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Abstract This paper attempts to generalize rough ideal convergence for some spaces. We
have used rough ideal convergence in normed linear spaces to introduce rough ideal conver-
gent sequence spaces using Orlicz function which generalizes the existing sequence spaces,
"[C, 1, p], [C, 1, p]0, [C, 1, p]∞". We have also studied some properties of these spaces when
topologized through a paranorm and investigated inclusion relations, equivalent conditions, de-
composition theorem, and algebraic properties of such spaces. We have also given examples
to show that the rough ideal convergent spaces so obtained are solid, monotone but fail to be
convergence free.

1 Introduction

The Orlicz function was first introduced by the Polish mathematician W. Orlicz in 1931. Lind-
berg initiated the use of Orlicz functions to solve an open problem to find a Banach space having
subspaces isomorphic to c0, the space of null sequences, or ℓp spaces. Their work evoked inter-
est of J. Lindenstrauss and L. Tzafriri [11], and they were successful in constructing a sequence
space, ℓS with the help of Orlicz function S, which furthermore solved a long pending open
problem of finding a complete normed linear space that has a subspace isomorphic to some
ℓp = {a = (an) ∈ ω :

∑
n |an|p <∞}, ( 1 ≤ p <∞). And

ℓS := {x ∈ ω :
∞∑
k=1

S(
|xk|
ψ

) <∞, for someψ > 0},where

ℓS is a complete normed linear space under the norm

∥x∥ = inf{ψ > 0 :
∞∑
k=1

S( |xk|
ψ ) ≤ 1}.

and is called an Orlicz sequence space.
In [18], Parashar and Choudhary defined certain paranorms for Orlicz sequence space, laying

the foundation for topologization of various generalized Orlicz sequence spaces. The Orlicz
sequence space has always been a centre of interest for researchers as it generalizes and unifies
several known sequence spaces for, the space ℓS becomes ℓp, ( 1 ≤ p <∞) if we choose S(x) =
xp. After the introduction of statistical and ideal convergence, several researchers introduced
statistical and ideal convergent sequence spaces determined by Orlicz functions and explored
the algebraic and topological properties of the sequence spaces so obtained (see [27], [22], [8],
[26], [25], and [10]).

Rough convergence was introduced in connection with the convergence problem of the se-
quences by Phu in [19]. Rough convergence is a new type of convergence where we study the
behaviour of a sequence in any neighbourhood and not necessarily ϵ neighbourhood.
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For any sequence, {an} in some normed linear space (X, ∥ · ∥) and r ∈ R be any positive
number, {an} is said to be r-convergent to a∗, denoted by an

r→ a∗, if there exist nϵ ∈ N such
that

n ≥ nϵ ⇒ ∥an − a∗∥ < r + ϵ, for all ϵ > 0.

where r and a∗ are called the roughness degree and the rough limit point, written shortly as
r-limit point of the sequence {an} respectively. The immediate consequence of this definition is
that every bounded sequence is convergent and the limit is not unique. The set of r-limit points
of the sequence {an}, is denoted by LIMran = {a∗ : an

r→ a∗}.
To extend this notion to unbounded sequences and to enhance its applicability, Aytar gave the

statistical version of rough convergence, and several related results were investigated in [1] and
[3]. The natural extension of statistical convergence is ideal convergence and therefore rough
ideal convergence was introduced and studied in [16] and [7]. Since then researchers all over the
globe have explored the possibility of applying rough convergence to sequences in spaces where
the notion of distance holds such as, metric spaces, cone metric spaces, S-metric spaces, n-
normed spaces, fuzzy normed spaces etc. for different types of sequences like double sequences,
triple sequences, sequences of fuzzy numbers etc. For some related study see [5], [23], and [17].

This paper is aimed at introducing and generalizing rough ideal convergence for sequence
space using an Orlicz function S, which is the generalization of ℓS , the Orlicz sequence space
and "[C, 1, p], [C, 1, p]0, [C, 1, p]∞," the sequence spaces of strongly summable sequences [12].
We have divided this paper into four sections. The first section is the introduction. It consists of
the literature and background on rough convergence. In the second section, we recall some basic
definitions and results that will be used in the main results of this paper. Also, we have used the
idea of Orlicz sequence space and introduced some rough ideal convergent sequence spaces with
the help of an Orlicz function. In the third section, we have also given some properties of these
spaces when topologized through a paranorm and investigated inclusion relations, equivalent
conditions, decomposition theorem, and algebraic properties of such spaces. In the last section
of this paper, we have given a brief summary and future scope of the present work.

