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Abstract In this research work, a mathematical model of amperometric biosensor in case
of enzyme allostery with substrate inhibition kinetics is analyzed. The model is a non-linear
reaction diffusion reaction equations with non-linear terms related to the non-Michaelis-Menten
kinetics. The semi-analytical expressions of substrate and product concentrations are obtained
using Akbari-Ganji method. The derived results are compared with the numerical simulation
using the MATLAB software to obtain the satisfactory of the result. Effects of saturation pa-
rameters, Thiele modulus, diffusion constants, kinetic parameters, enzyme layer thickness, bulk
substrate concentration and Michaelis-Menten constant on the biosensor current, sensitivity and
resistance are analyzed using the derived semi-analytical expressions. The analytical expression
of effective membrane thickness of biosensor to obtain the maximum current is also presented.
The obtained results are very useful in improving the characteristics of biosensor to achieve a
better amperometric response.

1 Introduction

Biosensor has a crucial role in biological sciences, which is an element with a transducer to de-
tect and measure specific biological substances, converting biological responses into measurable
signals. Amperometric biosensors detect alterations in the current in its output at the working
electrode caused by the direct oxidation or reduction of a biochemical reaction [1, 2, 3]. Ex-
tensively utilized due to their efficacy and heightened sensitivity, these biosensors are applied in
diverse fields such as food analysis, environmental monitoring, drug analysis, and clinical diag-
nostics. Amperometric methodologies exhibit a linear correlation with the concentration of the
analyte, delivering a response of the current that escalates proportionally as the concentration
increases within a standard dynamic range. The accuracy and dependability of these methods
for determining analyte concentration are guaranteed by careful experimental condition manage-
ment and calibration [4, 5, 6].

Enzymes in biosensors are often inhibited by their substrates [1]. Theoretical models are
widely used to study and optimize biosensor analytical characteristics. Practical biosensors fea-
ture a multilayer enzyme membrane, while exploratory monolayer membrane-containing biosen-
sors are employed for studying biochemical behavior. Manimozhi et al. [7] analyzed a mathe-
matical model of an amperometric biosensor considering the mixed enzyme kinetics with sub-
strate inhibition. The model is a steady-state non-linear reaction-diffusion equation. They have
provided an approximate analytical expression for the substrate concentration by utilizing the
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Homotopy perturbation method (HPM) and compared with the numerical results. Swaminathan
et al. [8] provided semi-analytical expressions for both the substrate and product concentrations
of the amperometric biosensor with substrate inhibition by utilizing the Adomian decomposition
method (ADM) and the new Homotopy perturbation method (NHPM). Agarwal [9] also employs
the HPM for solving the non-linear differential equation governing the flow of a non-Newtonian
visco-inelastic fluid between two disks.

To streamline the characteristics of biosensors, a mathematical model based on the substrate
and product inhibition is also created. Šimelevičius and Baronas [3] proposed a mathemati-
cal model of the amperometric biosensor considering both the substrate and product inhibition
with external and internal mass transfers. Recently, Mallikarjuna and Senthamarai [10] analyzed
this model and provided approximated analytical results for the substrate and product concen-
trations by utilizing TSM and ADM and compared with the numerical results. They have also
analyzed the current response, sensitivity, and resistance of the biosensor. To the best of our
knowledge, there is no existing approximate analytical expression for the mathematical model
of the amperometric biosensor with the enzyme allostery. A comprehensive understanding of the
kinetic intricacies associated with biosensors is imperative for enhancing their efficiency. This
understanding enables the optimization of biosensor configurations, leading to a more accurate
prediction of electrode responses. In a recent study, Rasheed and Balasim [11] investigated
the blow-up behavior of the reaction-diffusion equation subject to Dirichlet boundary condi-
tions. Their approach involved employing a finite difference scheme to solve the semi-linear
heat equation.

This study presents the biosensor model comprising the kinetics of the allostery enzymes. It
is observed that variations in the physical and kinetic parameters present in the system allowed
the biosensor’s peak response to be reached throughout a wide range of substrate and product
concentrations. An analytical solution to the system is thought to be more beneficial and con-
vincing than numerical simulations due to its conciseness. This is due to the fact that it facilitates
data management and allows for the optimization of delicate parameters in a variety of applica-
tions. In this article, the approximate analytical expressions of the steady-state concentrations of
substrate and product are analyzed for all values of the kinetic and reaction diffusion parameters
that occur in the system, together with the biosensor current response, sensitivity, resistance and
effective membrane thickness.

