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Abstract This article examines the impact of the fractional order parameter on thermoelastic
materials subjected to laser heating pulses, with and without the consideration of non-local ef-
fects. The model is formulated and solved using normal mode analysis, applied under impedance
boundary conditions at the surface. Key physical field variables, including displacement, stress,
and temperature distribution, are derived analytically and illustrated graphically for various val-
ues of the fractional order parameter, both with and without the non-local influence. A specific
case has also been derived from the general model.

1 Introduction

In non-local elasticity theory, the stress at any given point depends on the strain at all other
points in the material, unlike classical elasticity, which links the stress at a point solely to the
strain at that same point. Fractional order derivatives play a key role in modeling certain phys-
ical phenomena that classical elasticity cannot adequately address. For example, materials like
colloids, amorphous media, glassy substances, and porous materials often behave in ways that
classical thermoelasticity, which relies on Fourier’s law of heat conduction, fails to describe
accurately. In such cases, a generalized thermoelasticity theory, incorporating heat conduction
models with time-fractional derivatives, is required. This approach offers a more accurate rep-
resentation of heat conduction in these complex materials. Research by Povstenko [1] explored
non-local generalizations of Fourier’s law using time and space fractional derivatives, while
Youssef [2] proposed a thermoelasticity model that incorporates fractional-order heat conduc-
tion and proved the uniqueness of this theory. Additionally, Ezzat [3] studied thermoelectric
fluid systems with fractional-order heat transfer, applying state-space and Laplace transform
methods to solve one-dimensional problems. These studies highlight the limitations of classical
methods and the growing importance of fractional calculus in describing complex materials and
heat transfer processes.

Various researchers have developed non-local elasticity theory through different assumptions
and approaches. Notable contributors include Eringen and Edelen [4], Edelen and Law [5], Erin-
gen [6-11], McCay [12], McCay and Narsimhan [13], with a comprehensive overview provided
in Eringen’s [14] book. Mustafa et al. [15] investigated exponential decay in thermoelastic sys-
tems, while Somaiah and Lasiecka [16] explored the effects of rotation on radial vibrations in
a microelastic solid with a spherical cavity. Kumar et al. [17] conducted a transient analysis
of non-local microstretch thermoelastic thick circular plates with phase-lags. Hobiny and Ab-
bas [18] examined the influence of non-local effects on thermoelastic materials, and Usman et
al. [19] derived solutions to fractional kinetic equations involving generalized hypergeometric
functions. Lu et al. [20] studied the thermoelastic response of a rod subjected to a moving heat
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source, applying fractional-order thermoelasticity theory.
This paper explores the impact of the fractional order parameter on thermoelastic materi-

als, examining scenarios both with and without the inclusion of a non-local parameter, with
laser heating as the heat source. The problem is solved using normal mode analysis, applying
impedance boundary conditions at the surface. Analytical solutions are derived for key physi-
cal field variables such as displacement, stresses, and temperature distribution, and these results
are illustrated graphically for various values of the fractional order parameter. Furthermore, a
special case is extracted from the general solution to highlight specific behavior.

The significant feature of this kind of study is the analytical approach to the problem. If the
analytical solution of a special problem can be available, then it can be used as a benchmark to
prove the accuracy of any numerical approach. The use of integral transforms is one of the pow-
erful semi-analytical tools for solving linear partial differential equations arising in heat transfer,
earth-quake engineering, soil dynamics, and other areas of applied mechanics. However, the
applicability of integral transform method is quite limited and is confined to linear problems.

