atleast 23n−3r+2 pebbles. Using the pebbles in either P3 or P4 we can move a pebble to
ω using fewer than 23n pebbles.
Case 4. Let ω = wr, 1 ≤ r ≤ n.
The paths P5 : u1v1w1u2v2w2 · · ·urvrwr is of length 3r − 1 and the paths P4 : wrvrurur+1vr+1
wr+1 · · ·unvn is of length 3r. Then either P3 contains 23r−1 pebbles or P4 contains at least 23r
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pebbles. Then we can move a pebble to ω through the path P5 or P6 using fewer than 23n.
Hence, f∗(Qn) = 23n.

Theorem 2.4. Let G = Cm ∗e Cn. Then G is obtained by identifying of an edge of Cm with an
edge of Cn. Then f∗(G) = 2m+n−3.

Proof. Let V (Cm) = {a1, a2 · · · am} and V (Cn) = {b1, b2, · · · bn}. Let as identify a1am in Cm

with bnb1 in Cn. The detour path P1 : bn−1bn−2 · · · b2ama1a2 · · · am−1 is of length m + n − 3.
By placing 2m+n−3 − 1 pebbles that it is not possible to move a pebble to am−1. This leads to
f∗(G) ≥ 2m+n−3.
Let us now we prove the sufficiency part. Let D be any configuration of 2m+n−3 pebbles on
V (G).
Case 1. Let ω = a1.
The detour path P2 : bn−1bn−2 · · · b2amam−1 · · · a2a1 is of length m+n−3. By placing 2m+n−3

pebbles on P2 we can put a pebble on a1. By symmetry the proof follows for ω = ar, 2 ≤ r ≤ m.
Case 2. Let ω = bn−1.
The detour path P3 : a1a2 · · · am−1amb2b3 · · · bn−1 is of length m + n − 3. So we reach ω. By
symmetry the proof follows for ω = br, 3 ≤ r ≤ n− 1.
Hence, f∗(G) = 2m+n−3

Theorem 2.5. For P2 ⊙ Cn, f∗(P2 ⊙ Cn) = 22n+1.

Proof. Let V (P2 ⊙ Cn) = {as, asr : 1 ≤ r ≤ n, 1 ≤ s ≤ 2} and E(P2 ⊙ Cn) = {asrasr+1 : 1 ≤
r ≤ n − 1, 1 ≤ s ≤ 2} ∪ {asasr : 1 ≤ r ≤ n, 1 ≤ s ≤ 2} ∪ {as1asn : 1 ≤ s ≤ 2} ∪ {a1a2}. The
detour path from a1

n to a2
n is of length 2n+ 1. So if we place 22n+1 − 1 pebbles on a1

n it is not
possible to move a pebble to a2

n. Hence f∗(P2 ⊙ Cn) ≥ 22n+1.
Let us now prove the sufficient condition.
Case 1. Let ω = a1

1 .
Consider the detour path P1 : a2

na
2
n−1 · · · a2

1a2a1a
1
na

1
n−1 · · · a1

1. Using 22n+1 pebbles through the
path P1, we can move a pebble to a1

1. By symmetry the proof follows for ω = asr : 1 ≤ r ≤
n, 1 ≤ s ≤ 2.
Case 2. Let ω = a1.
Consider the detour path P2 : a2

na
2
n−1 · · · a2

1b2b1. Using 2n+1 pebbles on P2 and n pebbles on P̃2
we can put a pebble on a1. By symmetry the proof follows for ω = a2.
Hence, f∗(P2 ⊙ Cn) = 22n+1.

Theorem 2.6. For Hn, f∗(Hn) = 2n+1 + (n− 1).