The research article is articulated as follows: Section 2 represents the mathematical formula-
tion of the amperometric biosensor with the substrate inhibition in enzyme allostery. In Section
3, the approximate analytical expressions for the substrate and product concentrations, sensitiv-
ity, and resistance are provided. In Section 4, the analytical results are validated by comparing
with the obtained numerical simulation. Section 5 provides the major findings of the research
work. The conclusion is provided in Section 6 followed by the appendices.

2 Mathematical formulation

The enzyme reaction equation operates a biosensor in generally defined as follows [3],

E + S[k−1]k1ES
k2−→ E + P (2.1)

In the context of the reaction, where E represents an enzyme and S denotes a substrate, the for-
mation of the enzyme-substrate complex (ES) precedes the generation of the product (P ). The
kinetic parameters k1 and k−1 govern the formation and dissociation of the enzyme-substrate
complex, while k2 represents the rate constant for the conversion of the enzyme-substrate com-
plex to the product.

In this article, a non-Michaelis-Menten kinetics of homotropic allosteric enzyme activity
is considered (allostery modulator is substrate itself). Where the reversible interaction of an
allosteric modulator (A) with the enzyme (E) at a site distinct from the active site results in the
generation of an allosterically modulated enzyme (AE).

A+E[k−a]kaAE (2.2)

The kinetics of this interaction, specifically the association rate constant ka and the dissociation
rate constant k−a, were systematically characterized to illustrate the dynamics of the allosteric
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modulation process. The regulatory effects of allosteric modulators on enzyme activity are ex-
plained, offering important insights into the molecular mechanisms underlying them.

S +AE
k2−→ EAS (2.3)

The allostery enzyme-substrate complex denoted as EAS, emerges as the substrate binds with
the allosteric enzyme EA, where k2 characterizes the rate constant of the reaction.

EAS
k5−→ E + P (2.4)

In the catalytic cycle, the final step involves the liberation of the product P, where k5 signifies
the rate constant governing this release process. This pivotal stage denotes the culmination of
the enzymatic reaction, marking the completion of the catalytic cycle. The mathematical model
considering the above allosteric activity is developed as [5]:

Ds
d2s(x)

dx2 = v(s, p) (2.5)

Dp
d2p(x)

dx2 = −v(s, p), 0 ≤ x ≤ p (2.6)

where,

v(s, p) =
E0s(k2ka + k5s)

kmka + kas+ s2 (2.7)

with the following the boundary conditions:
when x = 0

s′(x) = 0, p(x) = 0 (2.8)
when x = d

s(x) = s0, p(x) = 0 (2.9)
The model presupposes that the substrate doesn’t experience any reactions involving electrons
and that the result displays electroactivity. The following is the expression for the biosensor’s
current density:

Ψ = neFDp
dp

dx

∣∣∣∣
x=0

(2.10)

By using the dimensionless parameters indicated below in, Eqs. (2.5) and (2.6) are rendered
dimensionless:

S(χ) =
s(x)

s0
, P (x) =

p(x)

s0
, χ =

x

d
, ϕ2

1 =
d2E0k2

Dskm
(2.11)

ϕ2
2 =

d2E0k2

Dpkm
, α =

s0k5

k2ka
, β =

s0

km
, γ =

s2
0

kmka
, η =

km
s0

(2.12)

The concentrations of substrate and product is denoted by S and P, respectively, are dimension-
less, and the reaction diffusion parameters, or Thiele modules, are indicated by the values ϕ2

1 and
ϕ2

2. χ represents the dimensionless distance, while the saturation parameters are denoted by α,
β, and γ. The following describes a system of dimensionless form that represents the non-linear
reaction diffusion Eqs. (2.5) and (2.6).

d2S(χ)

dχ2 = ϕ2
1

S + αS2

1 + βS + γS2 (2.13)

d2P (χ)

dχ2 = −ϕ2
2

S + αS2

1 + βS + γS2 (2.14)

with the dimensionless boundary conditions are as follow:
when χ = 0

S′(0) = 0, P (0) = 0 (2.15)
when χ = 1

S(1) = 1, P (1) = 0 (2.16)
and the dimensionless current is as follows:

Ψ =
I

neFDp

d

s0
=
dP

dχ

∣∣∣∣
x=0

(2.17)
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3 Substrate and product concentrations

In addressing the challenges associated with obtaining analytical solutions for nonlinear sys-
tems, researchers go with approximate analytical methods over numerical ones due to the lat-
ter’s notable drawbacks, such as issues related to numerical stability and the intricate task of
parameter adjustment to align with the numerical data. Analytical solutions are favored for
their ability to offer deeper insights into the impact of model parameters. Over the past four
decades, numerous reliable semi-analytical methods have emerged, proving successful in ap-
proximate nonlinear models across various scientific domains. Notable methods include HPM
[13, 14, 15, 16, 17], Variational Iteration Method [18, 19, 20], Homotopy Analysis Method
[21, 22, 23], TSM [24, 25, 26], ADM [12, 27] and [28, 29, 30] and AGM [31, 32]. In this article,
we applied the AGM for desiring the expressions of substrate and product.

3.1 Approximate analytical expressions using the Akbari-Ganji mathod(AGM)

The solution of substrate and product concentrations by Akbari-Ganji method is obtained as (see
appendix B):

S(χ) =
cosh(mχ)
cosh(m)

(3.1)

where

m =

√
ϕ2

1(1 + α)

1 + β + γ
(3.2)

Eqn. (3.2) is obtained by using Eqn. (B3) with coshm ≈ 1 (since for smaller value of m,
coshm ≈ 1)
The relation between S(χ) and P(χ) (see appendix A) is as follows:

P (χ) =
ϕ2

2

ϕ2
1
[(1 − sech(m))χ+ sech(m)− cosh(mχ) sech(m)] (3.3)

From Eqn. (3.4), we have derived the dimensionless current as follows:

Ψ =
I

neFDp

[
d

s0

]
=
ϕ2

2

ϕ2
1

(
1 − 1

cosh(m)

)
(3.4)

and the current in its dimension form is

Ψ =
neFs0DsDp

d
(1 − cosh(κ)) (3.5)

where

κ =

√
d2E0(k2ka + s0k5)

Ds(kmka + s0ka + s2
0)

(3.6)

3.2 Biosensor Sensitivity

One of the most pivotal attribute of the amperometric biosensor is its sensitivity. It is defined
as the change of biosensor maximal current rate with respect to the bulk substrate concentration
s0 in the enzyme membrane layer. The analytical expression of the biosensor sensitivity can be
obtained from the current equation Eq. (3.5) as follows:

BS =
∂Ψ(s0)

∂s0

s0

Ψ(s0)
=

(−k2k
2
a + (−2k2s0 + k5km)ka − k5s

2
0)d k2 sinh(κ)d2

2κDs cosh(κ)(cosh(κ)− 1)((km + s0)ka + s2
0)

2
(3.7)
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3.3 Biosensor resistance

To understand the response of membrane-based biosensors, one must grasp the significance of
fluctuations in membrane thickness. In order to evaluate this effect, the gradient of the steady-
state biosensor current with respect to the thickness of the enzyme layer d is used to construct
the biosensor normalized dimensionless resistance BR. This idea is especially important for
predicting the impact of changes in membrane thickness on the biosensor response.The constant-
state biosensor current, or I(d), at the enzyme layer thickness of d is computed here.

BR =
∂Ψ

∂ d

d

Ψ(d)
= −

(
s0E0(k2k

2
a + (2k2s0 − k5km)ka + k5s

2
0) sinh(κ)

2κDs cosh(κ)(cosh(κ)− 1)((km + s0)ka + s2
0)

)
(3.8)

4 Validation of analytical results

Using AGM the approximate analytical expressions of non-linear governing equations Eqs.
(2.13) and (2.14) with boundary conditions Eqs. (2.15) and (2.16) are obtained. The numer-
ical simulations are done using MATLAB software ODE45 and are compared with the AGM
solutions Eqs. (3.1) - (3.3). Fig. 1 and Fig. 2 and Table. 1 and Table. 2 represent the comparison
between numerical and AGM solutions. From the error percentage obtained in the table, it is
seen that the maximum error between the numerical and AGM for substrate is 0.05% and for the
product is 0.69%.

