A STUDY ON DEG-CENTRIC GRAPHS OF SOME GRAPH FAMILIES

Timmy Tomy Thalavayalil and Sudev Naduvath

MSC 2010 Classifications: Primary 33C20; Secondary 33C65.

Keywords and phrases: Distance, eccentricity, graph operations, deg-centric graph, deg-centrication graphs.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Corresponding Author: Timmy Tomy Thalavayalil

Abstract The *deg-centric graph* of a simple, connected graph G, denoted by G_d , is a graph constructed from G such that, $V(G_d) = V(G)$ and $E(G_d) = \{v_i v_j : d_G(v_i, v_j) \le deg_G(v_i)\}$. This paper presents the properties and structural characteristics of deg-centric graphs of some graph families; the deg-centrication of graph operations are also discussed.

1 Introduction

For a basic terminology of graph theory, we refer to [11]. For further topics on graph classes, [14, 13]. A graph will be assumed to be a simple, connected, and undirected graph G. The size of a graph is the number of edges and is denoted by $\varepsilon(G)$. Recall that the distance between two distinct vertices v_i and v_j of G, denoted by $d_G(v_i, v_j)$, is the length of the shortest path joining them. The eccentricity of a vertex $v_i \in V(G)$, denoted by $e(v_i)$ (or $e_G(v_i)$, is the furthest distance from v_i to some vertex of G. Vertices at a distance $e(v_i)$ from v_i are called the eccentric vertices of v_i . An eccentric graph of a graph G, denoted by G_e , is obtained from the same set of vertices as G with two vertices v_i and v_j being adjacent in G_e if and only if v_j is an eccentric vertex of v_i is an eccentric vertex of v_j (see[1, 2]). The iterated eccentric graph of G, denoted by G_{e^k} , is defined in (see[3]) as the derived graph obtained by taking the eccentric graph successively k-times; that is, $G_{e^k} = ((Ge)e \dots)e$, (k-times).

The degree centric graph or deg-centric graph of a graph G is the graph G_d with $V(G_d) =$ V(G) and $E(G_d) = \{v_i v_j : d_G(v_i, v_j) \le deg_G(v_i)\}$ (see[4]). Let G be a graph and G_d be the deg-centric graph of G. Then, the successive iteration deg-centric graph of G, denoted by G_{d^k} , is defined as the derived graph obtained by taking the deg-centric graph successively k times; that is, $G_{d^k} = ((G_d)_d \dots)_d$, (k-times). This process is known as deg-centrication process (see[4]). Let $\varphi(G)$ denote the number of iterations required to transform a graph G to completion. The exact degree centric graph or exact deg-centric graph of a graph G and denoted by G_{ed} , is the graph with $V(G_{ed}) = V(G)$ and $E(G_{ed}) = \{v_i v_j : d_G(v_i, v_j) = deg_G(v_i)\}$. This graph transformation is called exact deg-centrication (see[5]). Let G be a graph and G_{ed} be the exact deg-centric graph of G. Then the iterated exact deg-centric graph of G, denoted by G_{ed^k} , is defined as the graph obtained by applying *exact deg-centrication* successively k-times; That is, $G_{ed^k} = ((G_{ed})_{ed}...)_{ed}, (k-\text{times}) (\text{see}[5]).$ The coarse degree centric graph or coarse deg-centric graph of a graph G, denoted by G_{cd} , is the graph with $V(G_{cd}) = V(G)$ and $E(G_{cd}) = \{v_i v_j : v$ $d_G(v_i, v_j) > deg_G(v_i)$. Then the *iterated coarse deg-centric graph* of G, denoted by G_{cd^k} , is defined as the graph obtained by applying *coarse deg-centrication* successively k-times; that is, $G_{cd^k} = ((G_{cd})_{cd}...)_{cd}, (k\text{-times}) \text{ (see[6])}.$

The upper degree centric graph or upper deg-centric graph of a graph G, denoted by G_{ud} , is the graph with $V(G_{ud}) = V(G)$ and $E(G_{ud}) = \{v_i v_j : d_G(v_i, v_j) \ge deg_G(v_i)\}$. This graph transformation is called upper deg-centrication (see[9]). Let G be a graph and G_{ud} be the upper

deg-centric graph of G. Then the *iterated upper deg-centric graph* of G, denoted by G_{ud^k} , is defined as the graph obtained by applying *upper deg-centrication* successively k-times; that is, $G_{ud^k} = ((G_{ud})_{ud}...)_{ud}$, (k-times) (see[9]). The lower degree centric graph or lower deg-centric graph of a graph G, denoted by G_{ld} , is the graph with $V(G_{ld}) = V(G)$ and $E(G_{ld}) = \{v_i v_j : d_G(v_i, v_j) < deg_G(v_i)\}$. Then, the *iterated lower deg-centric graph* of G, denoted by G_{ld^k} , is defined as the graph obtained by applying *lower deg-centrication* successively k-times; that is, $G_{ld^k} = ((G_{ld})_{ld}...)_{ld}$, (k-times) (see[10]).