2 Preliminaries

Definition 2.1 (Ideal). Any non-empty collection I of subsets of a non-empty set X is called an
ideal on X if, the following conditions are satisfied:

(i) I is stable under finite union, H,K ∈ I =⇒ H ∪K ∈ I and

(ii) I is stable under subsets, H ∈ I, and K ⊆ H =⇒ K ∈ I.

The collection I is called an admissible ideal (a.i.) if all the singletons subsets of X lie in I, and
I is called non-trivial, whenever I ̸= {∅} and X /∈ I.

Definition 2.2 (Filter). Any non-empty collection F of subsets of a non-empty set X is called an
filter on X if,

(i) ∅ /∈ F,

(ii) F is stable under finite intersection, H,K ∈ F =⇒ H ∩K ∈ F and

(iii) F is stable under super-sets, H ∈ F, and H ⊆ K =⇒ K ∈ F.

Definition 2.3 (Filter associated with Ideal). For any ideal I of a set X , the collection of comple-
ments of members of I denoted by F(I) and defined as the set {P ⊂ X : ∃Q ∈ I, P = X\Q} is
called filter associated with ideal I.

Definition 2.4 (Ideal Convergence). Ideal convergence of a sequence {an} in a normed linear
space (X, ∥ · ∥) to a is denoted by I− lim an = a and is defined as, for any positive pre assigned
number ϵ

{n ∈ N : ∥an − a∥ ≥ ϵ} ∈ I.
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Definition 2.5 (Rough Ideal Convergence). Let I be a non-trivial admissible ideal on N, and
r > 0 be any real number. Then, any sequence {an} in a normed linear space (X, ∥ · ∥) is said to
be rI-converges to a, denoted by an

rI→ a, if

{n ∈ N : ∥an − a∥ ≥ r + ϵ} ∈ I,∀ϵ > 0.

Theorem 2.6. For r is non-negative real number. The following are interchangeable:

(i) The sequence a = {an} is rI-converges to a∗,

(ii) There is a sequence b = {bn} such that I− lim b = a∗ and ∥an − bn∥ ≤ r, for n ∈ N.

Definition 2.7 (Sequence Space). Let Λ be a vector space of sequences. Then any vector sub-
space κ of Λ is called a sequence space (in short S-space).

Definition 2.8. (Sectional Subspace) Let L = {l1 < l2 < l3 . . .} be a subsequence in N and, let
κ be a S-space. Then,

κL = {(xl) : xl ∈ κ}

is said to be the L-step space or sectional subspace.

Definition 2.9. (Canonical Pre-image) For any sequence in (xl) in L-step space, the sequence al
defined as

al =

{
xl; if l is inL,
0; otherwise.

is the canonical pre-image of a sequence (xl). The collection of all canonical pre-images of each
sequence in a step sequence is called the canonical pre-image of a S-space.

Definition 2.10. (Monotone Space) If a S-space κ contains pre-images of each of its step spaces
then it is called a monotone space.

Definition 2.11. (Solid Space) A S-space κ in which bn ∈ κ, whenever there is some an ∈ κ
with |bn| ≤ |an|, n ∈ N is called solid.

Remark 2.12. Every solid space is monotone.

As we know that norm is a generalized notion of distance and paranorm is the generalized
absolute value function.

Definition 2.13. (Paranormed Space) A function υ : X → R on a linear space X , is called a
paranorm if it satisfies the following:

(i) υ(u) ≥ 0, ∀u ≥ 0, u ∈ X ,

(ii) υ(−u) = u,∀ u ∈ X ,

(iii) υ(u+ v) ≤ υ(x) + υ(v),∀u, v ∈ X ,

(iv) For any sequence of scalars, (αn) with αn → α and a vector sequence (an) such that
υ(an − a) → 0 as n → ∞, we have υ(αnan − αa) → 0 as n → ∞ i.e., υ is continuous
under multiplication by scalars.

Then (X, υ), is a paranormed space. Additionally, (X, υ) is called a total paranormed space,
whenever υ(u) = 0, implies u is the zero vector in X . If we define a real valued function on a
total paranomed space, X as d(u, v)= υ(u − v), then d is a metric on X and we call X a linear
metric space.