5 Result and Discussion

Figs. 1(a) - 1(c) represent the effect of various parameters on the dimensionless substrate con-
centration S(χ). From these figures, the concentration of substrate is an increasing function as it
increases as the dimensionless distance χ increases. Also, it increases as the values of the satura-
tion parameter β increase (Fig. 1(a)) but it is inversely proportional for the saturation parameter
α (Fig. 1(b)) and the Thiele modulus ϕ2

1 (Fig. 1(c)) as the values increase, the concentration
decreases, and it attains its uniform state when β ≥ 100, α ≤ 0.1, ϕ2

1 ≤ 0.1.
Figs. 2(a) - 2(c) represent the effect of various parameters on the dimensionless product

concentration P (χ). From the figures, it is seen that the concentration of product is increasing
with the increment in saturation parameter α (Fig. 2(a)) and the Thiele modulus ϕ2

2 (Fig. 2(c)),
and whereas it is an inverse function for the saturation parameter γ (Fig. 2(b)). The concentration
becomes uniform when the parameter values are ϕ2

2 ≤ 0.1, α ≤ 0.1, γ ≥ 100. It is observed
that the product increases gradually from χ = 0 and then attains its maximum at χ = 0.5 and
then gradually decreases to 0 at χ = 1.

Another most critical parameter is the biosensor current related to the electroactive material
flux. Eq. (3.4) represents the simple closed-form semi-analytical expression of the steady-state
current. Fig. 3 represents the current response for various values of the saturation parameters
α, β, γ. From these figures, it is noted that the Thiele modulus ϕ2

2 has the major impact on the
biosensor current, as its value increases current also increases.

5.1 Sensitivity

Sensitivity is another important characteristic that shows the detection capability of the amper-
ometric biosensor to the changes in the biological substance. Figs. 4(a) - 4(d) displays the
sensitivity BS plots of the biosensor with the enzyme allostery versus the bulk substrate concen-
trations for different parameter values of diffusion and kinetic parameters. It is evident from the
figures that sensitivity increases when there is an increase in parameters. When the bulk sub-
strate concentration s0 is 102, the sensitivity attains its lowest value zero and then progressively
rises to its maximum BS = 1 when s0 ≈ 106.

From Fig. 4, it is seen that the increase in values of the membrane thickness d (Fig. 4(a)), total
enzyme concentration E0 (Fig. 4(c)), and kinetic parameter k5 (Fig. 4(d)) shifts the sensitivity
curve to the right direction, whereas the increase in the diffusion parameters Ds, Dp (Fig. 4(b))
shifts the sensitivity curve to the left direction. The kinetic parameters km, k2, ka do not have a
considerable impact on the biosensor sensitivity.
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(a) (b)

(c)

Figure 1. S(χ) vs χ with the parameters ϕ2
1 = 0.4, ϕ2

2 = 0.5, α = 2, γ = 2 and β = 5, when
the saturation parameters are (1(a)) β = 1, β = 5 and β = 100 and for (1(b)) α = 0.1, α = 0.5
and α = 2 and (1(c)) Thiele modules is as ϕ2

1 = 0.1, ϕ2
1 = 0.4 and ϕ2

1 = 1 where ‘· · · ’ represent
the numerical solution and ■■■ represent the AGM solution.

5.2 Resistance

The resistance BR versus the membrane thickness d for different parameters is given in Fig. 5
and Fig. 6. It shows that the normalized resistance curves follow a recurring pattern. Accord-
ing to these findings, the resistance of the biosensor is inversely proportional to an increase in
membrane thickness d started; otherwise, the maximal and minimal resistance of the biosensor
are directly proportional to the Thiele modules. The range of BR is −1 to 1, and there is a non-
monotonic relationship between the biosensor current Ψ and the enzyme layer thickness d. The
thickness d has more impact to give a high response in the biosensor when BR is −1 to 1.

It is seen that the increase in values of diffusion parameters Ds, Dp and the bulk substrate
concentration s0 shift the resistance curve in the right direction. Whereas total enzyme con-
centration E0, kinetic parameters ks, k5, k2 shift resistance curve in opposite direction. The
Michaelis-Menten constant km doesn’t have a significant effect on the resistance of the biosen-
sor. Notably, biosensor resistance behavior is significantly altered when the biosensor moves
from a kinetics-limited state to a diffusion-controlled one. This change is especially noticeable
at moderate substrate concentrations.

