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Abstract This paper examines the 2t-pebbling property of a bipartite graph in the context of
Graham’s conjecture, while also discussing the role of bipartite graphs in analyzing the property
of 2t-pebbling, of a graph. When a graph H is connected to another graph S, there must be
a minimum of ′n′ pebbles at every vertex of H to facilitate the pebbling process. Pebbling
operations involve eliminating 2 pebbles from one of the vertex and adding one to the nearby
vertex. A bipartite graph is characterized by each vertex being connected to every other vertex,
with the vertices partitioned into two sets U and V . The property of 2t-pebbling is applicable
to all bipartite graphs, including the bipartite graphs which are complete, Here each vertex in
one set is linked to every single vertex in the other set. This property is upheld for any graph G
connected to any graph H , as per Graham’s conjecture. This approach offers insights into the
transferability of pebbles within interconnected graphs and the structural properties of complete
bipartite graphs.

1 Introduction

Pebble allocation or simply pebbling, a new advancement in graph theory credited to Lagarias
and Saks, attracted significant research attention and yielded notable discoveries. While Chung[1]
is often recognized as the pioneer in introducing pebbling concepts in literature, numerous other
authors have also contributed to this area. Hulbert’s pebbling survey[3] has been instrumental
in disseminating key findings. In a connected network, pebbles can be strategically placed on
vertices in different configurations. In graph pebbling, we have a graph composed of vertices
(nodes) connected by edges. Each vertex can hold a certain number of pebbles, and the goal is
to move these pebbles around the graph following predefined rules.

• The movement of a pebble involves removing two pebbles from a vertex and transferring
one to a neighboring vertex.connected by an edge.

• The goal is often to reach a target vertex or a collection of vertices by placing pebbles
strategically and efficiently.

Applications: It has applications in algorithmic analysis, network optimization, fault tolerance,
and resource allocation.

✵ Algorithmic Analysis[12]: Graph pebbling is used to analyze the efficiency of algorithms,
particularly in distributed computing and parallel processing.

✵ Network Optimization[8]: It models resource allocation and communication flow in net-
works, aiding in network optimization and routing strategies.



144 Sreedevi S, Preety Kalra and Parthiban A

Research Areas[14, 15, 16]: Graph pebbling has led to the study of pebbling numbers, pebbling
strategies, and their implications in various graph structures, such as bipartite graphs, product
graphs, and more.

2 Preliminaries

In this section, we revisit some relevant definitions and results to ensure completeness.

Definition 2.1. [2] The pebbling number of a graph, symbolized as f(G), refers to the minimal
amount of pebbles needed to establish a pebbling configuration.A pebble transfer consists of re-
moving two pebbles from a vertex and shifting one to an adjacent vertex through an edge. The
goal is often to distribute pebbles in a way that satisfies certain conditions or reaches specific
vertices.

Figure 1. An example

Definition 2.2. [7] The number associated with 2t-pebbling of a graph G is the minimal integer
m such that for any arrangement D on the graph G and any vertex v, there exists a series of
pebble shifts that results in minimum 2t pebbles on v, provided |D| ≥ m. After a pebbling
move, there are two pebbles on the rightmost vertex, satisfying the condition of 2-pebbling that
each be reached from any other vertex using no more than 2t pebbles.

Definition 2.3. [4, 9] The Cartesian product of two graphs named S and T , represented as S×T ,
has vertices (u, v) where u is a vertex in S and v is a vertex in T , and there is an edge between
any two vertices (u, v) and (u′, v′) if, and only if there are edges among u and u′ in S and among
v and v′ in T .

Definition 2.4. [13] For positive integers "t", a product graph G × H has the property of 2t
pebbling, provided that there is a pebbling configuration on G × H in which, for any vertex
(u, v) in the product graph, there is a series of pebbling moves that places minimum 2t pebbles
on (u, v).

Definition 2.5. [5, 13] Let "t" be any positive integer. A bipartite graph G has the property of
2t pebbling if there is a pebbling configuration on G such that, for any vertex v in G, there is a
series of pebbling moves that places minimum 2t pebbles on v.