Definition 2.14. (Convex Function) A map g : [a, b] → R is convex if,

g(t1c+ t2d) ≤ t1g(c) + t2g(d),where c, d ∈ [a, b] and t1 + t2 = 1.

Example 2.15. Any real valued linear map on any interval of R defined as g(x) = αx+β, where
α and β are constants, is a convex function.
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Definition 2.16 (Orlicz Function). Consider a map S between non negative real numbers, S : [0,∞) →
[0,∞) . Then it is called an Orlicz function if

(i) S is continuous,

(ii) S is convex,

(iii) S is non decreasing,

(iv) S takes zero to zero, S(0) = 0,

(v) S takes positive values to positive values, S(u) > 0 for u > 0,

(vi) S takes large values to large values, S(u) → ∞ as u→ ∞.

Definition 2.17 (∆2-condition). Let S be an Orlicz function. If for every positive real number k,
there exist constant M > 0 such that S(2k) ≤MS(k), then we say S satisfies ∆2-condition.

The ∆2-condition, can also be considered as the inequality S(pk) ≤ MpSk, ∀k and for
p > 1.

Corollary 2.18. For 0 < p < 1, S(pk) ≤ pSk, where S is an Orlicz function.

Throughout this paper, let I be a non-trivial admissible ideal on N and r be a non-negative
real number. Also it is well established that the spaces,

(i) ω := {a = (an) : an ∈ R or C},

(ii) ℓ∞ := {a = (an) ∈ ω : supn ∥an∥ <∞},

(iii) c0 := {a = (an) ∈ ω : limn ∥an∥ = 0},

are Banach spaces with norm ∥a∥ = supn |an|.
For an Orlicz function S and t = (tk), where tk > 0 and some real number r > 0. We give

the following definitions:

cRI(S, t) = {a = (an) ∈ ω : {n ∈ N : S( |an−a|ψ )
tk ≥ r + ϵ} ∈ I, a ∈ R, ψ > 0},

c0
RI(S, t) = {a = (an) ∈ ω : {n ∈ N : S( |an|ψ )

tk ≥ r + ϵ} ∈ I, a ∈ R, ψ > 0},

ℓ∞(S, t) = {a = (an) ∈ ω : sup
n
S( |an|ψ )

tk
<∞, a ∈ R, ψ > 0}.

We also denote

GRI
c(S, t) = ℓ∞(S, t) ∩ cRI(S, t),

GRI
c0(S, t) = ℓ∞(S, t) ∩ c0

RI(S, t).

3 Main Results

Theorem 3.1. For t = (tk) ∈ ℓ∞ and an Orlicz function S, the classes of sequence

cRI(S, t), c0
RI(S, t),GRI

c(S, t), andGRI
c0(S, t)

are vector spaces over R.

Proof. Consider a = (an), b = (bn) ∈ cRI(S, t) be and let a
′
, b

′
be any two scalars. Since

a = (an), b = (bn) ∈ cRI(S, t) by definition of cRI(S, t), for any ϵ > 0 there are ψ1, ψ2 > 0
such that the sets,

A1 = {k ∈ N : S( |ak−a∗|ψ1
)
tk ≥ r1 +

ϵ
2} ∈ I}, for some a∗ ∈ R and r1 > 0. (3.1)

A2 = {k ∈ N : S( |bk−b∗|ψ2
)
tk ≥ r2 +

ϵ
2} ∈ I}, for some b∗ ∈ R and r2 > 0. (3.2)
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Let r = max{r1, r2} and ψ3 = max{2|a′ |ψ1, 2|b
′ |ψ2}. Furthermore, S being an Orlicz function

is convex and non decreasing, we have the following inequality

S( |(a
′
ak+b

′
bk)−(a

′
a∗+b

′
b∗)|

ψ3
)tk ≤ S( |a

′
||ak−a∗|
ψ3

)tk + S( |b
′
||bk−b∗|
ψ3

)tk ,

≤ S( |a
′
||ak−a∗|
ψ1

)tk + S( |b
′
||bk−b∗|
ψ2

)tk .

Then from above inequality along with ((3.1)) and ((3.2)) we have,

{k ∈ N : S( |(a
′
ak+b

′
bk)−(a

′
a∗+b

′
b∗)|

ψ3
)
tk

≥ 2r + ϵ} ⊆ A1 ∪A2 ∈ I,

implies that

{k ∈ N : S( |(a
′
ak+b

′
bk)−(a

′
a∗+βb∗)|

ψ3
)
tk

≥ 2r + ϵ} ∈ I.

