
Palestine Journal of Mathematics

Vol 14(Special Issue I)(2025) , 183–197 © Palestine Polytechnic University-PPU 2025

Profit Analysis of a System of Non-Identical Units with Varying
Demand

Harpreet Kaur and Reetu Malhotra

MSC 2020 Classifications: Primary 97K60; Secondary 60K10.

Keywords and phrases: Stochastic model, repairable system, non-identical units, reliability, variability, innovation

This study is based on ghee manufacturing plant. I am very thankful to all the members of the industry who helped me
throughout my studies and helped me for the collection of estimate data based on repairs from the industry as well.

Corresponding Author: Reetu Malhotra

Abstract This innovation uses a stochastic approach to study a system of two dissimilar units
with parallel working and varying demands. When identical units are not monetarily possible,
industries often use non-identical units that range in dependability and desirability but accom-
plish the same tasks. Enhancing the system’s reliability, accessibility, and financial performance
requires optimizing the priority of unit repairs. An example would be a ghee manufacturing
factory with an original central unit and an ordinary (replica) unit. The two units must be op-
erational to meet the increase in demand for ghee during winter; otherwise, the system operates
at a lower capacity. Every unit failure is assigned to a single technician, the only one constantly
present in the system. Setting a repair priority for the various units is crucial. The study found
that it would be more beneficial to concentrate on repairing the original unit when the repair rate
of the ordinary (replica) unit is high. The system performance is most affected by the mainte-
nance rate. The units’ failure/repair time distribution follows a negative exponential distribution.
The units’ failure/repair time distribution follows a negative exponential distribution. The au-
thors compute several system efficacy parameters using the semi-Markov and regeneration point
techniques. Additionally, they plotted graphs to draw attention to the significant findings. They
also assess the system’s profit for a few fixed repairs and other cost values.