Motivated by the above-mentioned studies, we investigate the properties and structural characteristics of deg-centrication of graph operations and certain graph classes in this paper.

Definition 1.1. [4] The *degree centric graph* or *deg-centric graph* of simple graph G, denoted by G_d , is the graph with $V(G_d) = V(G)$ and $E(G_d) = \{v_i v_j : d_G(v_i, v_j) \le deg_G(v_i)\}$. This graph transformation is called *deg-centrication* of the graph.

Definition 1.2. [4] The *iterated deg-centric graph* of a graph G, denoted by G_{d^k} , is defined as the graph obtained by applying *deg-centrication* successively *k*-times. That is, $G_{d^k} = ((G_d)_{d...})_d$, (*k*-times).

Theorem 1.3. [4] The deg-centric graph of a non-star graph G with $\delta(G) \ge diam(G)$ is complete.

Theorem 1.4. [4] *The iterated deg-centric graph of a graph G is complete if and only if G is not a star graph.*

Corollary 1.5. [4] The deg-centric graph G_d of a non-star graph G with $deg_G(v_i) \ge e(v_i)$ is complete.

Theorem 1.6. [4] For a non-star graph G with m = diam(G), $\varphi(G) \leq \varphi(P_m)$.

2 Bounds for the Size of Deg-centric Graphs

In this section, we explore an upper bound for the size of deg-centric graphs.

Remember that G+e means adding an edge e to G. If two or more edges say, $e_1, e_2, e_3, \ldots, e_k$ are added to G it is denoted by $G + (e_1, e_2, e_3, \ldots, e_k)$.

Proposition 2.1. For any tree T and G = T + e it follows that, $\varepsilon(G_d) \ge \varepsilon(T_d)$.

Proof. The above statement immediately follows from the fact that if e is added between vertices v_i, v_j , then $deg_T(v_i) < deg_G(v_i)$ and $deg_T(v_j) < deg_G(v_j)$.

Observation 2.1. For any graph G and H = G + e it follows that, $\varepsilon(H_d) \ge \varepsilon(G_d)$.

Proposition 2.2. Let distinct graphs G and H both be of order n.

- (a) If G is a spanning subgraph of H then, $\varepsilon(H_d) \ge \varepsilon(G_d)$.
- (b) If G is not a spanning subgraph of H and, G and H share a common spanning tree as well as $\varepsilon(G) < \varepsilon(H)$ then, $\varepsilon(H_d) \ge \varepsilon(G_d)$.
- *Proof.* (a) Clearly, by Observation 2.1, adding edges in an appropriate manner iteratively to G one at a time to obtain H. For each iteration, Observation 2.1, remains valid. This settles the result.
 - (b) Clearly, as per Proposition 2.1, adding edges in an appropriate manner iteratively to two copies of a common spanning T of G and H, one at a time to first obtain G and after that obtain G. For each iteration, Proposition 2.1, remains valid. This settles the result.

Proposition 2.3. Let S be the set of distinct spanning trees of a graph G. Then, $\varepsilon(G_d) \ge \varepsilon(T_d^-)$ where, $\varepsilon(T_d^-) = \{\varepsilon(T_d) : T \in S\}.$

Proof. In view of Proposition 2.1, it follows for any spanning tree T of G that, for $H = T + (e_1, e_2, e_3, \ldots, e_k)$, $\varepsilon(H_d) \ge \varepsilon(T_d)$. Amongst the finite number of distinct spanning trees of G there exists some T^- such that $\varepsilon(T_d^-) = \{\varepsilon(T_d) : T \in S\}$. This settles the result. \Box

3 Deg-centric Graphs of Some Graph Families

In this section, we discuss the deg-centric graph of certain interesting graph classes. Let $\varphi(G)$ denote the number of iterations required to transform a graph *G* to complete. A non-trivial *bistar* graph, denoted by $S_{a,b}$, is a graph obtained by joining the centers of two non-trivial star graphs $K_{1,a}$, $a \ge 1$ and $K_{1,b}$, $b \ge 1$ with the edge v_0u_0 .