2 Basic Equations

Following Tzou and Guo [21] and Sherief et al. [22], we have
(i) Constitutive Relations

tij = 2µeij + δij(λekk − γ1T ), (2.1)

(ii) Equation of motion

(λ+ 2µ)∇(∇ · −→u )− γ1∇T + µ△−→u = ρ(1 − ξ2
1△)

∂2−→u
∂t2

, (2.2)

(iii) Heat conduction equation

K∗△T = (1 + τ0
∂α0

∂tα0
)(ρCe

∂T

∂t
−Q+ γ1T0

∂e

∂t
). (2.3)

In the equations (2.1)-(2.3), ξ1 - non-local parameter, τ0 - thermal relaxation times with τ0 ≥
0, α0 -fractional parameter,K∗ - thermal conductivity, △- Laplacian operator, ∇- nabla(gradient)
operator, Other symbols have usual meanings.

3 Statement of the Problem

For the assumed model, we have

−→u = (u1(x1, x3, t), 0, u3(x1, x3, t)), T (x1, x3, t) (3.1)

Using (3.1) in (2.2) and (2.3), recast the following equations

(µ+ λ)
∂e

∂x1
− γ1

∂T

∂x1
+ µ△u1 = ρ(1 − ξ2

1△)
∂2u1

∂t2
, (3.2)

(µ+ λ)
∂e

∂x3
− γ1

∂T

∂x3
+ µ△u3 = ρ(1 − ξ2

1△)
∂2u3

∂t2
, (3.3)

K∗△T = (1 + τ0
∂α0

∂tα0
)(ρCe

∂T

∂t
−Q+ γ1T0

∂e

∂t
). (3.4)

Following dimensionless quantiites are used

ξ′1 =
ω∗

c1
ξ1, (u′i, x

′
i) =

ω∗

c1
(ui, xi), (t′, τ ′0) = ω1(t, τ0), t′ij =

tij
γ1T0

, ω′ =
ω

ω∗

T ′ =
γ1

ρc2
1
T, ,Q′ =

Ce

K∗ω∗2Q, (Z ′
1, Z

′
2) =

c1

γ1T0
(Z1, Z2), Z ′

3 =
c1

K∗Z3, (i = 1, 3)

(3.5)
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where

ω∗ =
ρCec

2
1

K∗ , c2
1 = (

λ+ 2µ
ρ

)

ω∗-characteristic frequency and c1 - longitudinal wave velocity.
Equations (3.2)-(3.4) with the aid of (3.5), reduce to the following equations after suppressing
the primes

(µ+ λ)

ρc2
1

∂e

∂x1
− ∂T

∂x1
+

µ

ρc2
1
△u1 = (1 − ξ2

1△)
∂2u1

∂t2
, (3.6)

(µ+ λ)

ρc2
1

∂e

∂x3
− ∂T

∂x3
+

µ

ρc2
1
△u3 = (1 − ξ2

1△)
∂2u3

∂t2
, (3.7)

△T = (1 + τ0(ω
∗)α0−1 ∂

α0

∂tα0
)(
ρCec

2
1

K∗ω∗
∂T

∂t
− γ1

ρCe
Q+

γ2
1T0

ρK∗ω∗
∂e

∂t
). (3.8)

where △ = ∂2

∂x2
1
+ ∂2

∂x2
3

and e = ∂u1
∂x1

+ ∂u3
∂x3

.
Equations (3.6)-(3.8) can be expressed as

n11
∂e

∂x1
+ n12△u1 −

∂T

∂x1
= (1 − ξ2

1△)
∂2u1

∂t2
, (3.9)

n11
∂e

∂x3
+ n12△u3 −

∂T

∂x3
= (1 − ξ2

1△)
∂2u3

∂t2
, (3.10)

△T = (1 + τ0(ω
∗)α0−1 ∂

α0

∂tα0
)(n13

∂T

∂t
+ n14

∂e

∂t
− n15Q). (3.11)

where

n11 =
(λ+ µ)

ρc2
1

, n12 =
µ

ρc2
1
, n13 =

ρCec
2
1

K∗ω∗ , n14 =
γ2

1T0

ρK∗ω∗ , n15 =
γ1

ρCe
.

