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Abstract A delay-differential mathematical model involving two competing plant popula-
tions is proposed to investigate the effect of allelochemicals on one another. The time delay is 
introduced in one plant population to describe the allelopathic effect between plant populations. 
The influence of time delay on the stability of the dynamics system has been investigated. The 
Equilibrium point is determined and the stability analysis is done at a point of non-zero equilib-
rium using RouthHurwitz’s theorem. Delay disrupted the equilibrium of the system’s internal 
balance and when the value of delay τ < 1.99 system shows asymptotically stable or when the 
value of delay τ ≥ 1.99 the hopf bifurcation occurs. The influence of allelochemicals may be 
monitored and plant development improved using the intended mathematical model. MATLAB 
software is used to verify the numerical results.

1 Introduction

Allelopathy, a term introduced by Molisch in 1937, originates from the Greek words "allelon" 
(meaning "mutual") and "pathos" (meaning "suffering" or "feeling"). It describes the phe-
nomenon where one plant affects another through the release of allelochemicals. Alveologe-
nesis, synonymous with allelopathy, involves a combination of both biotic and abiotic stressors 
imposed by one species onto another. Allelopathy is an organic substance that interferes with 
negative resistance among plants or microbes through explicit or implicit effects [1]. The rise 
in the population of one species can affect the development of other specie by realizing harmful 
allelochemicals. Monaco et al. observed allelopathy is a dynamic occurrence involving a multi-
tude of environmental and physiological systems that are interconnected [2]. The measurement 
of phytotoxicity for the first phase in the identification of allelochemicals is possible, but it is 
not enough for confirmation of an allelopathic interaction [3]. Amb and Ahluwalia observed 
that many rice kinds produce high antimicrobial allelochemicals that have an impact on major 
herbicides and fungal and bacterial diversity in the rice plant’s environment or even soil types. 
These allelopathic interactions have been proven to be beneficial, and they may thus be exploited 
as a valuable component of an environmental & agricultural system [4].

Rice allelopathic ability is found in almost all plant components, including roots, varying 
forms and varieties of shells, and along. But a key drawback or restriction found in comparable 
research is that the quantity of allelopathic chemicals existing in the extracting or residual com-
bination might be significantly higher than those in the new area in the production [5-6]. Naresh 
et al. investigated the impact of toxic effect on plant growth across time [7]. Whenever dealing 
with group or consecutive production of a range of plants, allelopathy may also be regarded as 
a significant lead number crops [8]. Dipesh and Kumar investigated non-linear delay differen-
tial equation system to investigate the allelopathic effect using delay parameter on plant growth 
dynamics [9-13].

The effects of environmental factors on plant growth are significant and multifaceted. Scien-
tists are closely observing and working hard to grasp how plants respond to different environ-
mental changes, while also formulating plans to mitigate their detrimental impacts, particularly 
those caused by abiotic stressors [14]. The mechanism of the exponentially characteristic equa-
tion’s zeros was investigated in detail [15]. To further identify the basic biological processes, Wu 
et al. designed a framework for sensitivity analysis of functional structural plant models in his
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research work [16]. Ruan and Rihan integrated a time delay of some type in biological models
by numerous researchers working with the dynamics of single-species populations [17-18].

Climate change’s variable climatic stress circumstances contribute significantly to public
health, crop production, and agricultural sustainability. Rising increasing population and ecosys-
tem destruction demand the creation of crops that can respond to extremes in the environment
[19]. Yuan and Cheng explore the presence and asymptotically stability of non-local evolutionary
equations of trivial facets with a single hypothesis [20]. Felpeto et al. observed that allelopathy
has the potential to reduce exclusion due to competitiveness and increase phytoplankton variety
in aqueous conditions characterized by intensive rivalry among diverse species for limited re-
sources [21]. Hayyat et al. studied the allelopathic effect of herbicides blooming in deserts on
crops using residues from the foliage and soils in their rhizospheres. Furthermore, they discov-
ered that the presence of phenolic chemicals in the soil hindered plant root development more
than mycorrhizal conditions’ reduction in shoot formation [22].

Mathematical models in dynamics may be used to characterize the soot-root interface and as-
set allocation that significant role in plant development [24]. Four tree species were examined for
their allelochemical effects on herbaceous plants and soil microbial communities [25]. Mira et
al. studied the germination and growth of inexpensive weeds under the effect of allelochemicals
of Pteridium aquilinum, which gives inhibitory effects on other weeds [25].