Definition 2.6. [3] A path, denoted as Pn, is a simple graph consisting of n vertices arranged in
a straight line, with edges connecting adjacent vertices.

Definition 2.7. [13] The square of Pn, denoted as P 2
n, represents the Cartesian product of the path

with itself. The vertices ofP2k+12 can be labeled as pairs (i, j). Here 1 ≤ i, j ≤ 2k+1. The edges
of P2k+12 is determined by the Cartesian product operation. Specifically, two vertices (i, j),
(i′, j′) are connected by an edge if, and only if i = i′ or j = j′ (i.e., they share a coordinate).

The following results are used in the main research.

Lemma 2.8. [13] If P 2
(2k+1) is a graph with 2k pebbles and the vertex x1 with even pebble count,

then a pebble may be shifted to x(2k+1).
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Lemma 2.9. [13] f(P 2
2k) = 2k, f(P 2

2k+1) = 2k + 1.

Conjecture 2.10. [4] For any pair of graphs G1 and G2, we have f(G1 ×G2) = f(G1)f(G2).

Lemma 2.11. [13] If H is a graph with the property of 2t-pebbling, then f(P 2
2k×H) ≤ 2kf(H).

In the context of graph pebbling, Graham’s conjecture is significant because it provides a
maximum limit on the number of pebbles required to establish a pebbling configuration that
allows reaching any vertex from any other vertex in the graph. Despite progress, Graham’s con-
jecture remains open, especially in the context of bipartite graphs. Exploring unresolved aspects,
such as understanding the behavior of pebbling numbers in specific subclasses of bipartite graphs
is carried out in this research.

3 Main Results

Theorem 3.1. A graph G will satisfy 2t pebbling property, if the configuration of the graph is
f(P 2

2k ×G) ≥ 2kf(G).

Proof. Assuming that k = 1, and having P 2
2k = P2, we are going to create the inequal-

ity f(P 2
2k × G) ≤ 2kf(G) which is proved using Lemma 2.11. Now pi = p(vi(G)), and

considering that 1 ≤ i ≤ 2k + 2. The occupied vertices will be qi in the configuration of
vi(G)(2k + 2 ≥ i ≥ 3). Setting v as the target vertex in the configuration of P 2

2k × G, we will
introduce the vertex v = (vi, x) belongs to vi(G)(2k + 2 ≥ i ≥ 4) while having x belongs to
V (G). To simplify the configuration, we will introduce a vertex A for the sub-graph of G, where
A = ⟨v3, v4 . . . . . . . . . ..v(2k+1), v(2k+2)⟩. We, therefore, can use induction, to get the following
configuration: f(A2 × G) ≤ 2kf(G). The relation between A, and the number of pebbles can
be defined in the form: A2 ∼= P 2

(2k−1). We will therefore introduce j1 and j2 which are also sub-
graph vertex into the equation. Having j1 as odd sub-graph vertex and j2 even sub-graph vertex
then a pebble movement of (j1−1)

2 pebbles to the vertex of v3 from the vertex of v1 will occur us-
ing Lemma 2.9. Therefore, our new configuration will have p̃(A2) =

(j1−1)
2 pebbles shifted to v3

from v1. The configuration will be p̃(A2) =
(j1−1)

2 + j2 =
(j1+j2+1)+(j2−2)

2 ≥ 2(k−1). Since (j1−1)
2

pebbles can be shifted to v3 from v1, we will have the configuration as shown: p̃(v2) = j2 − 1
and p̃(A2) = (j1−2)

2 + j2 + 1 = (j1+j2+1)+(j2−1)
2 ) ≥ 2(k−1). Hence f(P 2

2k ×G) ≥ 2kf(G).

Corollary 3.1.1. By Lemma 2.11 and from Theorem 3.1, we have; f(P 2
2k ×G) = 2kf(G).

Theorem 3.2. Let G be a graph satisfying the 2t-pebbling attribute, then it will have to hold:
1) tf(G) ≥ f(Kt ×G),
2) tf(G) = f(Kt ×G).
Therefore, Kt ×G also satisfies the property of 2t pebbling.

