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Abstract Partial differential equations (PDEs) serve as powerful tools for simulating and
mathematically modeling a diverse range of phenomena, including elastic behavior, fluid flows,
shallow water waves, epidemiology, biostatistics, gene mutation, and flow turbulence. It is not
always feasible to solve these problems analytically when they are mathematically described.
Therefore, it could be difficult for researchers to find analytical or exact solutions to these dif-
ferential equations. Due to the complexity of these differential equations, there are several ad-
vanced numerical methods that may be used to solve them. Among these methods, the differ-
ential quadrature method (DQM) stands out as a pivotal technique, demonstrating exceptional
effectiveness in obtaining numerical solutions for such differential equations. In this study, non-
linear Sine-Gordon (SG) equation is numerically solved using the exponential cubic B-spline
differential quadrature method. The accuracy and efficiency of this method are shown by the
findings, which are equivalent to those reported in the literature and close to exact solution. The
results, presented as figures and tables, are deemed positive. Additionally, this paper provides an
insightful discussion on the significant application of the SG equation in Josephson junctions.

1 Introduction

Partial differential equations (PDEs) plays an important role in understanding phenomena in sci-
ence and engineering. Researchers seek solutions to modeled PDEs through various analytical
and numerical approaches. However, it is not always feasible to solve the partial differential
equations using available analytical techniques to provide an exact solution. This is where nu-
merical approaches come into play, helping solve PDEs with the required accuracy. With the
advancement of technology, various options are available for obtaining numerical solutions to
differential equations using software such as MATLAB, Maple, and Mathematica. Researchers
continually work on modifying numerical schemes to provide solutions efficiently and accu-
rately. This paper presents one such attempt to modify a numerical technique. The work intro-
duces a scheme developed to find more accurate solutions for a well-known differential equation
using the exponential modified cubic B-spline basis function with the differential quadrature
method (DQM). DQM introduced by Richard Bellman in the 1970s [1, 2], is a highly efficient
numerical technique for solving differential equations, especially PDEs. Due to its efficiency
and accuracy, DQM has found widespread use in solving problems related to beam and plate vi-
brations, fluid flow, heat transfer, and other engineering applications [3, 4]. Its ability to handle
complex boundary conditions and provide accurate results with fewer computational resources
makes it a preferred method in many applications. Quan, Chang, and Shu [5] have made sig-
nificant contributions to the development and refinement of the DQM, enhancing its accuracy,
applicability, and efficiency in solving various engineering and scientific problems. In the early
stages of DQM, Quan and Chang [6] worked extensively on improving the weighting coeffi-
cients used in the method. Their work was particularly focused on enhancing the stability and
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precision of DQM when applied to complex boundary conditions. They also extended the ap-
plicability of DQM to a wider range of differential equations, including those with non-linear
terms. Their improvements helped in making the method more robust and reliable, particularly
for structural and mechanical engineering problems. Shu further extended the work by systemat-
ically developing the generalized DQM, which is an extension of the original DQM. Shu’s work
focused on the application of DQM to various fields, such as fluid mechanics, vibration anal-
ysis, and thermal problems. He contributed to making DQM more versatile by improving the
technique’s accuracy for higher-order derivatives and irregular grids. Shu’s contributions helped
establish DQM as a powerful tool in both academic research and industrial applications, enabling
the method to be used in the analysis of more complex systems. Together, their contributions
have significantly advanced the practical utility of DQM in solving complex partial differential
equations with high efficiency and precision [7, 8, 9, 10]. DQM has also been applied with
various basis functions, including exponential cubic B-splines to solve complex equations like
the Burgers equation, convection-diffusion equations, and the nonlinear Schrödinger equation,
among others [11, 12, 13, 14, 15, 16]. These advancements highlight DQM’s broad applicability
and efficiency in solving challenging PDEs across different scientific and engineering domains.
This demonstrates the broad applicability of DQM with different spline-based basis functions in
tackling complex PDEs across a wide range of fields.

1.1 Sine-Gordon (SG) equation

The SG equation, a second-order partial differential equation, is commonly used across var-
ious scientific and technical domains, including mechanical transmission systems, Josephson
junctions, and magnetic crystals. A significant characteristic of the SG equation is that its nu-
merical solutions reveal soliton behavior—localized waveforms that maintain their shape during
transmission [17]. It is also regarded as an extension of traditional Maxwell systems in optics,
providing improved insight into light behavior [18]. Additionally, the SG equation is often em-
ployed in geometrical analyses of solitons within canonical field theory, linking soliton velocity
with black hole temperature in the literature [19]. Another critical application of the SG equation
is in modeling fault dynamics in phenomena like strain waves and earthquakes [20]. This high-
lights its relevance in understanding seismic distortions in the Earth’s crust and provides insight
into the origin of natural defects. The kink-like form of the SG soliton solution is particularly
useful for exploring the underlying mechanics of these processes. One of the SG equation’s
most fascinating properties is that it supports soliton solutions, which act like particles due to
their localized, wave-like structure [21]. These solitons play a crucial role in various scientific
and engineering domains, particularly in Josephson junctions, a key application discussed in this
paper.