Proof. Let V (Hn) = {a, ar, br : 1 ≤ r ≤ n} and E(Hn) = {arar+1, ana1 : 1 ≤ r ≤ n −
1}

⋃
{arbr, aar : 1 ≤ r ≤ n}. Consider the detour path P1 : b1a1a2 · · · ana. Let ω = a. Placing

2n+1 − 1 pebbles on b1 and 1 pebble each on bk where k ̸= 1 we cannot reach ω. Hence,
f∗(Hn) ≥ 2n+1 + (n− 1).
Now we prove the sufficient condition. Let D be a configuration having 2n+1 + (n− 1) pebbles
on V (Hn).
Case 1. Let ω = b1.
Consider the detour path P2 : aanan−1 · · · a1b1. The distance between a and b1 is n + 1. Using
2n+1 pebbles on P2 we can transfer a pebble to b1, without using n− 1 pebbles.
Subcase 1.1 p(V (P2)) < 2n+1 and p(V (P̃2)) ≥ n− 1.
If there exist more than one pebble on a vertex in V (P̃2) we can shift at least 1 pebble to the
detour path P2. Then using 2n+1 − 1 pebbles on the detour path P2 we can move a pebble to
ω. If the vertices of P̃2 has at least two pebbles each then using 2n + (2n−2) pebbles on the
detour path P2 we can put a pebble to ω. If the detour path has zero pebbles then using at least
2n + (n− 2) pebbles on V (P̃2) we can move a pebble to b1. By symmetry the proof follows for
ω = br, 2 ≤ r ≤ n and ω = a.
Case 2. Let ω = a1.
In the detour path P3 : aanan−1 · · · a1 the distance from a to a1 is n. Then distributing 2n pebbles
on the detour path P3 we can reach a1. If the number of pebbles on V (P3) is less than 2n then
we need to transfer pebbles from P̃3. Now we consider the following subcase.
Subcase 2.1 p(V (P3)) < 2n and p(V (P̃3)) ≥ n− 1.
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If there exist more than one pebble on a vertex in V (P̃3) we can shift at least 1 pebble to the
detour path P3. If p(V (P3)) = 2n − 1 we can reach the destination. If the vertices of P̃3 contain
at least two pebbles each then using 2 pebbles on the detour path we can move a pebble to a1. If
the detour path has zero pebbles then using at least 2n+1 + (n − 2) pebbles on V (P̃3) we reach
a1. By symmetry proof follows for ar, 2 ≤ r ≤ n. Hence, f∗(Hn) = 2n+1 + (n− 1).

Theorem 2.7. For CHn, f∗(CHn) = 22n.

Proof. Let V (CHn) = {a, ar, br; 1 ≤ r ≤ n} and E(CHn) = {aar, arbr : 1 ≤ r ≤ n} ∪
{arar+1, brbr+1 : 1 ≤ r ≤ n − 1}. Since the detour distance from a to b1 is 2n. By placing
22n − 1 pebbles on a, we cannot transfer a pebble to b1. Thus f∗(CHn) ≥ 22n.
We now prove the sufficiency part. Let us consider any distribution of 22n pebbles on CHn.
Case 1. Let ω = bn.
The Path P1 : aanan−1 · · · a1b1b2 · · · bn is the detour path of length 2n. Using 22n pebbles on the
spanning path P1 we can reach bn. By symmetry the proof follows for ω = br, 1 ≤ r ≤ n − 1
and ω = a.
Case 2. Let ω = a1.
Consider the detour path P2 : b1b2 · · · bnanan−1 · · · a1. Note that the detour path between b1 and
a1 is 2n − 1. Using 22n−1 pebbles on the detour path P2, we can reach a1. By symmetry the
proof follows for ω = ar, 2 ≤ r ≤ n.
Hence, f∗(CHn) = 22n.

Theorem 2.8. For Wbn, f∗(Wbn) = 22n+1 + (n− 1).