Proof. Initially introducing the t pebbling number we will consider the configuration ft(T, v),
and use it to denote m which is the smallest integer. Assigning m pebbles on the T vertices
will allow pebble movement of t pebbles to move to the vertex v. From the t pebbling tree,
we get ft(T, v) = (t2a1) + (2a2) + · · · + (2at) − (t) + 1. Here, a1, a2 . . . at is the sequence
as provided by the size of the path existing, with the path partition that is maximum having the
configuration Tv. From the above tree, we are going to define the pebbling upper and lower
bounds . Our target vertex will be r in this case. If you place 1 pebble at each of the other
vertex, apart from the target vertex r, and a pebble movement can’t take place. Also considering
u as a distance taken as d from the vertex r, and place 2d−1 pebbles at u; then, it will restrict
the movement of pebbles to the vertex of r. Therefore, the lower bound for f(G) can be given
by max(n(G), 2diam(G)) ≤ f(G)[10]. To determine the upper bound for graph G’s pebbling
number, let us consider a graph G having ‘n′ vertices with a diameter d. Therefore, using the
configuration (n − 1).(2d − 1) + 1 ≥ f(G), the above can be proved using the Pigeonhole
principle if f(G) = (n− 1).2d−1 + 1. This configuration can allow at least 1 vertex in G to have
at least 2d pebbles. Also, the mentioned configuration can allow at least 1 pebble to occupy any
target vertex in the graph G. The upper bound on our Bipartite graph can be described as sharp
if G is Kn. Also, the upper bound is way off if the graph G = Pn forms the path on vertex n.
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Therefore, for the bipartite graph of diameter d the configuration f(G) ≤ (n − d)(2d−1) + 1
satisfy the 2t-pebbling property. Hence we have Kt ×G satisfy the property of 2t- pebbling.

Theorem 3.3. If the bipartite graph G fulfills the property of 2t pebbling,then the following
configuration will be realized which is f(Km,n)f(G) ≤ f(Km,n ×G).

Proof. Let v1 . . . , vm and w1 . . . . . . , wn be vertices of Km,n. The vertices must be labelled in a
manner that all the vertices vi are next to every vertex of wj . Here, i = 1, . . . , n and j = 1, . . . ,m.
Without limiting the general case, our destination vertex is set as (v1, γ) for all γ. Therefore, we
will let mf(G)− nf(G) pebbles occupy the bipartite graph Km,n ×G. We, therefore, partition
the Km,n×G graph into Q1 and Q2. Here, Q1 = C×G and Q2 = D×G. Through induction, C
can be induced in the graph on v1, w1, . . . , wn−1 which is the vertex subset of Km,n. On the other
hand, D is the induced sub-graph on wn, v2, . . . , vm which is vertex subset of Km,n. The above
will create the following configuration A = K1,n−1 = K2 and B = K1,m−1 = K2. Assuming
that Qi has pi pebbles; therefore, the ri vertices will have an odd pebble number where i = 1, 2.
For p1 ≥ nf(G), we have a single pebble that can go through the pebble movement to the vertex
(v1, γ). Assuming that the integer t which is positive and p1 = nf(G)− t. Also p2 = mf(G)+ t,
this allows us to analyze 2 possible cases.
Case 1: Let us consider mf(G)− r2 ≥ t. We are going to apply the steps of pebbling in all the
vertices of K2. This allows for at least (p2−r2)

2 pebbles to be placed on the vertices of Q1. Thus,
in total, we have p1 +

p2−r2
2 ≥ nf(G)− t+ m.f(G)+t−m.f(G)+t

2 = n.f(G) number of pebbles on
Q1. Therefore, from the configuration we can place a single pebble on (v1, γ)[6].
Case 2: Let us consider t > mf(G)−r2. By use of induction, we get p2+r2 = m.f(G)+t+r2 >
2m.f(G). From the above configuration, a 2 Pebble, pebbling movement to (wn, γ) occurred.
Also (v1, γ) and (wn, γ) are adjacent, making it possible for 1 pebble to move to (v1, γ) from
(wn, γ). The Graham’s conjecture allows the above configuration to satisfy the 2t-pebbling
property can be configured in the form: f(Kn ×G) ≤ n.f(G)[4]. This is because G can satisfy
the property of 2t pebbling and thus verified.