We assert that all techniques employed in the modeling process adhere to moderate and low
levels, ensuring consistent responses to initial constraints across significant timeframes. The use
of delayed differential equations in the study of allelopathy within competitive plant populations
has been unprecedented until now. This analysis focuses on scenarios where one population
releases
allelochemicals, affecting another population that does not produce such chemicals, potentially
leading to the demise of the affected population.

2 Mathematical Model

Let us assume an ecosystem in which competition dynamics interact at two different plant pop-
ulations in the closed plane with an even boundary. We study the delay in competing plant
population model. When one plant population produces an allelochemical affecting the other
plant population and the concentration of allelochemicals is proportional to species density.

Where P1&P2 are the competiting plant populations.
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Where P1(0) > 0, P2(0) > 0∀t and P2(t− τ) = constant tǫ[0, τ ].
a1&a2 are the growth rate of plant population 1st and 2nd respectively. k is the carrying capac-
ity. α1 is the mutual competition between plant population P1&P2 resp. h
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, this clearly
indicates that the carrying capacity of P2 plant population is directly proportional to P1 plant
population.
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4 Biological Significance

E1 (P∗

1 ,P
∗

2) and Hopf-bifurcation: At equilibrium, the stability of system (1)-(2) equations de-
termining the plant population competition process
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The characteristic equation for the mathematical model (4)-(5) is given by:
λ2 + a1λ+ b1 + e−λτ (a2λ+ b2) = 0
Where a1 = 2a1

P1
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h
P1
, b1 = a1a2 − 2a1a2

P1
k
− α1a2P2,

b2 = 2a1
h

k
+ α1

hP2

P1
+ α1a2

h

P1
− a1

h

P1

Clearly a1, a2, b1, b2 all are positive.
When τ = 0, the equation (6) becomes:
λ2 + (a1 + a2)λ+ (b1 + b2) = 0
Applying the Routh-Hurwitz criteria, Equation (7) have negative real component, which means
stability will be formed in the system if:
(X1) : (a1 + a2) > 0
(X2) : (b1 + b2) > 0
Which implies (X1) , (X2) are correct.
Now, we’ll explore how the roots’ negative real aspect shifts towards the positive real aspect with
varying values of τ .

Suppose λ = iθ be the root of Equation of (6), then Equation (6) become:

(iθ)2 + a1(iθ) + b1 + e−(iθ)τ (a2(iθ) + b2) = 0

⇒ −θ2 + ia1θ + b1 + iθa2 cos(θτ) + b2 cos(θτ) + θa2 sin(θτ)− iθb2 sin(θτ) = 0

Separate real and imaginary parts we get:
θ2 − b1 = b2 cos(θτ) + θa2 sin(θτ)
a1θ = b2 sin(θτ)− θa2 cos(θτ)
Squaring and adding (8)-(9) we get
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None of the two roots θ2
1,2 is positive if:
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That’s mean Equation (11) have no positive root if constrain (X3) holds. From lemma [17].
Lemma 1: If (X1)− (X2) hold, roots of Equation (6) are negative ∀τ ≥ 0.
On the contrary, if:

(X4) :
(

b2
1 − b2

2

)

< 0 or
(

a2
2 + 2b1 − a2

1

)

> 0 and
(

a2
1 − a2

2 − 2b1

)2
= 4

(

b2
1 − b2

2

)

Then positive root of Equation (8) is θ2
1 .
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Then, two positive roots of equation (8) are θ2
1,2.

In both (X4) and (X5), for different value of time lags, Equation (6) has imaginary root. The
threshold value τ±j of τ can be examined by using the Equation (8) - (9),
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1
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cos−1
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)
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+

2lπ
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, l = 0, 1, 2, . . . (12)
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The preceding material can be summarized in the following lemma [17].
Lemma 2: (i) If (X1) − (X2) and (X4) is true and τ = τ+l , Equation (6) possess set of complex
root ±iθ1.
(ii) If (X1) − (X2) and (X5) is true and τ = τ−l (τ = τ+l respectively), then Equation (6) will
give a set of imaginary roots ±iθ2 (±iθ1) respectively.

Our proposition suggests that the roots of certain equations, initially characterized by a neg-
ative real component, will transition to a positive real component when τ > τ+l &τ < τ+l . Let us
have a look at this possibility:

τ±l = µ±

l (τ) + iθ±l (τ); l = 0, 1, 2, 3 . . .