Thus a
′
ak + b

′
bk ∈ cRI(S, t). Hence, cRI(S, t) is a vector space. The proof for c0

RI(S, t),
GRI

c(S, t), and GRI
c0(S, t) can be obtained similarly.

Theorem 3.2. Let S be an Orlicz function and t = (tk) ∈ ℓ∞, then the function υ(x) defined as

υ(x) = inf
k≥1

{ψ
tk
M : sup

k

S( |xk|
ψ )tk ≤ 1, where ψ > 0},where

M = max{1, supk tk} is a paranorm and the spaces GRI
c(S, t),GRI

c0(S, t) are paranormed
spaces, paranormed by υ(x).

Proof. Proof omitted as it is simple and similar to the proof given in [18].

Theorem 3.3. For any two Orlicz functions S1 and S2 which satisfy ∆2-condition, the following
inclusions hold

(i) ζ(S1S2, t) contains ζ(S2, t),

(ii) ζ(S1, t) ∩ ζ(S2, t) is included in ζ(S1 + S2, t), where ζ = cRI, c0
RI,GRI

c,GRI
c0 .

Proof.

(i) Let x = (xk) ∈ c0
RI(S2, t) be any arbitrary element. Then by definition of c0

RI(S2, t), for
any pre assigned ϵ > 0 we have some ψ > 0 with

{k ∈ N : S2(
|xk|
ψ )

tk ≥ r + ϵ ∈ I},where r > 0. (3.3)

For a suitable choice of η with η ∈ (0, 1), we have S1(t) < r + ϵ, for t ∈ [0, η]. Put
sk = S2(

|xk|
ψ )

tk
, then

lim
k
S1(sk) = lim

sk≤η
S1(sk) + lim

sk>η,k∈N
S1(sk).

Case 1 If sk > η. Since η < 1, we get sk < sk
η < 1 + sk

η S1 is an Orlicz function, by
property 2 and 3 in (2.16) and (2.18), we have,

S1(sk) < S1(1 + sk
η ) <

1
2S1(2) + 1

2S1(
2sk
η ).

Also, by (2.17), S1(sk) < 1
2M

sk
η S1(2) + 1

2M
sk
η S1(2), it follows that S1(sk) <

M sk
η S1(2). This further implies,

lim
sk>η,k∈N

S1(sk) ≤ max{r,M 1
ηS1(2) lim

sk>η,k∈N
(sk)}. (3.4)

Case 2 If sk ≤ η. Then

lim
sk≤η,k∈N

S1(sk) ≤ r. (3.5)
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From (3.3), (3.4) and (3.5), we conclude that

{k ∈ N : S1S2(
|xk|
ψ )

tk ≥ r + ϵ ∈ I, for some r > 0}.

Hence, x = (xk) ∈ c0
RI(S1S2, t). This proves that ζ(S2, t) ⊆ ζ(S1S2, t).

(ii) Consider x = (xk) ∈ c0
RI(S1, t) ∩ c0

RI(S2, t). Then by definition we have,

{k ∈ N : S1(
|xk|
ψ )tk ≥ r + ϵ} ∈ I

and
{k ∈ N : S2(

|xk|
ψ )tk ≥ r + ϵ ∈ I for some r > 0}, where

ϵ > 0 and ψ > 0. Also,

{k ∈ N : (S1 + S2)(
|xk|
ψ )tk ≥ r + ϵ} ⊆ [{k ∈ N : S1(

|xk|
ψ )tk ≥ r + ϵ}

∪ {k ∈ N : S2(
|xk|
ψ )tk ≥ r + ϵ}]

Suggests that
{k ∈ N : (S1 + S2)(

|xk|
ψ )tk ≥ r + ϵ} ∈ I.

Thus, x = (xk) ∈ c0
RI(S1 + S2, t).

We can prove the other inclusions by proceeding in the same fashion.

Theorem 3.4. The spaces c0
RI(S, t) and GRI

c0(S, t) are solid S-spaces.

Proof. Let x = (xk) ∈ c0
RI(S, t). Then

{k ∈ N : S( |xk|
ψ )

tk ≥ r + ϵ ∈ I}, for some r > 0, ϵ > 0, ψ > 0.