5.3 Effective membrane thickness

By making use of Eq. (3.5), the approximate analytical values of the membrane thickness d
can be determined at when the steady-state current reaches its maximum for the given specific
parameters: E0, km, ka, k2, k5, s0, Ds, Dp. Eq. (3.5) can be written as

Ψ(d)

neF
=
s0DsDp

d
(1 − sech(κ)) (5.1)
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(a) (b)

(c)

Figure 2. S(χ) vs χ with the parameters ϕ2
1 = 0.4, ϕ2

2 = 0.5, α = 2, γ = 2 and β = 5, when
the saturation parameters are (2(a)) β = 1, β = 5 and β = 100, for (2(b)) α = 0.1, α = 0.5 and
α = 2 and (2(c)) Thiele modules is as ϕ2

2 = 0.1, ϕ2
2 = 0.4 and ϕ2

2 = 1 where ‘· · · ’ represent the
numerical solution and ■■■ represent the AGM solution.

by differentiating Eq.(5.1) with respect to d we obtain the following expression

∂Ψ(d)

∂d
=
neFDsDp

d

− cosh2(κ) + κ sinh(κ) + cosh(κ)
cosh2(κ)

(5.2)

and we are getting the thickness of the current attains zero

− cosh2(κ) + cosh(κ) + κ sinh(κ) = 0 (5.3)

Numerical solution of Eq. (5.3) yield a unique value of κmax ≈ 1.5055. Consequently, leading
to the membrane thickness d at which the maximum current Ψ is attained, where

dmax = κmax

√
Ds(kmka + s0ka + s2

0)

d2E0(k2ka + s0k5)
= 5.8572µm (5.4)

at E0 = 50µm/s, km = 10µm, ka = 10µm, k2 = 100µm, k5 = 100µm, s0 = 100µm, Ds =
Dp = 300µm2/s.

6 Conclusion

A mathematical model of amperometric biosensors with enzyme allostery has been successfully
investigated. Using the AGM for substrate and product concentrations. In order to achieve
a satisfying outcome, the system’s numerical solution is also generated using the MATLAB
software and compared with our approximate analytical expression for all parameters and found
the obtained results are satisfactory.



206 K. Jegan, M. Mallikarjuna and R. Senthamarai

(a) (b)

(c)

Figure 3. Normalized current ψ saturation parameters (3(a)) α when β = 5, γ = 2; (3(b)) β
when α = 2, γ = 2 and (3(c)) γ when α = 2, β = 5 for different values is ϕ2

2 , where‘· · · ’
represent the numerical solution and ■■■ represent the AGM solution.

Additionally, the effective thickness of the enzyme membrane layer is examined, and the
semi-analytical expressions for biosensor current, sensitivity, and resistance are also developed.
The biosensor current is directly impacted by the diffusion parameter ϕ2

2; as it rises, so does the
biosensor current.

At membrane thickness dmax = κmax

√
Ds(kmka + s0ka + s2

0)/d
2E0(k2ka + s0k5), the max-

imum current is attained. The experimental scientists can get the given theoretical results useful
in improving their comprehension and optimizing the biosensor to achieve a better amperometric
response.

Appendix A: Relation between substrate and product Concentration

Now we add the Eq.(2.13) and Eq.(2.14)

d2S(χ)

dχ2 +
d2P (χ)

dχ2 = 0 (.1)

let integrate twice Eq.(.1),we have

S(χ)

ϕ2
1

+
P (χ)

ϕ2
2

= D1χ+D2 (.2)

P (χ) = ϕ2
2

[
D1χ+D2 −

S(χ)

ϕ2
1

]
(.3)

The substrate solution at χ = 0 from Eq. (2.15), we have:

0 = ϕ2
2

[
D2 −

S(0))
ϕ2

1

]
(.4)
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(a) (b)

(c) (d)

Figure 4. Sensitivity Eq.(3.7) vs bulk substrate concentration s0 with the parameters Ds =
Dp = 300µm2/s, d = 100µm2/s, km = 10µm, k2 = 10µm, E0 = 30µm/s, ka = 10µm/s,
k5 = 10µm/s and for different parameter values (4(a)) enzyme membrane layer thickness d
(4(b)) diffusion coefficients of substrate and product DS , DP (4(c)) total enzyme concentrations
E0 (4(d)) kinetic parameter k5.