1 Introduction

When discussing day-to-day activities and modern society’s needs, we should also mention that
machines are part of our lives. However, these machines will benefit the user if their work is
trouble-free. In such a situation, reliability plays a vital role due to its characteristics, such as
overcoming sudden failures and breakdowns and providing a safe environment. The literature
on reliability is becoming increasingly affluent daily, as many researchers are making many con-
tributions in the field by incorporating new ideas/concepts/studies. In reliability research, it is
common practice to assume that two or more identical systems, without considering the parallel
working of both units. For example, Taneja et al. worked in a sugar mill with three identical
units with varied production [1]. The user shut down the mill during the shortage of raw mate-
rials. Otherwise, the system will work at total capacity. Ram et al. investigated the reliability
of two-unit standby systems. Initially, one unit was operational while the other was in standby
mode [2]. Their system may also fail due to improper starting of the system; the reason behind
it was untrained and inexperienced system analysts. Additionally, Malhotra and Taneja analyzed
two identical standby systems, assuming that both units may be operational simultaneously due
to increased demand [3, 4]. Furthermore, the authors worked on a comparative study of a cable
manufacturing plant, considering that demand is not constant. They used regenerative and semi-
Markov processes to find numerous system effectiveness measures. According to Levitin et al.,
redundancy is awidely applied technique for high reliability [7]. They also discussed how its
failure made reliability non-monotonic and affected other parameters. Also, the elements of the
system are assumed to be non-repairable. Afterward, Yang et al. took a system with M primary
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and S spare units [8]. All units were repairable and did not require waiting space; therefore,
the repairman immediately repaired the failed unit. The researchers used the matrix analysis
method to compute steady-state availability. Malhotra also developed a two-unit redundant sys-
tem where one unit was in working mode while the other was cold redundant by enchanting the
activation time [17]. After that, they worked on a hot standby system with varying demands. In
this model, identical standby units remain operational from the initial state. Afterward, Kumar et
al. worked on two similar unit systems. The authors assume that a single unit can run the system
smoothly [18]. The other unit can fail due to unused or any other environmental issues. The re-
pairman will inspect the failed unit and decide whether it will be repaired or replaced. In contrast
to this, some authors took systems with non-identical units. For instance, Wang et al. studied
non-identical redundant allocation problems with degrading components [10]. The main con-
cern is cold standby units that suffer performance degradation when exposed to extreme standby
environments for long-term storage. Moreover, Levitin et al. discussed the factors that affect
industrial systems, such as deterioration, corrosion, etc [11]. They performed fixed planning to
renew the worn element by using redundant aspects to improve its functioning successfully. Gao
et al. studied warm and cold standby systems assuming unreliable repair [9]. They performed
preventive maintenance and repair according to idle time and unit failure. The authors used the
Markov process approach to solve the equations. And they assumed that the repair unit was as
good as the new one. Kamal et al. analyzed the cost-benefit of a system having two dissimilar
units by considering one with high quality and the other with low quality [14]. They used the
concept of repairing or replacing according to the type of failure. The central unit kept its high
quality. According to Juybari et al., mixed redundancy is a powerful technique to improve the
reliability of a system [13]. Also, assume that all components are under environmental shocks
and may deteriorate by internal or external shocks. Also, Shekhar et al. evaluated the reliabil-
ity of multi-unit systems having several failures, degradation, random delays, and probabilistic
imperfections [19]. In addition, they discussed their impact on production and the system per-
formance. According to Kundu et al., comparing extremes (maximum or minimum) in fixed or
random sample sizes has been a significant topic in various fields [22]. Li et al. worked on non-
identical units by assuming either repair is a priority or it may not [23]. They did not consider
the concept of varied demand. In the present study, the authors observed repair going on a prior
basis, and the demand varies. Thus, many studies have taken the concepts of either identical
units working or assuming equal repair is required by both units. But practically, there is a lack
of consideration. Due to the high unit cost, every industry must buy different units. In such a
situation, duplicate units play a vital role. Now the question arises: which unit will be on a prior
basis for repair after failure? Some researchers assumed either the original unit or a duplicate
unit. Non-identical units have the same working with different reliability and availability. So,
it is essential to give priority to one of the units at a time. A practical, real-life example exists,
like a system with a transformer and generator. In this case, our repair priority is the trans-
former rather than the generator. The reason behind this is the high cost of operation of later.
In conclusion, prioritizing original unit repair is not beneficial when duplicate unit repair rates
are high. To the best of our knowledge, none of the extensive literature on reliability consid-
ered non-identical units with different degrees of reliability, prior repair, and varied production
due to varied seasons simultaneously [24, 25, 26]. Hence, there is a considerable gap. The au-
thors will try to fill it in. The proposed study investigates the stochastic analysis of two separate
bleacher-earth machines operating simultaneously. There is an original central unit and an or-
dinary (replica) unit. On visiting the manufacturing plant in Punjab, the authors observed that
although both units work in tandem, their availability and dependability may vary. Initially, our
system worked at total capacity and could meet the increased demand in winter. Failure of any
unit causes the system to reduce capacity and cannot meet market demand on time, especially in
winter. This variation affects the reliability, availability, and profit of the plant. The user applied
repair techniques to both units to prevent such a situation. A single technician is available to
do the desired job with total efficiency. The reliability characteristics of the system model have
been studied numerically and graphically for various parameter values [27, 28, 29]. The authors
use the Markov process to analyze the system’s profit for some fixed repair and maintenance cost
values [30, 31].
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2 Model Description and Measures of System Effectiveness

The description of the proposed model is as follows. The Nomenclature (Shown in Table 1)

Table 1. Nomenclature
Symbol Description
λ/µ The failure rate of the main bleacher machine / ordinary machine (replica).
B0, B

′
0 The main bleacher machine and the ordinary both work simultaneously.

Bur, B
′
0 The main machine goes under repair after failing, and the ordinary machine

still works.
B0, B

′
ur The main machine works, and the ordinary machine is in repair.

BUR, B
′
wr The main machine is under repair from the previous state, and the ordinary

machine is waiting for repair.
Bwr, B

′
UR The main machine is waiting for repair, and the ordinary machine is in repair

from its previous state.
g(t)/h(t) The probability density function of the repair times of the central / standby

units.
⋆/̃ Symbol of Laplace / Stieltjes transform.
c⃝ / s⃝ Laplace / Stieltjes convolution.
pij , p

k
ij Steady-state probabilities.

µi(t) Mean sojourn time in regenerative state before transiting to any other state.
Qij , Q

k
ij/qij , q

k
ij CDF / PDF of first passage time.

Mi(t)/mij The probability that the system is up initially / Contribution to the mean
sojourn time in regenerative state i.

qij , pij , p
k
ij Transition / steady-state probabilities.