Proposition 3.1. For $a, b \ge 1$,

$$\varepsilon((S_{a,b})_d) = 2(a+b) + 1.$$

Proof. For a bistar graph $S_{a,b}$; $a, b \ge 1$, let the pendant vertices of $k_{1,a}$ be the set $X = \{v_1, v_2, \ldots, v_a\}$ and let the pendant vertices of $k_{1,b}$ be the set $Y = \{u_1, u_2, \ldots, u_b\}$. Finally, let $W = \{v_0, u_0\}$ be center vertices. By Definition 1.1, it follows that both v_0, u_0 are adjacent with all other a + b + 1 vertices. Elements of sets X and Y are pendant vertices. Hence, by Definition 1.1, one edge forms from these pendant vertices, which implies a + b pendant vertices with degree two in $(S_{a,b})_d$. Therefore,

$$\varepsilon((S_{a,b})_d) = \frac{2(a+b+1)+2(a+b)}{2}$$

= 2(a+b)+1.

Proposition 3.2. For $m, n \ge 2$, $\varphi(K_{m,n}) = 1$.

Proof. For $m, n \ge 2$, $K_{n,m}$ is a graph whose vertex set can be partitioned into two independent sets X, |X| = n and Y, |Y| = m. Let $X = \{v_1, v_2, \ldots, v_n\}$ and $Y = \{u_{1,2}, \ldots, v_m\}$. In view of Definition 1.1, all the vertices of $k_{n,m}$ are adjacent in $(K_{n,m})_d$; that is, the deg-centric graph is complete. Hence, $\varphi(K_{m,n}) = 1$.

A djembe graph, denoted by $D_{1,n}$, is obtained by joining the vertices u_i 's; $1 \le i \le n$ of a closed helm graph $CH_{1,n}$ to its central vertex v_0 .

Proposition 3.3. *For* $n \ge 3$, $\varphi(D_{1,n}) = 1$.

Proof. The djembe graph $D_{1,n}$, $n \ge 3$, is of the order 2n+1. Let $V(D_{1,n}) = \{v_0, v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$. Since $\delta(D_{1,n}) = 4 > diam(D_{1,n}) = 2$, by Theorem 1.3, $\varphi(D_{1,n}) = 1$. This settles the result.

A gear graph, denoted by $G_n, n \ge 3$, is a graph obtained by inserting an extra vertex between each pair of adjacent vertices on the outer cycle of a wheel graph W_n .

Proposition 3.4. *For* $n \ge 3$ *,*

$$\varphi(G_n) = \begin{cases} 1, & \text{for } n = 3\\ 2, & \text{for } n \ge 4. \end{cases}$$

Proof. The gear graph G_n , $n \ge 3$, is of the order 2n + 1. Let $V(G_n) = \{v_0, v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$.

(a) If n = 3, by Definition 1.1, $(G_3)_d \cong k_7$.

(b) If $n \ge 4$, we have $\delta(G_n) = 2$ and $diam(G_n) = 4$. Thus $\varphi(G_n) > 1$. The graph is not a star, by Theorem1.6, $\varphi(G_n) = 2$. Therefore, the result follows.

Proposition 3.5. *For* $n \ge 4$, $\varepsilon((G_n)_d) = \frac{1}{2}(3n^2 + 5n)$

Proof. The gear graph, $n \ge 4$, is of the order 2n+1. Let $V(G_n) = \{v_0, v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$. Since $deg_G(v_0) = n > e(v_0) = 2$, by Definition1.1, 2n edge forms from v_0 in $(G_n)_d$. Vertices v_i are adjacent to the center vertex v_0 However, since $deg_{G_n}(v_i) = 3$, by Definition1.1, 2n edges form from a vertex v_i in $(G_n)_d$. Since $deg_{G_n}(u_i) = 2$, then a distance less than or equal to two vertices forms edges from u_i , that is $deg_{(G_n)_d(u_i)} = n + 3$. Finally,

$$\varepsilon((G_n)_d) = \frac{1}{2} \sum_{w_i \in V((G_n)_d)} \deg(w_i) = \frac{1}{2} (3n^2 + 5n)$$

A *flower graph*, $F_{1,n}$, $n \ge 3$ is a graph obtained from a helm graph $H_{1,n}$, by joining each of its pendant vertices u_i 's to its central vertex v_0 .

Proposition 3.6. For $n \ge 3$, $\varphi(F_{1,n}) = 1$.

Proof. The flower graph $F_{1,n,}$, $n \ge 3$ is of the order 2n + 1. Let $V(F_{1,n,}) = \{v_0, v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$. Since $\delta(F_{1,n,}) = 2 = diam(F_{1,n,}) = 2$, by Theorem 1.3, $\varphi(F_{1,n}) = 1$. \Box

An illustration of a proposition 3.6 is given in Figure 1.

Figure 1: $\varphi((F_{1,4})_d) = 1$.