Corollary 3.3.1. A graph G satisfies the 2t-pebbling property then the configuration of G will
be f(K1,n ×G) ≤ 2f(G).

Proof. Let us consider the bipartite graph f(K1,n × G) ≤ 2f(G) where n > 1. The graph is
supposed to satisfy the property of 2t pebbling. Let our target vertex of the graph f(K1,n×G) ≤
2f(G) be v0 and n be the degree. Pebble the target vertex with the configuration of v0 × G; it
will suffice where [n− 1]× f(G) pebbles occupying K1,n ×G. Let the vertices v0, v1 . . . , vn be
the vertices of K1,n where v0 will be the vertex having the degree n. Therefore we will set our
new target vertex in f(K1,n ×G) ≤ 2f(G) to be (v0, γ).

Let f(K1,n × G) ≤ 2f(G) graph has pi pebbles that will occupy qi vertices of vi × G on
each where i = 0, 1, . . .m. If p0 +

∑n
i=1

pi−qi
2 ≥ f(G) then f(G) pebbles will occupy v0 × G.

The mentioned sub graph is considered to be isomorphic to the graph of G; and this will allow a
pebble to be placed on (v0, γ). Since our graph G contains the 2t pebbling property, the configu-
ration will be pi−qi

2 < f(G) considering in 1, . . . ,m. From the configuration we allow 2 pebbles
to occupy the vertices of (vi, γ). This will allow pebble movement of 1 pebble to the vertices of
(v0, γ).

The configuration will then create the inequalities as follows: p0 +
∑n

i=1
pi−qi

2 < f(G);
therefore, pi−qi

2 ≤ f(G), i = 1, . . . , n. Adding the two inequalities together it will give: p0 +
p1 + . . . pn < [n − 1]f(G). Therefore, for any pebble distribution, you can’t move a pebble on
some vertex in v0 ×G . We can start with fewer pebbles that is [n− 1].f(G) pebbles. From the
results, let’s derive the relation to Graham’s Conjecture. Since our graph G satisfies the property
of 2t pebbling, pebble the target vertex existing in the middle edge of G. It will allow 3f(G)
pebbles to f(K1,n ×G) ≤ 2f(G) pebbles and hence by theorem 3.3 the result is reached.

Theorem 3.4. In a bipartite graph which is complete, m+n = f(Km,n) satisfies the property of
2t pebbling only when m > 1 and n > 1. Here m,n are integers which are positive and Km,n
is our bipartite graph which is complete. Also we have m− n = f(Km,n) only if 1 ≤ m, while
n ≥ 1.
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Proof. We start by letting the Km,n vertices to be v1, . . . , vm and w1, . . . , wm, where for every
vertex vi, it will always be adjacent to the vertex wj of sub graph where i is from 1, . . . , n and j
is from 1, . . . ,m. Therefore, without limiting the general case, our targeted vertex will be set as
v1. Thus, we have p(v1) = 0. Using three cases, we are going to breakdown a configuration that
is possible using the (m+ n)[4] pebbles on the graph Km,n which is a complete bipartite one.
Case 1: If 2 ≤ p(wj) for some vertex in subgraph j, a single pebble will be set to v1 from wj .
Case 2: If p(wj) = 0 for all the vertex in sub-graph j; therefore, (n + m) pebbles can have a
pebble movement to v2, . . . , vn. This will create a new configuration on vi of p(vi) ≥ 2. This
means that the vertex vi has at least 2 pebbles, and we can, therefore, put 1 pebble on w1. The
above pebble configuration will leave m − n + 2 ≥ m pebbles on the remaining v2, . . . , vn
vertices. Also the other vertex vi0 having p(vi0) ≥ 2 configuration will have at least 2 pebbles.
Therefore, vi0 , w1, v1 will form the transmitting sub-graph of the complete bipartite graph.
Case 3: Considering p(wj0) is equal to 1 for j0 and p(wj) is less than or equal to 1 for all the
sub-graph vertex of j, then p(vi) ≥ 2. This means that the subgraph will have at least 2 pebbles,
and i, vi, wj0 , v1 will form a transmitting sub-graph. Hence the theorem.