3 Model Description and Assumptions

The authors observed two different bleacher earth units in the visiting plant, the original central
and ordinary (replica) as shown in Figure 1. Initially, both units work simultaneously (state S0).
The failure rates of the original and ordinary units are λ and µ respectively. The state will move
to state(S1) or (S2) based on their failure. Also, during the failure of any one of them, other
units get corrupted. Then, states will move to either (state S3) or (state S4) accordingly. After
repair, all units return to their previous state due to satisfactory repair service. Both units work
instantaneously in parallel mode. Both units have regular and complete failures. Various other
assumptions are as follows:

• A single unit can run the system smoothly but cannot meet the increased demand in winter.

• The system will function if any of the units are working. Otherwise, it is assumed to fail.

• Single technicians are available to do the desired job efficiently and never leave the system
during repair.

• Repair time distributions are general, while the failure time distribution of units follows a
negative exponential.

4 Transition Probabilities

dQ01e
(−λ+µ)tdt

dQ02(t) = µe(−λ+µ)tdt
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Figure 1. State transition diagram of the model

dQ10(t) = g(t)e(−µt)dt

dQ13(t) = µe(−µ)tG(t)dt

dQ3
12(t) = d[Q13(t)[s]Q32(t)]

dQ20(t) = h(t)e(−λt)dt

dQ24(t) = λe(−λt)H(t)dt

dQ4
20(t) = d[Q24(t)[s]Q41(t)]

dQ32(t) = g(t)dt

dQ41(t) = h(t)dt

Changes in variables, such as wear and tear in a mechanical system, fluctuations in demand,
or modifications in environmental elements that affect the process, can cause these probabilities
to change over time. Time-independent probabilities, pij, on the other hand, are steady-state or
invariant probabilities that characterize a system’s long-term behavior. The hypothesis explains
this transition, in which methods frequently attain a steady state where the chances of changing
conditions over time become constant. The process is known as the "steady-state" or "station-
ary" assumption. Markov chains analyze time-dependent and time-independent systems as they
describe systems that switch between distinct states. Simple probabilistic considerations yield
the following expressions for the non-zero elements:

pij = Q(i,j)(∞) =

∫ ∞

0
dQ(i,j)(t) dt = Q̃(i,j)(0) =

∫ ∞

0
q(i,j)(t) dt (4.1)

Thus,
pij = lim

s→0
q∗ij(s)

After taking the Laplace Transformation of equation (1), we get

p01 =
λ

λ+ µ
,

p02 =
µ

λ+ µ
,

p10 = g∗(µ),
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p13 = 1 − g∗(µ),

p3
12 = 1 − g∗(µ),

p20 = h∗(λ),

p24 = 1 − h∗(λ),

p4
21 = 1 − h∗(λ),

p32 = p41 = 1.
Based on these probabilities, it is clear that

p01 + p02 = 1,

p10 + p13 = 1,
p10 + p3

12 = 1,
p20 + p24 = 1,
p20 + p4

21 = 1,
p32 = p41 = 1.

Mean sojourn time (µi) in the state Si are

µ0 =
1

λ+ µ
,

µ1 =
1

α+ µ
,

µ′
1 =

1
α
,

µ2 =
1

λ+ β
,

µ′
2 =

1
β
.

Also,

mij =

∫ ∞

0
t d{Qij(t)} = −q∗

′

ij (0)

m01 +m02 = µ0,

m10 +m13 = µ1,

m20 +m24 = µ2,

m10 +m3
12 = µ′

1,

m20 +m4
21 = µ′

2.

5 Mean Time to System Failure (MTSF)

In determining MTSF, assume the failed states to be absorbing states. Recursive relations for
ϕi(t) are:

ϕ0(t) = Q01(t) s⃝ϕ1(t) +Q02(t) s⃝ϕ2(t), (5.1)

ϕ1(t) = Q10(t) s⃝ϕ0(t) +Q13(t), (5.2)

ϕ2(t) = Q20(t) s⃝ϕ0(t) +Q24(t) (5.3)

Taking the Laplace–Stieltjes Transform (L.S.T.) on (5.1,5.2,5.3) and solving for Q̃0(s), then
the Mean Time to System Failure (MTSF) is given by

lim
s→0

1 − ϕ̃0(s)

s
=

N

D

where
N = µ0 + p01µ1 + p02µ2

and
D = 1 − p01p10 − p02p20.
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6 Availability