The sunflower graph, denoted by $SF_{1,n}$, $n \ge 3$ is obtained from the wheel $W_{1,n}$ by attaching n vertices u_i , $1 \le i \le n$ such that each u_i is adjacent to v_i and v_{i+1} and count the suffix is taken modulo n.

Proposition 3.7. *For* $n \ge 3$,

$$\varphi(SF_{1,n}) = \begin{cases} 1, & \text{for } n = 3, \\ 2, & \text{for } n \ge 4. \end{cases}$$

Proof. The sunflower graph $SF_{1,n}$, $n \ge 3$, is of the order 2n + 1. Let $V(SF_{1,n}) = \{v_0, v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$.

(a) If
$$n = 3$$
, since $\delta(SF_{1,n}) = 2 = diam(SF_{1,n}) = 2$, by Theorem 1.3, $(SF_{1,n})_d \cong k_7$

(b) For n≥ 4, we have δ(SF_{1,n}) = 2 and diam(SF_{1,n}) = 4. Thus, φ(SF_{1,n}) > 1. The graph G is not a star, then, m = diam(G) then φ(G) ≤ φ(P_m), φ(SF_{1,n}) ≤ φ(P₄) = 2, by Theorem1.6, φ(SF_{1,n}) = 2.

Proposition 3.8. For $n \ge 4$, $\varepsilon((SF_{1,n})_d) = \frac{1}{2}(3n^2 + 5n)$.

Proof. The sun flower graph $SF_{1,n,i}$, $n \ge 3$, is of the order 2n + 1. Let $V(SF_{1,n,i}) = \{v_0, v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$. Since $\deg_{SF_{1,n}}(v_0) = n > e(v_0) = 2$ and $\deg_{SF_{1,n}}(v_i) = n + 1 > e(v_i) = 2$ and $\deg_{SF_{1,n}}(v_i) = n + 1 > e(v_i) = 2$, by the Definition1.1, 2n edges form from v_0 and v_i in deg-centric graph. Since $\deg_{SF_{1,n}}(u_i) = 2$, by the Definition1.1, distance one or two edges forms from u_i , that is $\deg_{(SF_{1,n})_d(u_i)} = n + 3$. Finally,

$$\varepsilon((SF_{1,n})_d) = \frac{1}{2} \sum_{w_i \in V((SF_{1,n})_d)} deg(w_i)$$

= $\frac{1}{2}((n+1)(2n) + n(n+3))$
= $\frac{1}{2}(3n^2 + 5n).$

An illustration of a proposition 3.7 and proposition 3.8 is given in Figure 2.

Figure 2: Deg-centric graph of $SF_{1,4}$.

A closed sunflower graph $CSF_{1,n}$ is obtained by adding the edge u_iu_{i+1} of the sunflower graph, suffixes taken modulo n.

Proposition 3.9. For $n \ge 3$, $\varphi(CSF_{1,n}) = 1$.

Proof. The closed sunflower graph $CSF_{1,n}$, is of the order 2n+1. Let $V(CSF_{1,n}) = \{v_0, v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n\}$. For $n \ge 3$, $\delta(CSF_{1,n}) \ge diam(CSF_{1,n})$, by Theorem 1.3, $(CSF_{1,n})_d$ is complete, that is $\varphi(CSF_{1,n}) = 1$.

A blossom graph, denoted by $Bl_{1,n}$, is obtained by making each u_i adjacent to the central vertex of the closed sunflower graph.

Proposition 3.10. For $n \ge 3$, $\varphi(Bl_{1,n}) = 1$.

Proof. The blossom graph $Bl_{1,n}$, $n \ge 3$ is of the order 2n+1. Let $V(Bl_{1,n}) = \{v_0, v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$. Since $\delta(Bl_{1,n}) = 5 > diam(Bl_{1,n}) = 2$, by the Theorem 1.3, $\varphi(Bl_{1,n}) = 1$.

A sunlet graph, denoted by Sl_n , $n \ge 3$, is a graph obtained by attaching a pendant vertex to every vertex of a cycle graph c_n , $n \ge 3$. In other words, a sunlet graph on 2n vertices is obtained by taking the corona product $C_n \circ K_1$.