Theorem 3.5. A bipartite graph which is complete (Km,n) satisfies the property of 2t pebbling
if p+ q = 2m+ 2n+ 1, where m, n are positive integers.

Proof. For a complete bipartite graph, Km,n to satisfy the 2t pebbling property in relation to the
Graham conjecture; first, we let our number of vertices to be q that has 1 pebble and 2.(m+n)+
1 = p + q pebbles. By setting v1 as our target vertex; when p(v1) is greater than or equal to 1,
then the pebbles in the vertices except vertex v1 will be m− n ≤ 2m+ 2n− 1 + q − 1[6]. This
pebbles on the vertices will create the configuration: f(Km,n) = (m + n). This allows 1 more
pebble to be moved to v1 using the 2m+2n−1+q−1 ≥ m−n number of pebbles. Considering
p(v1) = 0 configuration, analyze 3 cases as shown.
Case 1: The configuration of p(wj) ≥ 2 on the vertices of wj allows 1 pebble to move from v1
to wj . Therefore, from 2m−2n−1+ q−2 number of pebbles, we will have a pebble movement
of 1 pebble to the vertex of v1.
Case 2: Having a configuration of p(wj0) = 1 for the vertex wj0 then for all j we can say that
p(wj) ≤ 1[11] . And for the vertex of vi, it will have q ≤ m + n − 2 pebbles. Therefore,
vi, wj0 , v1will form a transmitting sub-graph. From the sub-graph, we can use 3 pebbles on vi
and wj0 to move 1 pebble to v1. Alternatively, if m+n− 1 = q thus we can place m− 2 number
of pebbles on v2, . . . , vm. This configuration will create transmitting sub-graphs vi, w1, v1 and
vi, w2, v1 for some i.
Case 3: Suppose p(wj) = 0 for all the subgraph of j. Thus, having v2, . . . , vm has 2m+ 2n+
1 − q ≤ m − 2n + 2 number of pebbles, then from the 4 pebbles, it will allow for a 1 pebble
move to the vertex v1. And from the remaining m + n ≥ 2(m − n) − (1 − q) − 4 number of
pebbles, we may utilise another 1 pebble to the vertex v1. Therefore from the above cases we
have p+ q = 2m+ 2n+ 1; m,n are both positive integers.

4 Conclusion

This study focuses on analyzing the 2t-pebbling property and Graham’s conjecture in bipartite
graphs. According to Graham’s conjecture, if a graph G is connected to a graph H , each vertex
of G must have at least ‘n′ pebbles. The study examines graphs G and H regarding the property
of 2t-pebbling, where V (G) together with V (H) are the vertex sets, and E(G),E(H) are the
edge sets. The 2t-pebbling property is valid for all bipartite graphs, treating them as complete
bipartite graphs. This property applies to any graph G connected to any graph H under Graham’s
conjecture. The study utilizes the 2t-pebbling property to analyze the implications of Graham’s
conjecture leading to several significant findings.
Further research can be carried over on 2t-pebbling property of several classes of graphs in the
context of Graham’s conjecture.

• A more curious question is the 2t-pebbling and cross product. How do 2t-pebbling numbers
relate to pebbling of cross products of graphs? Will these connections enable us to further
extend the reach of Graham’s conjecture by addressing this question for even products
G×H?
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• In graph theory, for which classes of graphs is it possible to find an upper and lower bound
on the 2t-pebbling number (where t ∈ N ) with its corresponding Graham’s conjecture-
speaking bounds next to them?

• What structural parameters of the graph that are known isomorphic and testing for 2t-
pebble-ability (e.g. diameter or girth; degree) distribution which govern its 2t-pebbling
number?
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