The chance that a system does not currently suffer a failure at a time t is known as the availability
A(t). It is true even if the system might have previously failed to resume normal operating
conditions. The availability is given by

Ai(t) = Mi(t) +
∑
j ̸=i

qki,j(t) c⃝Aj(t), (6.1)

The recursive relations for the system availability are as follows:

A0(t) = M0(t) + q01(t) c⃝A1(t) + q02(t) c⃝A2(t), (6.2)

A1(t) = M1(t) + q10(t) c⃝A0(t) + q3
12(t) c⃝A2(t), (6.3)

A2(t) = M2(t) + q20(t) c⃝A0(t) + q4
21(t) c⃝A1(t) (6.4)

Here,

M0(t) =

∫ t

0
e−(λ+µ)τ dτ,

M1(t) =

∫ t

0
e−µτ Ḡ(τ) dτ,

M2(t) =

∫ t

0
e−λτ H̄(τ) dτ

Taking the Laplace Transform on (6) and solving for Ã0(s), we have the steady-state avail-
ability given by

A(∞) = lim
s→0

sÃ0(s) =
N

D
(6.5)

where
N = p10µ0 + p20p

3
12µ0 + µ1 − µ1p02p20 + µ2 − µ2p01p10,

and
D = p10µ0 + p20p

3
12µ0 + µ′

1 − p02p20µ
′
1 + µ′

2 − µ′
2p01p10.

7 Busy Period Due to Repair

Recursive relations for BR
i (t) in general are

BR
i (t) = Wf (t) +

∑
j ̸=i

qki,j(t) c⃝BR
j (t) (7.1)

Recursive relations for BR
i (t) are as follows:

BR
0 (t) = q01(t) c⃝BR

1 (t) + q02(t) c⃝BR
2 (t), (7.2)

BR
1 (t) = WR

1 (t) + q10(t) c⃝BR
0 (t) + q3

12(t) c⃝BR
2 (t), (7.3)

BR
2 (t) = WR

2 (t) + q20(t) c⃝BR
0 (t) + q4

21(t) c⃝BR
1 (t) (7.4)

Here, we have
WR

1 (t) = e−µtḠ(t) + (µe−µt c⃝1)Ḡ(t),

WR
2 (t) = e−λtH̄(t) + (λe−λt c⃝1)H̄(t)

The busy time of the server due to repair is:

BR(∞) = lim
s→0

sB̃R
0 (s) =

NR

D
(7.5)

where
NR = WR

1 −WR
1 p02p20 +WR

2 −WR
2 p01p10,

and D is already mentioned.
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8 Expected Number of Repairs

The expected number of repairs for the unit is given by

EN
0 (t) = Q01(t) s⃝[1 +EN

1 (t)] +Q02(t) s⃝[1 +EN
2 (t)], (8.1)

EN
1 (t) = Q10(t) s⃝EN

0 (t) +Q3
12(t) s⃝EN

2 (t), (8.2)

EN
2 (t) = Q20(t) s⃝EN

0 (t) +Q4
21(t) s⃝EN

1 (t) (8.3)

Taking the Laplace–Stieltjes Transform (L.S.T) of the above equations and solving for ẼN
i (s),

we have

ẼN
i (s) =

EN (s)

D(s)
(8.4)

where
EN (s) = 1 − p3

12Q
4
21,

and D(s) is already defined.

9 The Profit Analysis

Profit is the income obtained after paying all costs:

P = (C0A)− (C1B
R + C2E

N ) (9.1)

All values mentioned below:

C0 = revenue per active unit of the system,

C1 = cost per unit period for which the server is busy repairing the unit,

C2 = cost per unit for the time that the server is visited.

Also, A, BR, and EN are taken earlier.

10 Particular Case

The authors considered dissimilar random variables in the model to follow an exponential distri-
bution with different parameters. Let the PDF of all the random variables be given as:

g(t) = αe−αt,

h(t) = βe−βt.

There are two non-identical bleacher earth machines with different failure rates. One is the
original unit, while the other is an ordinary one. Hence, repair rates are also different for both
units. The results are:

p01 =
λ

λ+ µ
,

p02 =
µ

λ+ µ
,

p10 =
α

α+ µ
,

p13 =
µ

α+ µ
,

p3
12 =

µ

α+ µ
,

p20 =
β

β + λ
,
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p24 =
λ

β + λ
,

p4
21 =

λ

β + λ
,

µ0 =
1

λ+ µ
,

µ1 =
1

α+ µ
,

µ′
1 =

1
α
,

µ2 =
1

λ+ β
,

µ′
2 =

1
β
.