Proposition 3.11. *For* $n \ge 3$ *,*

$$\varepsilon((Sl_n)_d) = \begin{cases} \frac{3n^2 - n}{2}, & \text{if } 3 \le n \le 5\\ \frac{3n^2 - 3n}{2}, & \text{if } n = 6\\ 8n, & \text{if } n \ge 7. \end{cases}$$

Proof. Let $V(Sl_n) = \{v_1, v_2, \dots, v_n, \underbrace{u_1, u_2, \dots, u_n}\}$. Then,

pendant vertices

- (a) If $3 \le n \le 5$, in view of Definition 1.1, $\deg_{Sl_n}(v_i) = 3 > e(v_i) = 2$ then all v_i vertices are adjacent with other 2n 1 vertices. However, since all u_i are pendants vertices, by Definition 1.1, no edge forms from a u_i in the deg-centric graph. Then the number of edges equals $\frac{n(2n-1)+(n)(n)}{2}$. Finally, $\varepsilon((Sl_n)_d) = \frac{3n^2 n}{2}$.
- (b) If n = 6, by Definition 1.1, then all v_i vertices are adjacent with other 2n 2 vertices. However, since all u_i are pendant vertices, in view of Definition 1.1, no edge forms from a u_i in $(Sl_n)_d$. Finally, $\varepsilon((Sl_n)_d) = \frac{n(2n-2)+n(n-1)}{2} = \frac{3n^2-3n}{2}$.
- (c) Consider $n \ge 7$, by Definition 1.1, then all v_i vertices are adjacent with eleven vertices. However, since all u_i are pendant vertices, no edge forms from a u_i in $(Sl_n)_d$. Then, all u_i have degree five. Then, $\varepsilon((Sl_n)_d) = \frac{11n+5n}{2}$. Finally, $\varepsilon((Sl_n)_d) = 8n$.

Corollary 3.12. For $n \geq 3$, $\varphi(Sl_n) \geq 2$.

Proof. In views of Definition 1.1, and Proposition 3.11, Sl_d is not complete; that is $\varphi(Sl_n) \geq 2$.

An illustration of a proposition 3.11 is given in Figure 3.

Figure 3: Deg-centric graph of Sl₇.

An antiprism graph, denoted by A_n , $n \ge 3$ is a graph obtained two cycles C_n and C'_n of order n with vertex sets $V = \{v_1, v_2, v_3, \ldots, v_n\}$ and $U = \{u_1, u_2, u_3, \ldots, u_n\}$ respectively. Join the vertices $u_i v_i$ and $u_i v_{i+1}$ to form the additional edges.

Proposition 3.13. *For* $n \ge 3$ *,*

$$\varepsilon((A_n)_d) = \begin{cases} \varepsilon(K_{2n}) & \text{if } 3 \le n \le 8\\ 16n & \text{if } n \ge 9. \end{cases}$$

Proof. For an antiprism graph A_n , $n \ge 3$, is of the order 2n. Let $V(A_n) = \{v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n\}$.

(i) If $3 \le n \le 8$, $\deg_{A_n}(v_i) = \deg_{A_n}(u_i) = 4 > e(v_i) = e(u_i)$, by Corollary 1.5, $(A_n)_d \cong K_{2n}$. (ii) If $n \ge 9$, $\deg_{A_n}(v_i) = \deg_{A_n}(u_i) = 4$, by Definition 1.1, $\deg_{(A_n)_d(v_i)} = \deg_{(A_n)_d(u_i)} = 16$. That implies $\varepsilon((A_n)_d) = 16n$.

Observation 3.1. For $n \ge 9$, $\varphi(A_n) \ge 2$.

Consider a complete graph K_n with the vertex set $V = \{v_1, v_2, v_3, \ldots, v_n\}$. Let $U = \{u_1, u_2, u_3, \ldots, u_n\}$ be a copy of V(G) such that u_i corresponds to v_i . The *sun graph*, denoted by S_n , is a graph with vertex set $V \cup U$ and two vertices x and y are adjacent in S_n if $x \sim y$ in K_n and $x = u_i, y \in v_i, v_{i+1}$.

Proposition 3.14. For $n \ge 4$, $\varphi(S_n) = 2$.

Proof. For $n \ge 4$, we have $\delta(S_n) = 2$ and $diam(S_n) = 3$. Thus, $\varphi(S_n) > 1$. By Definition 1.1, $\varphi(S_n) = 2$. Therefore, the result follows.

Observation 3.2. For n = 3, $\varphi(S_n) = 1$.

Proof. For a sun graph S_n , $n \ge 3$, is of the order 2n. Let $V(S_n) = \{v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n\}$. For n = 3, $\delta(S_3) \ge diam(S_3)$, by Theorem 1.3, $(S_3)_d$ is complete; that is, $\varphi(S_3) = 1$. \Box

Proposition 3.15. *For* $n \ge 3$, $\varepsilon((S_n)_d) = \frac{1}{2}(n(3n+1))$.