4 Solution Procedure

Displacement components u1(x1, x3, t) and u3(x1, x3, t) to the scalar potential functions ϕ(x1, x3, t)
and ψ(x1, x3, t) in dimensionless form are given by

u1 =
∂ϕ

∂x1
− ∂ψ

∂x3
, u3 =

∂ϕ

∂x3
+
∂ψ

∂x1
. (4.1)

With the aid of (4.1), equations (3.9)-(3.11) yield(
(n11 + n12)△− (1 − ξ2

1△)
∂2

∂t2

)
ϕ− T = 0, (4.2)

(
n12△− (1 − ξ2

1△)
∂2

∂t2

)
ψ = 0, (4.3)

(
1 + τ0(ω

∗)α0−1 ∂
α0

∂tα0

)
n14△

∂ϕ

∂t

+

(
1 + τ0(ω

∗)α0−1 ∂
α0

∂tα0

)
n13

∂T

∂t
−△T =

(
1 + τ0(ω

∗)α0−1 ∂
α0

∂tα0

)
n15Q. (4.4)

Using (4.2) in (4.4) yields
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{[
−
(
n11 + n12 + ξ2

1
∂2

∂t2

)
△2 −

(
1 + τ0(ω

∗)α0−1 ∂
α0

∂tα0

)
n13

∂3

∂t3

]
+

[(
1 + τ0(ω

∗)α0−1 ∂
α0

∂tα0

)(
n14

∂

∂t
+ n13(n11 + n12)

∂

∂t
+ (ξ2

1 − 1)n13
∂3

∂t3

)
+

∂2

∂t2

]
△
}
ϕ =(

1 + τ0(ω
∗)α0−1 ∂

α0

∂tα0

)
n15Q.

(4.5)

5 Normal Mode Analysis

Solution of considered physical variables in terms of normal modes is as follows:

(ϕ, ψ, T,Q) = (ϕ, ψ, T ,Q)eι(kx1−ωt) (5.1)

The plate is illuminated by heat source

Q =
I0γ

∗

2πr2t20
te−t/t0e−x2

1/r
2
e−γ∗x3 .

where ω - complex time constant, k-wave number in x1-direction, I0 - energy absorbed and γ∗ -
absorption depth of heating energy.
Using (5.1), equations (4.3) and (4.5) take the form

(D4 +AD2 +B)(ϕ, T ) = n24Q0e
γ∗x3 , (5.2)

(D2 −m2
3)ψ = 0. (5.3)

where

D =
d

dx3
, A =

n22 − 2n21k
2

n21
, B =

n21k
4 − n22k

2 − n23

n21
, m2

3 =
ξ2

1k
2 + 1 − n12k

2

ω2

ξ2
1 − n12

ω2

,

n21 = −(n11+n12−ω2ξ2
1), n22 = (1+(−ιω)α0)(−ιω(n14+n13(n11+n12))+(ξ2

1−1)n14ιω
3−ω2)

n23 = (1+τ0(ω
∗)α0−1)n13ιω

3, n24 = (1+τ0(ω
∗)α0−1)(−ιω)α0n15, Q0 =

I0γ
∗

2πr2t20
te−t/t0e−x2

1/r
2
.

Bounded solution of equations (5.2) and (5.3) are

{ϕ, T} =
2∑

i=1

(1, ai)[Aie
−mix3 + f1e

−γ∗x3 ], (5.4)

ψ = A3e
−m3x3 (5.5)

a1 and a2 are coupling constants given by

ai =
[−(m2

i − k2)n14ιω(1 + τ0(ω∗)α0−1)(−ιω)α0 ]

[−(m2
i − k2)− n13ιω(1 + τ0(ω∗)α0−1)(−ιω)α0 ]

, i = 1, 2.

f1 =
n24Q0

γ∗4 +Aγ∗2 +B
.