All the formulae given above: Mean Time to System Failure (MTSF)
Mean Time to System Failure (MTSF)

MTSFT =
N

D

=
λ2 + λµ+ λα+ λβ + µ2 + µβ + µα+ αβ

λ2µ+ λµ2 + λµα+ λβµ+ β2µ2 − µ2β

Availability

A =
N

D∗

where N = α2β3 + α2µβ2 + µαβ3 + λα2β2 + λα2µβ + λµαβ2

+ λαβ3 + αβ2λ2 + 2αβ2λµ+ αλ2µβ + αλµ2β + λµαβ2

+ β2α2µ+ αµ2β2 + αλβµ2 + µ2α2β + αβµ3

D∗ = α2β3 + 2α2µβ2 + µαβ3 + λα2β2 + 2λα2µβ + 4λµαβ2

+ λµβ3 + β3λα+ 2β2λµ2 + β2λ2µ+ β2λ2α

+ λ2µ2β + 2αλ2µβ + λβµ3 + 3αλβµ2

+ αλ2µ2 + µ2α2β + µ2α2λ+ αµ2β2 + αβµ3 + α(λµ)3

Busy Period Due to Inspection

BR =
NR

D∗

where NR = α(λβ)3 + λµβ3 + 3λµαβ2 + µ2β2λ

+ λ2β2α+ β2λ2µ+ 2αλ2µβ + µ2λ2β + λµ2β2

+ 3αλβµ2 + αλ2µ2 + β2α2µ+ λα2µβ

+ µ2α2β + µ2α2λ+ αµ2β2 + αβµ3 + α(λµ)3

Expected Number of Repairs
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EN =
NE

D∗

where NE = λµαβ3 + αλµ2β2 + αµ2β3 + αµ3β2

+ β2α2λ2 + λ2α2µβ + β2α2µλ+ µ2α2λβ

+ β3α2λ+ β2α2λµ+ β3α2µ+ β2α2µ2

11 Results and Discussions

The study examines certain significant dependability aspects of a two-unit repairable system.The
MTSF, availability, and profit functions are shown graphically in Figures 2,3,5,6,7,8,9 respec-
tively, so we can see how they react to the values of the parameters corresponding to the failure
and repair rates.

Table 2. MTSF for the variable repair rate of the main unit (α) vs failure rate of the ordinary
unit (µ)

µ α = 0.03 hr α = 0.04 hr α = 0.05 hr
0.01 55449.2796 72561.98673 89065.65748
0.02 27225.3327 35638.92778 43758.30011
0.03 17829.1754 23346.17472 28673.54744
0.04 13139.502 17210.42296 21143.77574
0.05 10332.0768 13537.04256 16635.49576
0.06 8465.50731 11094.51388 13637.57158
0.07 7136.35484 9355.061449 11502.39495

Figure 2. MTSF for the varied repair rate of the central unit (α) v/s failure rate of the ordinary
unit (µ)

Figure 2 and Table 2 makes it abundantly evident that when the failure rate of the ordinary
unit increases from 0.01 to 0.07, it results in a decrease in the MTSF of the system. Furthermore,
with higher repair rates α = 0.03/h, 0.04/h, and 0.05/hr. Respectively, the MTSF shows an
upward trend in the basic parameters. Supplementary parameters are β =0.3/hr, λ= 0.7/hr., µ=
(0.02, 0.03, etc.) / hour.Here, α and β are the repair rates of the central and ordinary units,
respectively. Also, λ and µ are the central and ordinary unit failure rates.
In Figure 3 and Table 3, a highly reliable system can run continuously, but its availability will

drop if not maintained correctly. On the other hand, a low-reliability machine may experience
numerous failures, but its availability increases with appropriate care and prompt repairs. Figure
3 and Table 3 provides clear and convincing evidence that the system’s availability rapidly drops
for a rising failure rate of the ordinary unit µ from 0.02 to 0.04; additionally, when the repair rate
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Table 3. Availability for varied failure rates of ordinary unit (µ) vs repair rate of the main unit
(α)

α µ = 0.02 hr µ = 0.03 hr µ = 0.04 hr
0.01 0.227364262 0.173867141 0.144132653
0.02 0.277696227 0.215533199 0.180131658
0.03 0.299238855 0.233820733 0.196172738
0.04 0.310930075 0.243893794 0.205097087
0.05 0.318127889 0.250164047 0.2106974

Figure 3. Availability for various failure rates of ordinary unit (µ) v/s repair rate of a central unit
(α)

of the prominent unit α increases from 0.01 to 0.05, so does the system’s availability. Therefore,
repairs should occur on ordinary units to improve the system’s availability. Other parameters are
assumed to be β = 0.008 hr and λ = 0.1 hr.