Proof. The sun graph S_n , $n \ge 3$, is of the order 2n. Let $V(S_n) = \{v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n\}$. Since $deg_{S_n}(v_i) = n + 1 > e(v_i) = 2$, by Definition 1.1, (2n - 1) edges form from v_i in $(S_n)_d$. However, since $deg_{S_n}(u_i) = 2$, by Definition 1.1, distance one or two edges forms from u_i in $(S_n)_d$. Finally,

$$\varepsilon((S_n)_d) = \frac{1}{2} \sum_{w_i \in V((S_n)_d)} deg(w_i)$$

= $\frac{1}{2} (n(2n-1) + n(n+2))$
= $\frac{1}{2} (n(3n+1)).$

Recall that the sequence of the second pentagonal numbers is generated by:

$$p_n = \frac{n(3n+1)}{2}, n = 0, 1, 2, \dots$$

In expanded form it is:

0, 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, ...

The relation between the size of the deg-centricated sun graphs and the second pentagon numbers follows immediately as a corollary 3.16.

Corollary 3.16. For $n \ge 3$, $\varepsilon((S_n)_d) = p_n$, $n \ge 3$.

An illustration of a proposition 3.15 is given in Figure 4.

A closed sun graph CS_n , is the graph obtained from adding the edges $u_i u_{i+1}$ in the sun graph. In views of Definition 1.1, and Theorem 1.3, for $n \ge 3$, $\varphi(CS_n) = 1$.

A tree denoted by T_n , $n \ge 1$ is a connected acyclic graph. It is known that a tree T_n has n-1 edges.

Proposition 3.17. For
$$n \ge 3$$
, $\varphi(T_n) \ge 2$.

Figure 4: Deg-centric sun graph of S_4 .

Proof. For a tree T_n , $n \ge 2$ is of the order n. Let $V(T_n) = \{v_1, v_2, \ldots, v_n, \}$. A tree with at least two vertices has at least two pendant vertices, in view of Definition 1.1, $(T_n)_d$ is not complete; that is, $\varphi(T_n) \ge 2$.

The *ladder graph*, L_n , $n \ge 1$ is obtained by taking two copies of a path P_n with respective vertices say, $v_1, v_2, v_3, \ldots, v_n$ and $u_1, u_2, u_3, \ldots, u_n$ and adding the edges $v_i u_i$, $1 \le i \le n$. Note that $L_n \cong P_n \Box K_2$ where \Box denotes the Cartesian product.

Proposition 3.18. For a ladder $G = L_n$, $n \ge 1$ it follows that:

$$\varepsilon(L_{1_d}) = 1,$$

$$\varepsilon(L_{2_d}) = 6,$$

$$\varepsilon(L_{3_d}) = 13,$$

$$\varepsilon(L_{4_d}) = 24,$$

$$\varepsilon(L_{5_d}) = 37,$$

$$\varepsilon(G_d) = \varepsilon(H_d) + 11 \text{ where } H = L_{n-1} \text{ and } n > 6.$$

Proof. By applying Definition 1.1, it easily follows that $\varepsilon(L_{1d}) = 1$, $\varepsilon(L_{2d}) = 6$, $\varepsilon(L_{3d}) = 13$, $\varepsilon(L_{4d}) = 24$ and $\varepsilon(L_{5d}) = 37$. Now, besides the claimed result, it is valid that for any $n \ge 6$ and $H = L_{n-1}$ the size of H_d ; that is, $\varepsilon(H_d)$ can be determined by applying Definition 1.1. Consider $H = L_{n-1}$ and assume that both H_d and $\varepsilon(H_d)$ has been determined. Now consider the extension from H to $G = L_n$. Some subgraph of H_d is a subgraph of G_d . Note that in G the degree of respectively v_{n-1} , u_{n-1} has increased to 3. Therefore, all edges found in H_d are in G_d , that is $\varepsilon(H) \subset \varepsilon(G)$. With regards to say, v_n the edges which forms are $v_n u_n, v_n u_{n-1}, v_n v_{n-2}$. A similar thing can be applied to vertex u_n . The edges which forms are $u_n v_n, u_n v_{n-1}, u_n u_{n-1}, u_n u_{n-2}$. Also, the edges $v_{n-2}u_n, v_{n-3}v_n, u_{n-2}v_n, u_{n-3}u_n$ are formed. Hence,

$$\varepsilon(G_d) = \varepsilon(H_d) + (7+4)$$

= $\varepsilon(H_d) + 11.$

Finally, since an initial value, $\varepsilon(L_{5_d}) = 37$ is known, the result for $n \ge 6$.

Observation 3.3. For $n \ge 3$, $\varphi(L_n) \ge 2$.

A friendship graph, denoted by F_n , $n \ge 1$, is obtained by joining n copies of the complete graph K_3 with a common vertex. In view of Definition 1.1, and Theorem 1.3, for $n \ge 1$, $\varphi(F_n) = 1$.