From Equation (6) fulfil. µ±

l

(
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(
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The initial boundary condition can be verified.
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(
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< 0

It implies that τ+l represents the bifurcation points. The distribution of zeros of equation (6)
is determined by the following hypothesis [18].
Theorem: Suppose τ+l (l = 0, 1, 2, 3 . . .) calculated by Equation (12).
(1) If (X1) , (X2) are satisfied then equation (6) has negative real part ∀τ ≥ 0.
(2) If (X1) , (X2) and (X4) are satisfied and when τǫ [0, τ+0 ), then equation (6) have negative real
parts. When τ = τ+0 , then equation (6) possess a pair of purely imaginary roots ±iθ1. When
τ > τ+0 , (6) has at least one positive real part root.
(3) If (X1) , (X2) and (X5) are satisfied, then positive integer n such that 0 < τ+0 < τ−0 < τ+1 <

τ+1 . . . . . . . . . < τ−n−1 < τ+n and there are n number of fluctuation from steadiness to unsteadiness.
this implies, when τǫ [0, τ+0 ) ,

(
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)

. . . . . . . . .
(

τ+n−1, τ
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n

)

then Equation (6) have all negative
real root. When τ ∈ [0, τ+0 ) ,

(
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)

. . . . . . . . .
(
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)

and τ > τ+n , Equation (6) contain
at least one positive root.

Numerical Example: The complexities indicated by the mathematical model are visually
represented using the following set of parametric values.

a1 = 2, α1 = 0.2, k = 60, a2 = 50, h = 2

For various values of the delay parameter, the nature of the dynamics system (1)-(2) changes
from steady to complicated behavior around the equilibrium E1 (P ∗

1 , P
∗

2 ).

5 Results and Discussion

Figure1 represent the graph between plant population P1&P2 time (t) respectively. It has been
observed that at a1 = 2, α1 = 0.2, k = 60, a2 = 50, h = 2 both plant populations ( P1&P2

) are stable in the absence of delay (τ = 0). Bandyopadhyay [26] have used two competitive
phytoplankton model to study the influence of toxic metal on the phytoplankton. By taking
parametric values at α1 = 2, α2 = 1, β1 = 0.02, β2 = 0.08, v1 = 0.05, v2 = 0.015, γ = 0.0008
he found stability in the system. Figure2 represent the graph between the plant population P1&P2

time ( t ) respectively. It has been found that both plant population losses their stability and
shifted toward asymptotically stability at τ < 1.99. Wang et al. [27] worked on phytoplankton-
zooplankton model in order to check the effect of toxic metal using time lag. They have been
examined that phytoplankton-zooplankton shows asymptotically stability at τ < 4.5. Gumus
[28] worked on discrete time prey-predator model in order to check the allee effect on the prey
population. He found that system show bifurcation with variation in parametric values. Murhy et
al. [29] word on prey-predator model to verify the allelopathic effect on growth rates predation.
They observed that system is shifting toward Hopf-bifurcation after losing the asymptotically
stability with parametric value a1 = 0.1, a2 = 0.9, η1 = 0.008, η2 = 0.005, c1 = 0.1, c2 =
0.2, H1 = 30, H2 = 40,K = 500, L = 400 at τ ≥ 0.36.
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Figure 1. At τ = 0, dynamic system is stable
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Figure 2. At τ < 1.99, the plant population P1 and P2 is stable asymptotically.
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Figure 3. At τ ≥ 1.99, the plant population P1 and P2 loses stability and shows Hopf-
bifurcation.

6 Conclusion

Study of the importance of time lags in plant population competing underneath the conse-
quence of allelochemicals by using the proposed model has been done. By introducing delay
in the model, imbalance in the system was found. Also, delay shows complex behavior along
with stable periodic solution and limit cycle through hopf-bifurcation. Stability of equilibrium
E∗ (P1,P2) point is calculated. With the help of Routh-Hurwitz’s theorem we calculate stability
of the dynamic system. In the absence of delay none of plant populations affect adversely each
other and grow at their normal rate. When the value of delay is less than the critical value system
shows asymptotically stable. Actually, mean if there is a delay involved in the allelochemicals
realize, still the system grows at their natural rate after few fluctuations in the beginning under
the asymptotically stability. When the value of delay is greater than or equal to the critical point
system loses its asymptotically stability and both the populations remain under the effect of al-
lelochemicals forever. A sessional repetition of limit cycles will always occur after a particular
time period showing Hopf-bifurcation. This all-graphical work done with matlab software using
dde23 command.
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