Table 4. Availability for variable repair rate (α) of main unit vs failure rates of ordinary unit (µ)
µ α = 0.00105 hr α = 0.00305 hr α = 0.00505 hr

0.01 0.13885628 0.196166191 0.214094832
0.03 0.107714 0.152500875 0.166886916
0.05 0.10166327 0.143737172 0.15725774
0.07 0.09911666 0.140019131 0.153155721
0.09 0.0977169 0.137968067 0.150888791
0.11 0.09683234 0.13666926 0.149451894

Figure 4 and Table 4 shows that the system experiences a significant decrease in availability
due to an increasing failure rate of the ordinary unit µ from 0.01 to 0.11. Furthermore, availability
shows an upward trend with an increase in the repair rate of the main unit α from 0.00105 to
0.00505 per hour. There is a hike in the system’s availability with the growth of the repair rate
of the central unit. The authors plotted the graph by considering the rest of the parameters as
λ = 0.005 and β = 0.001 per hour. More repairs are carried out on ordinary units to make the
system more available.
Figure 5 and Table 5 illustrates how profit increases significantly when the repair rate of ordinary
units (β) increases from 0.002 to 0.004 per hour and decreases with rising repair costs (C1). The
cut-off points shown in the figure help determine the repair costs the company needs to pay to
achieve a profit. Consider C2 = 50 (costs are in Indian rupees). Also, µ = 0.1 hr-1, α = 0.01
hr-1, β = 0.002 hr-1, 0.003 hr-1, 0.004 hr-1, λ = 0.1 hr-1. C0 = INR 5000, with C1 values of
(140, 160, 180, 200, 220, 240).

Although revenue is the income generated before costs, profit is the income obtained after
paying all expenses. Figure 6 and Table 6 illustrate how fluctuations in revenue and costs affect
the system’s profitability. The system improves profitability when the central unit’s repair rate
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Figure 4. Availability for varied repair rate (α) of the primary unit vs failure rates of the ordinary
unit (µ)

Table 5. Profit from the varied repair rate (β) of the ordinary unit vs repair costs (C1)
C1 β = 0.002/hr β = 0.003/hr β = 0.004/hr
140 23.9796975 85.58812643 137.761194
160 3.99854761 65.61625583 117.7985075
180 -15.982602 45.64438522 97.8358209
200 -35.963752 25.67251462 77.87313433
220 -55.944902 5.700644015 57.91044776
240 -75.926052 -14.27122659 37.94776119

Figure 5. Profit for the variable repair rate (β) of the ordinary unit vs. repair costs (C1)

Table 6. Revenue cost (C0) for varied repair rates of a main unit (α)
C0 α = 0.05 hr-1 α = 0.07 hr-1 α = 0.09 hr-1

2300 -42.133527 -24.8864592 -14.3555713
2400 -26.894049 -8.99074852 1.917698406
2500 -11.654572 6.904962153 18.1909682
2600 3.58490566 22.80067283 34.464238
2700 18.8243832 38.69638352 50.73750779
2800 34.0638607 54.5920942 67.01077759

rises rapidly. Cut-off points help decide the repair rate’s upper limit; the profit becomes harmful
beyond this limit, and the company faces financial loss. Also, µ = 0.1 hr-1, α = 0.09 hr-1,
β = 0.01 hr-1, λ = 0.1 hr-1. C0 = {2300, 2400, 2500, 2600, 2700, 2800}, C1 = 400, C2 = 50
(Costs are in Indian rupees).
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Figure 6. Revenue cost (C0) for different repair rates of the central unit (α)

Table 7. Profit from varied repair rates of ordinary unit (β) vs revenue cost (C0)
C0 β = 0.001 hr-1 β = 0.011 hr-1 β = 0.012 hr-1