A butterfly graph, denoted by BF_n , $n \ge 1$, is constructed by joining two copies of the cycle graph C_n with a common vertex v and is therefore isomorphic to the friendship graph F_n . In view of Definition 1.1, and Theorem 1.3, for $n \ge 1$, $\varphi(BF_n) = 1$.

4 Deg-centrication process of Graph Operations

In this section, we discuss certain graph operations. For the elementary graph operation, G + H and G or H is a non-trivial graph, the parameter $\varphi(G+H) = 1$. Another elementary graph operation is the disjoint union of graphs denoted by $G \cup H$. Clearly, $\varphi(G \cup H) = max\{\varphi(G), \varphi(H)\}$ (see[4]).

Recall that the *Cartesian product* of two graphs G and H, denoted by $G \Box H$, has the following adjacency rule. The vertices (g, h) and (g', h') have edges between them if g = g' and $hh' \in E(H)$ or h = h' and $gg' \in E(G)$.

Proposition 4.1. For a non trivial graph G and a graph H, it follows that

- (a) If $G \cong K_2$ and $H \cong K_2$, then $\varphi(G \Box H) = 1$.
- (b) If $G \cong P_n$, $n \leq 2$ and $H \cong K_2$, then $\varphi(G \Box H) = 1$.
- (c) If $G \cong P_n$, $n \ge 3$ and $H \cong K_2$, then $\varphi(G \Box H) \ge 2$.
- *Proof.* (a) Since G is nontrivial, it has an order of at least 2. If $G \cong K_2$ and $H \cong K_2$, then $(G \Box H)_d = (C_4)_d$ is a complete graph. Hence, $\varphi(G \Box H) = 1$.
 - (b) Let $G \cong P_n$, $n \leq 2$ and $H \cong K_2$. In view of Definition 1.1, $(G \Box H)_d$ is complete. Hence $\varphi(G \Box H) = 1$.
 - (c) Let $G \cong P_n$, $n \ge 3$ and $H \cong K_2$. Since $G \Box H \cong P_n \Box K_n \cong L_n$ then, by Observation 3.3, $\varphi(L_n) \ge 2$.

Proposition 4.2. For a grid graph $P_m \Box P_n$, $m \text{ or } n \ge 3$, $\varphi(P_m \Box P_n) \ge 2$.

Proof. Let G be a grid graph $P_m \Box P_n$, if m or $n \ge 3$. The grid graph is of the order mn. $P_m \Box P_n$, is a bipartite graph, as the cartesian product of two bipartite graphs is bipartite, then, in view of Definition 1.1, G_d is not complete; that is $\varphi(P_m \Box P_n) \ge 2$.

Proposition 4.3. For a rook's graph $K_m \Box K_n$, $\varphi(K_m \Box K_n) = 1$.

Proof. Let G be a rook's graph $K_m \Box K_n$, is of order mn, and the diameter is two. Then in view of Theorem 1.3, G_d is complete; that is $\varphi(K_m \Box K_n) = 1$.

The corona product of two graphs G and H, denoted by $G \circ H$, is obtained by taking n copies of H, and each vertex in G is adjacent to every vertex of the corresponding H. Every i-th vertex of G is adjacent to each vertex of i-th copy of H, where $1 \le i \le n$.

Proposition 4.4. For a nontrivial graph G and a graph H. Then,

- (a) If $G \cong K_n$ and $H \cong K_m$, then $\varphi(G \circ H) = 1$.
- (b) If $G \cong K_n$, and $H \cong C_m$, then $\varphi(G \circ H) = 1$.
- (c) If $G \cong K_n$, $n \ge 2$, and $H \cong P_m$, $m \ge 2$, then, $\varphi(G \circ H) \ge 2$
- *Proof.* (a) If $G \cong K_n$ and $H \cong K_m$. Clearly, $\delta(K_n \circ K_m) \ge diam(K_n \circ K_m)$, then in view of Theorem 1.3, $(K_n \circ K_m)_d$ is complete. Hence, $\varphi(G \circ H) = 1$.
 - (b) If $G \cong K_n$ and $H \cong C_m$. Clearly, $\delta(K_n \circ C_m) \ge diam(K_n \circ C_m)$, then in view of Theorem 1.3, $(K_n \circ C_m)_d$ is complete. Hence, $\varphi(G \circ H) = 1$.
 - (c) Let $G \cong K_n$, $n \ge 2$ and $H \cong P_m$, $m \ge 2$. Then, in view of Definition 1.1, $(K_n \circ P_m)_d$ is not complete; that is, $\varphi(K_n \circ P_m) \ge 2$.

Proposition 4.5. For $n, m \ge 4$, $\varphi(C_n \circ C_m) \ge 2$.