Applications of Solitons in Josephson Junctions

Solitons are waves that preserve their physical characteristics and velocity as they propagate
through a medium, and they have discovered applications across multiple areas of physics, such
as in the study of Josephson junctions. Josephson junctions are components made up of two
superconductors with a thin insulating barrier in between, allowing the flow of a supercurrent.
These solitons are essential for various applications, including advanced electronics, quantum
computing, and voltage standards. Below are some key applications of solitons in Josephson
junctions [21, 22, 23]:
Voltage Standards: Josephson junctions are crucial in the development of precise voltage stan-
dards, which are essential for calibrating voltage-measuring devices across various industries
like telecommunications, power grid management, and medical equipment. When exposed to
a microwave frequency, a Josephson junction generates a voltage proportional to the frequency,
known as the Josephson voltage. This highly stable and predictable voltage is used to create a
Josephson Voltage Standard (JVS), which provides a reliable reference voltage for calibration
and other purposes.
Voltage-Controlled Soliton Oscillators: Solitons in Josephson junctions can be used to gen-
erate stable microwave signals. By applying an external voltage, these solitons can oscillate at
specific frequencies, enabling the development of highly coherent oscillators.
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Digital Signal Processing: Josephson junctions allow for extremely fast digital signal process-
ing, which is particularly useful in applications like high-speed data transmission, radar, and
image processing.
High-Speed Communication: Since solitons can travel long distances without distortion, they
are ideal for transmitting data efficiently through Josephson junctions, offering significant ad-
vantages in high-speed communication technologies.
Magnetic Flux Quantization: Solitons also influence magnetic flux quantization in Josephson
junctions. As a soliton moves through the junction, it induces a phase shift in the superconduct-
ing order parameter, resulting in discrete quantized magnetic flux.
Quantum Computing: In this realm, solitons within Josephson junctions are being explored as
potential components for qubits. By controlling solitons with external voltages, they could serve
as building blocks for quantum information processing systems.
Superconductivity Research: Devices based on Josephson junctions are essential for study-
ing high-temperature superconducting materials and phase transitions. These junctions help
researchers understand the properties of layered superconductors, contributing to advancements
in superconducting technology.

Role of Josephson Junctions in Emerging Technologies

Josephson junctions play an increasingly significant role in advancing technology that impacts
everyday life. Below are some areas where Josephson junctions are making notable contribu-
tions [24, 25]:
Enhanced Efficiency in Electronics: Josephson junctions enable the creation of low-power,
high-speed electronics, improving energy efficiency and extending the battery life of modern
devices.
Improved Communication: By producing stable and accurate microwave signals, Josephson
junctions contribute to faster, more reliable communication systems, resulting in better data
transfer rates and connectivity.
Medical Imaging and Diagnostics: SQUIDs (Superconducting Quantum Interference Devices)
are employed in medical imaging technologies such as MRI, providing detailed internal images
and improving diagnostic accuracy.
Quantum Computing Innovations: Josephson junctions are fundamental components of su-
perconducting qubits, which hold promise for solving complex problems in fields like material
science, cryptography, and drug discovery through quantum computing.
High-Speed Data Processing: Josephson junctions are used in devices that facilitate ultrafast
data processing, benefiting applications such as video and image processing, ultimately leading
to more responsive technologies and enhanced productivity.
Josephson junctions continue to drive advancements in various technologies, from improving
electronic efficiency to fostering progress in quantum computing and medical diagnostics.

Advantages and Disadvantages of Solitons in Josephson Junctions

Advantages: Stability: Solitons in Josephson junctions are highly stable and can persist without
dissipating, making them valuable for applications in quantum computing and secure communi-
cation.
Nonlinear Properties: The nonlinear behavior of solitons allows them to interact in unique
ways, offering possibilities for signal modulation and information processing.
High-Speed Transmission: Solitons can propagate through Josephson junctions at high speeds
without losing shape, which is advantageous for data transmission in electronics.
Disadvantages: Challenging Generation: Creating solitons in Josephson junctions requires
precise control over parameters such as voltage and temperature, which can be difficult and
time-consuming.
Sensitivity to Noise: Solitons are susceptible to noise and environmental disturbances, which
can degrade their signal quality or cause them to dissipate.
Limited Commercial Applications: Although solitons in Josephson junctions show great promise,
their use remains confined to certain research areas, with limited commercial deployment so far,
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especially in fields like quantum computing and high-speed data transmission.
Overall, solitons in Josephson junctions offer exciting potential across multiple areas, but chal-
lenges related to their generation and stability must be addressed for broader practical applica-
tions.
The SG equation is given by:

utt + αut = βuxx + η(x) sin(x) (1.1)

initial conditions:

u(x, 0) = ϕ1(x)andut(x, 0) = ϕ2(x)

and values defined at the boundaries. where u = u(x, t) is a function of space x and time t. Due
to its rich mathematical structure, the SG equation is also widely studied for its soliton solutions,
integrability, and connections to other nonlinear models.
Applications:

• Josephson junctions in superconductivity, where it models the dynamics of magnetic flux
quanta.

• Nonlinear optics, where it describes the propagation of light in certain materials.

• Field theory in physics, particularly in models involving scalar fields and kink solutions in
particle theory.

• Mechanical systems such as the pendulum chain, where it governs the motion of coupled
pendulums under certain conditions.

Different analytical and numerical approaches have been used to solve the Sine-Gordon (SG)
problem and obtain its soliton solutions. These methods include the homotopy analysis method,
modified cubic B-spline collocation, Legendre spectral element method, and cubic B-spline
DQM, among others [26]- [38]. In this study, the focus is on applying the exponential modi-
fied cubic B-spline differential quadrature method (Expo-MCB-DQM) to numerically solve the
SG problem, a nonlinear PDE. The structure of this paper is as follows: The organisation of
this paper is as follows: Section 2 presents the numerical approach for constructing exponential
cubic B-splines using the differential quadrature method. In Section 3, applies this method to
solve numerical SG equation problems to assess its accuracy and effectiveness. Lastly, Section
4 discusses the results and key conclusions.

1.2 Numerical Scheme

Expo-MCB-DQM

DQM is a numerical technique developed to approximate the derivatives of a function by ex-
pressing them as weighted sums of function values at discrete points within a given domain. The
origins of DQM date back to the late 1970s, when it was first introduced by Richard Bellman
and his colleagues. It was inspired by the concept of quadrature, which involves approximating
integrals using weighted sums, and extended this idea to the calculation of derivatives. Bell-
man, a mathematician known for his work in dynamic programming, saw the potential in us-
ing quadrature-like techniques to solve differential equations efficiently. DQM is based on the
premise that the derivative at any given point in a domain can be represented as a linear combi-
nation of the function’s values at all grid points within that domain. The accuracy of the method
depends on determining appropriate weighting coefficients, which are influenced by the spatial
distribution of the grid points [39]. These coefficients allow DQM to achieve high accuracy,
even with a relatively small number of points, making it computationally efficient compared to
traditional methods. Over the years, DQM has been refined and extended to handle various types
of boundary conditions and more complex problems [40]. Its ability to produce accurate results
with fewer grid points than methods like finite difference or finite element methods has made it a
popular choice for problems requiring both precision and computational efficiency [41]. Here’s
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a step-by-step explanation of how the DQM is applied using exponential cubic B-splines to ap-
proximate derivatives and solve differential equations [42]
Step 1: Domain Discretization
The solution domain [a, b] is divided into a series of discrete grid points, denoted as a = x1 <
x2 < · · · < xN = b. These grid points serve as the locations where the function and its deriva-
tives will be approximated.

Step 2: Function Representation
Assuming the function u(x) is sufficiently smooth over the domain, the derivative of the function
at each grid point xi is approximated as a linear combination of function values at all grid points.
This is done using the following general DQM formulation:

d(r)u

dx(r)

∣∣∣∣
xi

=
N∑
j=1

p
(r)
i,ju(xj), i = 1, 2, . . . , N, r = 1, 2, . . . , N − 1 (1.2)

Here, p(r)i,j are the weighting coefficients that need to be determined, r is the order of the deriva-
tive, and N is the number of grid points.

Step 3: Choosing Basis Functions
In this method, third-degree exponential cubic B-splines are selected as the basis functions to
determine the weighting coefficients. These spline functions offer smooth approximations and
are especially effective for complex boundary conditions.

Step 4: Constructing Exponential B-Spline Functions
The exponential cubic B-spline functions Cm(x) are constructed over sub-intervals of the do-
main. These splines are defined piecewise, with specific expressions for different segments of
the interval, ensuring smoothness and continuity across the domain.

Step 5: Computing Spline Derivatives
The values and derivatives of the spline functions at each grid point xi are computed. This
helps in approximating the function’s derivative at these points, which will be used in the DQM
formulation.

Step 6: Modifying Spline Functions
To eliminate extra points introduced by the spline formulation, modified versions of the exponen-
tial cubic B-splines are used. These modified functions Gk(x) are calculated at the grid points,
ensuring that the total number of points remains manageable.