For S is an Orlicz function S, by (2.18) we obtain,

S( |αkxk|
ψ )

tk ≤ |αk|tkS( |xk|
ψ )

tk ≤ S( |xk|
ψ )

tk
,

for some sequence of scalars αk with |αk| ≤ 1,∀k ∈ N. Clearly, αkxk ∈ c0
RI(S, t). The proof

for GRI
c0(S, t) can be obtained similarly.

In the light of the (2.12), we conclude that the spaces c0
RI(S, t) and GRI

c0(S, t) are monotone
S-spaces.
Our experience with cI(M) andmI(M) [25] may lead us to believe that cRI(S, t) and GRI

c(S, t)
are not monotone and therefore not solid. However rough convergence gives sequences liberty
to converge for any limit in a relaxed neighbourhood, (for any suitable r>0). Let us understand
this with the help of an example.

Example 3.5. For S(x) = x2, tk = 1,I = Iδ, consider the constant sequence {an}, where
an = 1,∀n. Then an ∈ cI(S, t), but there is a canonical pre-image {bn} of {an}, defined as:

bk =

{
ak ; if k is even,

0 ; otherwise.

which does not belong to cI(S, t) [25]. However, for r = 1, bk is r − I convergent to 0. Thus,
canonical pre-images of all the step spaces, for a suitable choice of ’r’ are in cRI(S, t) and
GRI

c(S, t).

Thus, cRI(S, t) and GRI
c(S, t) are solid and monotone for some r > 0.

Theorem 3.6. cRI(S, t) and GRI
c(S, t) fail to be convergence free.

Proof. For the proof of this theorem, we consider the following example.
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Example 3.7. For S(x) = x, tk = 1 = ψ, let {an} be a sequence in R. Let I be admissible ideal
of N such that it contains an infinite set P . Define

ak =

{
k ; for k ∈ P,

(−1)k; otherwise.

Then an ∈ cRI(S, t). However, the permutation sequence, defined as

ak =

{
(−1)k; for k ∈ P,

k; otherwise.

is not r − I convergent. Thus, cRI(S, t) is not convergence free in general.

Theorem 3.8. For an admissible ideal I, the following are interchangeable:

(i) (ak) ∈ cRI(S, t),

(ii) For all k ∈ I, there exists (bk) ∈ cI(S, t) such that ∥ak − bk∥ ≤ r, r > 0,

(iii) For all k ∈ I,we have (bk) ∈ cI(S, t) and (ck) ∈ c0
RI(S, t) with ak = bk + ck,

(iv) limn→∞ S( |amn−l|
ψ )tmn = r,where l is the r-I limit of S( |ak|ψ )

tk
and M = {m1,m2, . . .} of

N such that M ∈ F(I).

Proof.

(1) ⇒ (2) Let (ak) ∈ cRI(S, t). Then for some r > 0 and ϵ > 0 and l ,

{k ∈ N : S( |ak−l|ψ )
tk ≥ r + ϵ} ∈ I}.

Again by (2.6), we have a sequence (bk) as

bk =

{
ak; S( |ak−l|ψ )

tk
< r,

l; otherwise.

Clearly, (bk) ∈ cI(S, t) and for all k ∈ I, ∥ak − bk∥ ≤ r .

(2) ⇒ (3) We are given that for (ak) ∈ cRI(S, t), then there exists (bk) ∈ cI(S, t) with |ak −
bk| ≤ r, where r > 0, k ∈ I. Let J = {k ∈ N : ∥ak − bk∥ ≥ r}, then J ∈ I. Define a
sequence

ck =

{
ak − bk; k ∈ J,

0; otherwise.

Then, (ck) ∈ c0
RI(S, t).

(3) ⇒ (4) LetA = {k ∈ N : S( |ck|ψ )
tk ≥ r+ ϵ

2}. ThenAc ∈ F(I). LetAc =M = {m1,m2, . . .}.

Then we have, limn→∞ S( |akn−l|
ψ )tkn = r.

(4) ⇒ (1) Let ϵ > 0, then we

{k ∈ N : S( |akn−l|
ψ )tk ≥ r + ϵ} ⊆M c ∪ {k ∈M : S( |akn−l|

ψ )pkn = r ≥ r + ϵ} ∈ I.

Hence, (ak) ∈ cRI(S, t).

Theorem 3.9. The set GRI
c(S, t) is closed in ℓ∞(S, t).

Proof. Let (ak(n)) be a Cauchy sequence in GRI
c(S, t) such that ak(n) → a. Since ak(n) ∈

GRI
c(S, t), there exists bn such that for some r > 0,

{k ∈ N : S( |ak
(n)−bn|
ψ )

tk
≥ r + ϵ} ∈ I.