Proof. Let $G = C_n \circ C_m$, if $n, m \ge 4$. Then, in view of Definition 1.1, $(C_n \circ C_m)_d$ is not complete; that is, $\varphi(C_n \circ C_m) \ge 2$.

Proposition 4.6. For $n, m \ge 2$, $\varphi(P_n \circ P_m) \ge 2$.

Proof. In view of Definition 1.1, $(P_n \circ P_m)_d$ is not complete; that is, $\varphi(P_n \circ P_m) \ge 2$.

Proposition 4.7. For $n \ge 3$, $\varphi(C_n \circ K_1) \ge 2$.

Proof. In view of proposition 3.11 and corollary 3.12, $(C_n \circ K_1)_d$ is not complete; that is, $\varphi(C_n \circ K_1) \ge 2$.

The *direct product* or tensor product of two graphs, two vertices (g,h) and (g',h') are adjacent if both $gg' \in E(G)$ and $hh' \in E(H)$. The direct product of G and H is denoted by $G \times H$.

Proposition 4.8. *If G* and *H* are connected graphs with no odd cycles then $(G \times H)_d$ *has exactly two components.*

Proof. Let two connected graphs G and H with no odd cycles. Clearly, the product $G \times H$ is connected if and only if either G or H contains an odd cycle(see[14]). Then it is clear that if G and H with no odd cycles then the direct product has exactly two components. If $G \times H$ has two components, it implies $(G \times H)_d$ has exactly two components.

Proposition 4.9. If $G \cong K_2$ and $H \cong K_n$, $n \ge 4$. then $\varphi(G \times H) = 1$.

Proof. If $G \cong K_2$ and $H \cong K_n$, $n \ge 4$. In view of Theorem 1.3, $(G \times H)_d$ is complete; that is $\varphi(G \times H) = 1$.

5 Conclusion

The graph transformation called deg-centrication has been discussed. Various exploratory results have been presented to establish some foundation for further research. As a scope of the study, the researchers can extend the study on graph theoretical parameters to deg-centric graphs of various class graphs and obtain fruitful results. Also, the researchers can extend the study to various types of domination, coloring, labelling, and decomposition to deg-centric graphs.

References

- [1] J. Akiyama, K. Ando and D. Avis, Eccentric graphs, Discrete Math., 56, 1-6, (1985).
- [2] M.R Raja, T.A Mangam and S. Naduvath, *Eccentric completion of a graph*, Commun. Comb. Optim., 7, 193–201,(2022).
- [3] M.R Raja, J. Kok, T.A Mangam and S. Naduvath, *Cyclic property of iterative eccentrication of a grap*. Discrete Math. Algorithm. Appl., **15(07)**, 2250155, (2022).
- [4] T.T Thalavayalil, J. Kok, and S. Naduvath, A study on deg-centric graphs, Proyecciones., 43(02), 911-926, (2024).
- [5] T.T Thalavayalil, J. Kok, and S. Naduvath, A study on exact deg-centric graphs, J. Interconn. Networks., 2450004, (2024).
- [6] T.T Thalavayalil, and S. Naduvath, A study on coarse deg-centric graphs, Gulf. J. Math., 16(2), 171-182,(2024).
- [7] Joseph, Anu and Dominic, Charles, Vertex induced 2-edge coloring and vertex incident 2-edge coloring of some graph products , *Palest. J*. Math., **11(3)** 86-95,(2022).
- [8] Rajkumar, R and Devi, P, Permutability graph of cyclic subgraphs, Palest. J. Math., 5(2),(2016).
- [9] T.T Thalavayalil, J. Kok, and S. Naduvath, A study on upper deg-centric graphs, TWMS J. Appl. Eng. Math., to appear, (2024).
- [10] T.T Thalavayalil, and S. Naduvath, A study on lower deg-centric graphs, Communicated, (2024).
- [11] D.B West, Introduction to graph theory, Prentice Hall of India, New Delhi, (2001).
- [12] Sarkar, Ishita and Manjunath, N and Chaluvaraju, B, Bounds related to product variants of graphs, Palest. J. Math., 12(2),(2023).

- [13] A. Brandstädt, V.B Le and J.P Spinrad, Graph classes: a survey, SIAM., (1999).
- [14] Weichsel, Paul M, The Kronecker product of graphs, Proc. Amer. Math. Soci., 13(1) 47-52, (1962).

Author information

Timmy Tomy Thalavayalil, Department of Mathematics, Christ University, Bangalore-560029, India. E-mail: timmy.thalavayalil@res.christuniversity.in

Sudev Naduvath, Department of Mathematics, Christ University, Bangalore-560029, India. E-mail: sudev.nk@christuniversity.in