By substituting the values of ψ, ϕ and T from equations (5.4) and (5.5) into equation (2.1), along
with equations (3.1),(3.5),(4.1) and (5.1), and solving the resulting system, we obtain

t33 =
1
△

3∑
i=1

(a1i△ie
−mix3 + a14f1e

−γ∗x3), (5.6)
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t31 =
1
△

3∑
i=1

(a2i△ie
−mix3 + a24f1e

−γ∗x3), (5.7)

T =
1
△

2∑
i=1

(ai△ie
−mix3 + f1e

−γ∗x3), (5.8)

where

a1i = (2n31+n32)m
2
i−n32k

2−n33ai, a13 = −2n31ιkm3, a14 = [(2n31+n32)γ
∗2−n32k

2−n33],

a2i = −2n31ιkmi, a23 = −(m2
3 + k2), a24 = −2n31ιkγ

∗, i = 1, 2.

n31 =
µ

γ1T0
, n32 =

λ

γ1T0
, n33 =

ρc2
1

γ1T0

6 Boundary Conditions

Impedence boundary conditions at x3 = 0 are

t33 + ω1Z1u3 = 0, t31 + ω1Z2u1 = 0, K∗ ∂T

∂x3
+ ω1Z3T = 0 (6.1)

Zi (i = 1, 2, 3) are impedance real valued parameters. Z1 andZ2 have dimension of stress/velocity
and Z3 has dimension Nm−1K−1. ω1 is the wave circular frequency.
Using (3.5) in (6.1) and after suppressing the primes, we get

t33 + ω1Z1u3 = 0, t31 + ω1Z2u1 = 0,
∂T

∂x3
+ ω1Z3T = 0. (6.2)

Substituting the expression of variables considered into (6.2), we obtain

3∑
i=1

ni4Ai = F1, (6.3)

3∑
i=1

ni5Ai = F2, (6.4)

3∑
i=1

ni6Ai = F3. (6.5)

where

Ai =
∆i

∆
, i = 1, 2, 3, △ = n61(n42n53 − n43n52)− n62(n41n53 − n51n43),

n41 = ω1Z1m1 + n32k
2 + n33a1 − (2n31 + n32)m

2
1,

n42 = ω1Z1m2 + n32k
2 + n33a1 − (2n31 + n32)m

2
2,

n43 = 2ιk(m3 − ω1Z1), n51 = 2ιk(n31m1 − ω1Z1),

n52 = ιk(2n31m2 − ω1Z2), n53 = m2
3 + k2 − ιkω1Z2,

n61 = m1a1 − ω1Z3a1, n62 = m2a2 − ω1Z3a2,

F1 = [(2n31 + n32)γ
∗2 + n32k

2 + n33 + ω1Z1γ
∗]fe−γx3 ,

F2 = [−2n31ιkγ
∗ + ιkω1Z2]f1e

−γ∗x3 , F3 = [ω1Z3 − γ∗]f1e
−γ∗x3 .

Putting [F1, F2, F3]T in ith column of ∆ respectively determine ∆i (i = 1, 2, 3).
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7 Particular Case

Taking ξ1 = 0 in equations (5.6)-(5.8) gives the resulting expressions for thermoelastic medium
due to laser pulse heating.

8 Validation

The effect of the fractional parameter on thermoelastic materials with non-local considerations
has not yet been explored. In the absence of the non-local parameter, the results of this study
align with those previously discussed by Wang et al. [23].

9 Numerical Implementation

For numerical computations, following [24], we take the copper material.

λ = 7.76 × 1010Kgm−1s−2, µ = 3.86 × 1010Kgm−1s−2, T0 = 0.293 × 103K,

Ce = 0.3891 × 103JKg−1K−1, αt = 1.78 × 10−5K−1, αc = 1.98 × 10−4m3Kg−1,

ρ = 8.954 × 103Kgm−3, K = 0.386 × 103Wm−1K−1, r = 100µm, t = 0.01s,

t0 = 2nans, γ∗ = 1m−1, τ0 = 0.2s, ξ = 0.395 × 10−9m, ω = 2 − 0.1t, ω1 = 1,

Z1 = 1Nm−1s−1, Z2 = 2Nm−1s−1, Z3 = 4Nm−1K−1

Graphs are computed using software Matlab(R2016a).
In figures 1-6:

• Solid line represents α0 = 0.1.