We need to show that



140 S. Sharma, S. Mishra and P. Pandey

(a) (bn) converges to b,

(b) If V = {k ∈ N : S( |ak
(n)−b|
ψ )

tk
< r + ϵ}, then V c ∈ I.

(a) Now, (ak(n)) ∈ GRI
c(S, t) is Cauchy =⇒ ∃n0 ∈ N such that

supkS(
|ak(n)−ak(m)|

ψ )tk <
ϵ

3
,∀n,m ≥ n0, ϵ > 0.

For a given ϵ > 0, and some r > 0 consider

Pnm = {k ∈ N : S( |ak
(n)−ak(m)|
ψ )tk <

r + ϵ

3
},

Pm = {k ∈ N : S( |ak
(m)−bm|
ψ )tk <

r + ϵ

3
},

Pn = {k ∈ N : S( |ak
(n)−bn|
ψ )tk <

r + ϵ

3
}.

Then, Pnmc, Pnc, Pmc ∈ I. Consider

P = {k ∈ N : S( |bm−bn|
) ψtk < r + ϵ}.

Then, P c = Pnm
c ∪ Pmc ∪ Pnc lies inI. Let n,m ≥ n0, where n0 ∈ P c, we get

{k ∈ N : S( |bm−bn|
ψ )tk < r + ϵ} ⊇ {{k ∈ N : S( |bm−ak(m)|

ψ )tk <
r + ϵ

3
}

∩ {k ∈ N : S( |ak
(m)−ak(n)|
ψ )tk <

r + ϵ

3
}

∩ {k ∈ N : S( |ak
(n)−bn|
ψ )tk <

r + ϵ

3
}}.

This establishes that (bn) is a ρ Cauchy sequence in R and R being r-complete, we get some
b in R with bn is r-convergent to b for some r > 2−1J(R)ρ, where J is "Jung’s constant"
[21].

(b) For ak(n) → x, there exists n0 ∈ N with B = {k ∈ N : S( |ak
(n0)−ak|
ψ )tk < ( r+ϵ3N )M},

where r > 0, ϵ > 0,M = max{1, supk tk}, N = max{1, 2P−1}, P = supk tk ∗
implies Bc ∈ I.

For a suitably chosen, n0 together with ∗, we have

C = {k ∈ N : S( |bn0−b|
ψ )tk < ( r+ϵ3N )M , }

such that Cc ∈ I. Let Dc = {k ∈ N : S( |ak
(n0)−bn0 |
ψ )tk ≥ ( r+ϵ3N )M} then Dc ∈ I.

Let V c = Bc ∪ Cc ∪Dc, where V = {k ∈ N : S( |ak−b∥ψ

tk
) < r + ϵ}. Therefore, for each

k ∈ V c, we have

{k ∈ N : S( |ak−b|ψ )tk < r + ϵ} ⊇ {{k ∈ N : S( |ak−ak
(n0)|

ψ

tk
< (

r + ϵ

3N
)M}

∩ {k ∈ N : S( |ak
(n0)−bn0 |
ψ )tk < (

r + ϵ

3N
)M}

∩ {k ∈ N : S( |bn0−b|
ψ )tk < (

r + ϵ

3N
)M}}.

Thus, V c ∈ I.
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4 Conclusion

We have defined and explored some new class of sequence spaces with the help of rough con-
vergence and Orlicz function. Theorem (3.8) establishes a some new relationship between rough
ideal convergent sequences and ideal convergent sequences. Many different types of functions
like modulus functions can be used to define new types of rough ideal convergent sequence
spaces to obtain some new and interesting results.

References
[1] S. Aytar, Rough statistical convergence, Numerical Functional Analysis and Optimization, 29, 291-303,

(2008).

[2] S. Aytar, The rough limit set and the core of a real sequence, Numerical Functional Analysis and Opti-
mization, 29, 283-290, (2008).

[3] S. Aytar, Rough Statistical Cluster Points, Filomat, 31, 5295-5304, (2017).

[4] A.K. Banerjee and R. Mondal, Rough convergence of sequences in a cone metric space, Journal of Anal-
ysis, 27, 201-224, (2019).

[5] S. Debnath and C. Choudhury, On some properties of IK convergence, Palestine Journal of Mathematics,
11(2), 129-135, (2022).