Proof. Let V (Wbn) = {a, ar, br, ur; 1 ≤ r ≤ n} and E(CHn) = {aar, arbr, brur : 1 ≤ r ≤
n}∪{arar+1, brbr+1 : 1 ≤ r ≤ n−1}. Consider the detour path P1 : u1b1b2 · · · bnanan−1 · · · a2a1a.
Let ω = a. Placing 2n+1 − 1 pebbles on u1 and 1 pebble each on uk where k ̸= 1 we cannot
reach ω. Thus f∗(Wbn) ≥ 22n+1 + (n− 1).
Now for proving the sufficient condition. Cnsider a configuration of 22n+1 + (n− 1) pebbles on
V (Wbn).
Case 1. Let ω = u1.
In the detour path P2 : aa1a2 · · · anbnbn−1 · · · b1u1 the distance between a and u1 is 2n+ 1. Let
p(V (P2)) = 22n+1. Then we can transfer a pebble to u1, without using n− 1 pebbles.
Subcase 1.1 p(V (P2)) < 22n+1 and p(V (P̃2)) ≥ n− 1.
If there exist more than one pebble on a vertex in V (P̃2) we can shift at least 1 pebble to the
detour path P2. Then using 22n+1 − 1 pebbles on P2 we can put a pebble on ω. If the vertices
of P̃2 have at least two pebbles each then using 22n + (2n+1) pebbles on P2 we can reach ω. If
the detour path has zero pebbles then using at least 2n+3 + (n − 2) pebbles on V (P̃2) we put a
pebble on u1. By symmetry the proof follows for ω = ur, 2 ≤ r ≤ n.
Case 2. Let ω = b1.
Consider the detour path P3 : aa1a2 · · · anbnbn−1 · · · b1. The detour distance from a to b1 is 2n.
Then distributing 22n pebbles on P3 we can reach b1. If the number of pebbles on the vertices
of P3 is less than 2n pebbles then we need to transfer pebbles from P̃3. Now we consider the
following subcase.
Subcase 2.1 p(V (P3)) < 22n and p(V (P̃3)) ≥ n− 1.
If there exist more than one pebble on a vertex in V (P̃3) we can shift at least 1 pebble to the
detour path P3. If p(V (P3)) = 22n − 1 we can reach the destination. If the vertices of P̃3 contain
at least two pebbles each, we can move a pebble on b1. If the detour path has zero pebbles then
using at least 2n+2 +(n− 2) pebbles on V (P̃3) we can reach b1. By symmetry the proof follows
for ω = br, 2 ≤ r ≤ n.
Case 3. Let ω = a1.
Consider the detour path P4 : u1b1b2 · · · bnanan−1 · · · a1. Note that the distance from u1 to a1 is
2n. Hence we are done by case 2.
Case 4. Let a be a target.
In the detour path P5 : u1b1b2 · · · bnanan−1 · · · a1a the distance from u1 to a is 2n+ 1. Then by
case 1, we can reach a.
Hence, f∗(Wbn) = 22n+1 + (n− 1).

Theorem 2.9. For Gn, f∗(Gn) = 22n.
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Proof. Let V (Gn) = {a, ar, br : 1 ≤ r ≤ n}. Let E(Gn) = {aar, arbr : 1 ≤ r ≤ n} ∪
{brar+1, bna1 : 1 ≤ r ≤ n− 1}. Note that the detour path from a to b1 has length 2n. Therefore
by placing 22n − 1 pebbles on a we cannot put a pebble on b1. Therefore, f∗(Gn) ≥ 22n.
For proving the sufficient condition, let D be a configuration having 22n pebbles on Gn.
Case 1. Let ω = bn.
The detour path P1 : aa1b1a2b2 · · · anbn is of length 2n. So it is sufficient to have 22n pebbles on
P1 to reach ω. By symmetry the proof follows for ω = br, 2 ≤ r ≤ n.
Case 2. Let ω = a1.
The detour path P2 : bnanbn−1an−1 · · · b2a2b1a1 is of length 2n − 1. So we can reach ω using
22n−1 pebbles. By symmetry the proof follows for ω = ar, 2 ≤ r ≤ n.
Case 3. Let ω = a.
The detour path P3 : bnanbn−1an−1 · · · b2a2b1a1a is of length 2n. So we can reach ω using 22n

pebbles.
Hence, f∗(Gn) = 22n.

3 Conclusion

In this paper, we have computed detour pebbling number of cycle related graphs and wheel
related graphs. Therefore, the results of this work are variant, significant and so it is interesting
and capable to develop its study in the future.
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