• Line with small dashes denotes α0 = 0.5.

• Line with small dashes denotes α0 = 1.0.

• Impact of different values of fractional parameter on stress components and temperature
distribution on non-local thermoelastic material is shown in figures 1-3.

• Figures 4-6 show the impact of fractional order parameter on thermoelastic material without
non-local effect.

Figure 1 demonstrates trend of t33 vs. x3. t33 shows low damp and jump for high values of
fractional parameter and with increasing distance converge to zero for all values of α0.
Figure 2 displays trend of t31 vs.x3. t31 shows high damp and jump for moderate values of
fractional parameter and converge to zero with increasing distance for all values of fractional
parameter.
Figure 3 depicts trend of T vs.x3. T shows high variations for high values of α0 and low variations
for low value of α0.
Figure 4 shows trend of t33 vs.x3. t33 shows high oscillations for low values of fractional order
parameter, while these oscillations decrease for increasing values of α0.
Figure 5 displays trend of t31 vs.x3. t31 shows high damp and jump for low values of α0 and less
variations for high values of α0.
Figure 6 depicts trend of T vs.x3. For increasing values of α0, T shows low variations.
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Figure 1. Profile of t33 vs. x3

Figure 2. Profile of t31 vs. x3

Figure 3. Profile of T vs. x3
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Figure 4. Profile of t33 vs. x3

Figure 5. Profile of t31 vs. x3
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Figure 6. Profile of T vs. x3

10 Conclusion remarks

The fractional parameter has a significant influence on both the stress components and temper-
ature distribution. Analytical solutions for thermoelastic problems in solids, based on normal
mode analysis, have been developed and examined. For non-local thermoelastic materials sub-
jected to a laser heating pulse, the magnitudes of all physical quantities diminish to zero with
increasing distance, and all functions remain continuous. It has been observed that in thermoelas-
tic materials, stress components and temperature distribution exhibit oscillatory behavior, with
these oscillations decreasing as the fractional order parameter increases. Furthermore, as the
distance from the heat source increases, the fractional order parameter has a negligible effect on
the physical quantities. This research provides valuable insights for those working in seismology
and related fields.

References
[1] Y.Z. Povstenko, Thermoelasticity that uses fractional heat conduction equation, Journal of Mathematical

stresses 162 (2009), 296-305.

[2] H.M. Youssef, Theory of fractional order generalised thermoelasticity, J. Heat Transfer 132 (2010), 1-7.

[3] M.A. Ezzat, Theory of fractional order in generalised thermoelectric MHD, Applied Mathematical Mod-
elling 35 (2011), 4965-4978.

[4] A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity, Int. J. Eng. Sci. 10 (1972), 233-248.

[5] D.G.B. Edelen, N. Laws, On the thermodynamics of systems with nonlocality, Arch. Ration. Mech. Anal.
43 (1971), 24-35.

[6] A.C. Eringen, On nonlocal fluid mechanics, Int. J. Eng. Sci. 10 (6) (1972), 561-575.

[7] A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci. 10 (1972), 1-16.

[8] A.C. Eringen, Nonlocal continuum theory of liquid crystals, Mol. Cryst. Liq. Cryst. 75 (1981), 321-343.

[9] A.C. Eringen, Nonlocal inviscid magneto-hydrodynamics and dispersion of Alfven waves, Bull. Tech.
Univ. Istanb. 39 (1986), 393-408.

[10] A.C. Eringen, Memory dependent nonlocal elecrodynamics, mechanical modelling of new electromag-
netic materials, Proceedings of IUTAM Symposium (Hsieh R.K.T., ed.) Elsevier, Amsterdam, (1990),
45-49.