2200 -57.3730 -31.79661 -7.379280
2300 -42.1335 -15.425947 10.070237
2400 -26.8940 0.9447163 27.519754
2500 -11.6545 17.315380 44.9692
2600 3.584905 33.686044 62.418788
2700 18.82438 50.056708 79.868305

Figure 7. Profit for varied repair rates of ordinary unit (β) v/s revenue cost (C0)

The assertion is clearly illustrated in Figure 7 and Table 7 that the company experiences more
profitability when its ordinary unit’s repair rate (β) is higher and its failure rate is lower. The
authors plotted graphs by taking C0 = {2200, 2300, . . .}, C1 = 400, and C2 = 50 (costs are in
Indian rupees). Also, µ = 0.1 hr-1, α = 0.09 hr-1, β = {0.001 hr-1, 0.011 hr-1, 0.012 hr-1}, and
λ = 0.1 hr-1. The company would be more profitable if the user performed more repairs on ordi-
nary units. Profit is income earned after deducting expenses, not revenue. It demonstrates that
reducing costs or increasing revenue can boost the plant’s or company’s net profit. The Figure 8
and Table 8 illustrates how costs, revenue, and repair impact system profitability. Profit shows
an upward trend with lower values of repair costs.Cut-off points help estimate the minimum cost
of repair to get maximum profit.

Figure 9 and Table 9 makes it abundantly evident how the profit increases with a remarkable
value when the repair rate (β) increases from 0.0058 to 0.007 per hr. and declines with rising
repair cost (C2). Cut-off points shown in the figure help decide how much repair costs are to be
paid by the company to make a profit.
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Table 8. Profit V/S revenue (C0) for varied repair cost (C1)
C0 C1 = INR 200 C1 = INR 400 C1 = INR 600

20000 -271.5195371 -323.446345 -375.373153
25000 -175.836302 -227.7631099 -279.6899179
30000 -80.15306694 -132.0798749 -184.0066828
35000 15.53016815 -36.39663977 -88.32344769
40000 111.2134032 59.28659532 7.359787403
45000 206.8966383 154.9698304 103.0430225

Figure 8. .Profit V/S revenue (C0) for varied repair cost (C1)

Table 9. Profit V/S repair cost (C2) for varied repair rates (β) of ordinary unit
C2 β = 0.0058/hr β = 0.0064/hr β = 0.007/hr

5000 -202.7190166 770.3246726 1521.664158
7000 -496.7770843 503.3252479 1277.225653
9000 -790.835152 236.3258233 1032.787148
11000 -1084.89322 -30.67360142 788.3486426
13000 -1378.951287 -297.6730261 543.9101375
15000 -1673.009355 -564.6724508 299.4716323
17000 -1967.067423 -831.6718755 55.03312712

12 Conclusion

Due to the high unit cost, every industry must buy different units. In such a situation, duplicate
units play a vital role. Also, prioritizing original unit repair is not beneficial when duplicate unit
repair rates are high.The proposed study is on Bleacher Earth Machines, non-identical units at
the visited ghee manufacturing plant. Here, both units work in parallel mode, but the degree of
reliability and availability may differ. A single server that promptly calls the system whenever
needed handled the repair activities of both units. Repair actions on the part of the server are
considered perfect, and thus, the repaired unit works as a new one. The authors analyzed the
system’s effectiveness measures using the Markov process and the system’s profit for fixed repair
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Figure 9. Profit V/S repair cost (C2) for varied repair rates (β) of ordinary unit

values and other maintenance costs. They plotted graphs by taking various parameters with the
help of computer software such as MS Excel, etc. MTSF increases as the repair rates of the
central unit increase; it declines with higher repair rates of the ordinary unit. However, the profit
decreases if ordinary units have higher repair rates. Consequently, when the repair rate of the
ordinary (replica) unit is high, it could be more profitable to provide priority to repair the original
unit. Thus, the repair rate is the most significant parameter influencing performance measures.
Since the model is general, any plant or business with a similar circumstance can utilize it. All
random times considered in this paper are assumed to follow an exponential distribution.

Future Scope The authors wish to take random times with a more general distribution (such
as Weibull distribution) in the future. In the proposed model, the authors prioritize repairing the
duplicate unit to keep it operative all the time. In the future, the authors are thinking of working
by giving priority to repair to the original unit with varying demand. Afterward, the authors will
compare two models to optimize the profit.
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