D2 =
S(0)
ϕ2

1
(.5)

Substitute the Eq. (.5) in Eq. (.3), we get:

P (χ) = ϕ2
2

[
D1χ+

S(0)
ϕ2

1
− S(χ)

ϕ2
1

]
(.6)

apply the Eq. (2.16) in Eq. (.6), we get:

0 = ϕ2
2

[
D1 +

S(0)
ϕ2

1
− 1
ϕ2

1

]
(.7)

D1 =
1 − S(0)

ϕ2
1

(.8)

substitute Eq. (.8) and Eq. (.5) in Eq. (.6) we obtain:

P (χ) = ϕ2
2

[(
1 − S(0)

ϕ2
1

)
χ+

S(0)
ϕ2

1
− S(χ)

ϕ2
1

]
(.9)

Appendix B: Analytical expression of substrate and product concentrations
by AGM

Let us assume that the substrate concentration as:

S(χ) = A cosh(mχ) +B sinh(mχ) (B1)
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(a) (b)

(c)

Figure 5. Resistance Eq.(3.8) vs enzyme membrane layer thickness dµm with the parameters
Ds = Dp = 100µm2/s, s0 = 100,km = 10, k2 = 100, E0 = 1µm/s, ka = 10, k2 = 10 and for
different parameter values of (5(a)) diffusion coefficients of substrate and product Ds, Dp (5(b))
total enzyme concentrations E0 (5(c)) kinetic parameter ka.

where B = 0 and A = 1
cosh(m) are obtained by applying boundary conditions Eq. (2.15) and

Eq. (2.16) to the above equation. By changing the values of A and B in Eq. (B1), we obtain the
solution of S(χ) as Eq. (3.1).
and by changing the governing equation Eq. (2.13) to Eq. (3.1), we obtain:

m2 cosh(mχ)
coshm

=

(
cosh(mχ)
cosh(m) +

(
cosh(mχ)
cosh(m)

)2
)

1 + β cosh(mχ)
cosh(m) + γ

(
cosh(mχ)
cosh(m)

)2 (B2)

By solving the above equation, we get:

m2 =
ϕ2

1(coshm+ α) coshm
cosh2 m+ β coshm+ γ

(B3)

Let apply the boundary condition Eq. (2.15) in Eq.(3.1),we get:

S(0) =
1

cosh(m)
(B4)

Substituting the S(χ) and S(0) in the equation Eq.(.9), the concentration of product equation P(χ)
Eq.(3.3) as obtained as the dimensionless current equation Eq.(3.4).
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(a) (b)

(c)

Figure 6. Resistance Eq.(3.8) vs enzyme membrane layer thickness dµm with the parameters
Ds = Dp = 100µm2/s, s0 = 100, km = 10, k2 = 100, E0 = 1µm/s, ka = 10, k5 = 10 and for
different parameter values of (6(a)) kinetic parameter k5 (6(b)) kinetic parameter k2 (6(c)) bulk
substrate concentration s0.

Appendix C: Nomeclature

Symbol name of symbol Unit
s Substrate’s Concentration µM

p Product’s Concentration µM

s0 Substrate’s Concentration at x = d µM

km Constant of Michaelis-menten µM

ka, k2, k5 Constants of reaction rate µM

E0 Concentration of all Enzymes µM/s

d Enzyme layer thickness µm

F Faraday’s constant C/mol

Ds The substrate’s diffusion coefficient µm2/s

Dp The product’s diffusion coefficient µm2/s

Ψ Current density µA/cm2

x Distance cm
ne Number of electrons take part in reaction None
S Concentration of dimensionless substrate None
P Concentration of dimensionless product None
χ Distance without dimensions None
ϕ2

1 Substrate’s diffusion parameter None
ϕ2

2 Product’s diffusion parameter None
α Parameter of saturation None
β Parameter of saturation None
γ Parameter of saturation None
BS Biosensor’s Sensitivity None
BR Biosensor’s Resistance None
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