[11] A.C. Eringen, Memory dependent nonlocal electromagnetic elastic solids and superconductivity, J. Math.
Phy. 32 (3) (1991), 787-796.

[12] B.M. McCay, M.L.N. Narsimhan, Theory of nonlocal electromagnetic fluids, Arch. Mech. 33 (3) (1981),
365-384.

[13] M.L.N. Narsimhan, B.M. McCay, Dispersion of surface waves in nonlocal dielectric fluids, Arch. Mech.
33 (3) (1981), 385-400.



Non-local Thermoelastic Behaviors...Laser Heating Pulse 21

[14] A.C. Eringen, Nonlocal continuum field theories, Springer (2002).

[15] M.I. Mustafa, S. Messaoudi, M. Kafini, Exponential decay in thermoelastic systems with internal dis-
tributed delay, Palestine Journal of Mathematics 2(2) (2013), 287-299.

[16] K. Somaiah, I. Lasiecka, Effect of rotation on radial vibrations in an unbounded micro-isotropic, micro-
elastic solid having a spherical cavity, Palestine Journal of Mathematics, 6(1) (2017), 15-23.

[17] AR. Kumar, A. Miglani, R. Rani, Transient analysis of nonlocal microstretch thermoelastic thick circular
plate with phase lags, Med. J. Simul. 09 (2018), 25-42.

[18] A. Hobiny, I. Abbas, The effect of a nonlocal thermoelastic model on a thermoelastic material under
fractional time derivative, Fractal. Frac. 6 (2022), 639.

[19] T. Usman, N. Khan, S. Messaoudi, O. Khan, D.A. Juraev, Fractional operators and solution of fractional
kinetic equations involving generalised hypergeometric function, Palestine Journal of Mathematics 13(3)
(2024), 711-721.

[20] F. Liu, P. Shi, Y.Guo, The thermoelastic dynamic response of a rod due to a moving
heat source under the fractional order thermoelasticity theory, Symmetry 16(6) (2024), 666,
https://doi.org/10.3390/sym16060666.

[21] D.Y. Tzou, Z.Y. Guo, Nonlocal behavior in thermal lagging, Int. J. Therm. Sci. 49(7) (2010), 1133-1137.

[22] H.H. Sherief, A.E. Sayed, A.M. Latief, Fractional order theory of thermoelasticity, Int. J. of solids and
structures 47(2) (2010), 269-275.

[23] Y. Wang, D. Liu, Q. Wang, J. Zhou, Effect of fractional order parameter on thermoelastic behaviors of
elastic medium with variable properties, Acta Mechanica Solida Sinica 28(6) (2015), 682-692.

[24] H.H. Sherief, H. Saleh, A half space problem in the theory of generalised thermoelastic diffusion, Int. J.
of Solids and Structures 42 (2005), 4484-4493.

Author information
Rajneesh Kumar, Department of Mathematics, Kurukshetra University, Kurukshetra, Haryana, India.
E-mail: rajneesh_kuk@rediffmail.com

Sachin Kaushal, Department of Mathematics, School of Chemical Engineering and Physical sciences, Lovely
Professional Universiy-Phagwara, India, India.
E-mail: sachin_kuk@yahoo.co.in

Vikram, Department of Mathematics, Lovely Professional Universiy-Phagwara, India, India.
E-mail: dhaiyavikram91@gmail.com

Nidhi Sharma, Department of Mathematics,Maharishi Markandeshwar (DU)- Mullana-Ambala, India.
E-mail: nidhi_kuk26@rediff.com


	1 Introduction
	2 Basic Equations
	3 Statement of the Problem
	4 Solution Procedure
	5 Normal Mode Analysis
	6 Boundary Conditions
	7 Particular Case
	8 Validation
	9 Numerical Implementation
	10 Conclusion remarks