[6] S. Debnath and D. Rakshit, Rough convergence in Metric Spaces, New Trends in Analysis and Interdisci-
plinary Applications, Trends in Mathematics, 449-454, (2017).

[7] E. Dundar and C. Cakan, Rough I-convergence, Demonstratio Mathematica, 47, 638-651, (2014).

[8] A. Esi and B. Hazarika, Ideal convergence of double interval valued numbers defined by orlicz function,
Journal of Scientific Perspectives, 1, 43-54, (2017).

[9] P.K. Kamthan and M. Gupta, Sequence spaces and Series, Marcel Dekker, New York, (1981).

[10] V.A. Khan and M. Shafiq, On I-Convergence of Sequence of Bounded Linear Operators defined by Mod-
ulus Function, Journal of Mathematical Analysis, 5, 12-27, (2014).

[11] J. Lindenstrauss and L. Tzafriri, On Orlicz Spaces, Israel Journal of Mathematics, 101, 379-390, (1971).

[12] I.J. Maddox, Spaces of strongly summable sequences, The Quarterly Journal of Mathematics, 18, 345-355,
(1967).

[13] P. Malik and M. Maity, On rough convergence of double sequence in normed linear spaces, Bulletin of
the Allahabad Mathematical Society, 28, 89-99, (2013).

[14] P. Malik and M. Maity, On rough statistical convergence of double sequences in normed linear spaces,
Afrika Mathematica, 27, 141-148, (2016).

[15] R. Mondal and S. Khatun, Rough convergence of sequences in S- metric space, Palestine Journal of Math-
ematics 13(1), 316-322, (2024).

[16] S.K. Pal, D. Chandra and S. Dutta, Rough ideal convergence, Hacettepe Journal of Mathematics and
Statistics, 42, 633-640, (2013).

[17] O. Kisi, On invariant arithmetic statistically convergence and lacunary invariant arithmetic statistically
convergence, Palestine Journal of Mathematics, 11(2), 378-383, (2022).

[18] S.D. Parashar and B. Choudhary, Sequence spaces dfined by Orlicz functions, Indian Journal Pure Applied
Mathematics, 25, 419-428, (1994).

[19] H.X. Phu, Rough convergence in normed linear spaces, Numerical Functional Analysis and Optimization,
22, 201-224, (2001).

[20] H.X. Phu, Rough continuity of linear operators, Numerical Functional Analysis and Optimization, 23,
139-146, (2002).

[21] H.X. Phu, Rough convergence in infinite dimensional normed linear spaces, Numerical Functional Anal-
ysis and Optimization, 24, 285-301, (2003).

[22] E. Savas and R. Savas, Some sequence spaces defined by Orlicz fuctions, Archivum Mathematicum(Brno)
Tomus, 40, 33-40, (2004).

[23] S. Saha, A. Esi and S. Roy, Some new classes of multiplier ideal convergent triple sequence spaces of
fuzzy numbers defined by Orlicz functions, Palestine Journal of Mathematics, 9(1), 174-186, (2019).

[24] S. Sharma and S. Mishra, Rough ideal convergent sequence spaces of bounded linear operators, South
East Asian Journal of Mathematics and Mathematical Sciences, 19(2), 297-310, (2023).

[25] B.C. Tripathy and B. Hazarika, Some I-convergent sequence spaces defined by Orlicz functions, Acta
Mathematicae Applicatae Sinica, English Series, 27, 149-154, (2011).



142 S. Sharma, S. Mishra and P. Pandey

[26] K. Raj, A.K. Sharma, S.K. Sharma and S. Singh,Some double sequence spaces defined by a sequence of
Orlicz functions over n-normed spaces, Lobachevskii Journal of Mathematics, 33, 183-190, (2012).

[27] K. Vatan, Some new sequence spaces defined by a sequence of orlicz functions, Taiwanese Journal of
Mathematics, 9, 617-627, (2005).

Author information
S. Sharma, Department of Mathematics, Lovely Professional University, Phagwara, Punjab, India.
E-mail: shivani.saggi@gmail.com

S. Mishra, Department of Mathematics, ASAS, Amity University, Lucknow Campus, Uttar Pradesh, India.
E-mail: drsanjaymishra1@gmail.com

P. Pandey, Department of Mathematics, Lovely Professional University, Phagwara, Punjab, India.
E-mail: pankaj.anvarat@gmail.com


	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Conclusion