Step 7: Approximating First-Order Derivatives
With the modified splines in place, the first-order derivative at each point is approximated using
the DQM equation:

G′
k(xi) =

N∑
j=1

p
(1)
i,jGk(xj), for i = 1, 2, . . . , N, k = 1, 2, . . . , N. (1.3)

Step 8: Solving System of Equations
The resulting system of equations, which approximates the spatial derivatives, is solved using
MATLAB or another computational tool. The goal is to find the weighting coefficients p

(r)
i,j ,

which are essential for the numerical solution.
Step 9: Converting to Ordinary Differential Equations (ODEs)

Once the DQM-based approximations are in place, the spatial derivatives are replaced with the
corresponding expressions using the spline basis functions. This transforms the original PDE
into an ODE.

Step 10: Solving the ODE System
The final ODE system is solved numerically employing the reliable and stability-preserving
Runge-Kutta (SSP-RK43) technique [43], which ensures stability and precision across time.
This method is particularly suitable for handling stiff ODEs and guarantees reliable results.

2 Implementation of Scheme

The results are compared to exact solutions and previously proposed numerical schemes in order
to show the accuracy of the numerical method that is used in this paper. This research use
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different error conditions to evaluate the effectiveness of the proposed method. Some of the key
formulas used to calculate numerical errors include:

L∞ = max (|uexact(xi, t)− unumerical(xi, t)|) , (2.1)

L2 =

√√√√h

N∑
i=1

|uexact(xi, t)− unumerical(xi, t)|2, (2.2)

RMS =

√√√√ 1
N

N∑
i=1

|uexact(xi, t)− unumerical(xi, t)|2. (2.3)

The exact solution uexact and the numerical solution unumerical are compared to assess the accuracy
of the proposed method. The number of partitions of the domain is denoted by N .

In an iterative numerical method, the rate of convergence p indicates the rate at which the
iteration approaches the exact solution as the number of iterations increases. The rate of conver-
gence of the numerical method is calculated using the following formula [40]:

p ≈
log

(
EN

E2N

)
log

( 2N
N

) (2.4)

Where EN and E2N are the L∞ errors with the number of partitions as N and 2N , respec-
tively.

The SG equation has been numerically solved for three different cases to verify the accuracy
and effectiveness of the proposed method by calculating the errors.

Example 1

Consider the SG equation (1) within the domain x ∈ [−3, 3] with parameters α = 0, β = 1, and
η(x) = −1, and the following initial conditions:

ϕ1(x) = 4 tan−1 (exp(γx))

and

ϕ2(x) =
−4γ exp(γx)
1 + exp(2γx)

The exact solution is provided, and the boundary conditions are derived from it:

u(x, t) = 4 tan−1 (exp(γ(x− 0.5t)))

Here, γ is a parameter that depends on the speed of the solitary wave, given by:

γ =
1√

1 − c2

The computations are performed with parameters c = 0.5, k = 0.0001, a spatial step size
of h = 0.04, and N = 151 node points. The results indicate that the proposed method is both
accurate and comparable to those previously reported in the literature for ϵ = 0.5. Error values
are listed in Table 1, where they are benchmarked against the findings from studies [30], [35] to
confirm the method’s validity. Figure 1 provides a visual comparison of the exact and numerical
solutions over time, highlighting the close match between them.

Example 2

Consider the SG equation (1) within the domain x ∈ [−20, 20] with parameters α = 0, β = 1,
and η(x) = −1, and the following initial conditions:
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Table 1. Comparison of error values in the solution for Example 1.
- 0.25 0.50 0.75 1.0

Present Results
L2 6.4669 × 10−6 8.6894 × 10−6 9.9925 × 10−6 1.0807 × 10−5

L∞ 1.3759 × 10−5 1.4149 × 10−5 1.4242 × 10−5 1.4056 × 10−5

RMS 2.1273 × 10−7 2.8584 × 10−7 3.2870 × 10−7 3.5549 × 10−7

Mittal and Bhatia [30]
L2 3.66 × 10−5 9.00 × 10−5 1.60 × 10−4 2.27 × 10−4

L∞ 4.90 × 10−5 7.55 × 10−5 1.43 × 10−4 2.10 × 10−4

Shukla and Tamsir [35]
L2 5.67 × 10−6 8.39 × 10−6 1.05 × 10−5 1.24 × 10−5

L∞ 9.61 × 10−6 1.10 × 10−5 1.26 × 10−5 1.44 × 10−5

Figure 1. Graphical representation of Example 1 at time intervals t=0.25, 0.5, 0.75, and 1.

ϕ1(x) = 4 tan−1 (exp(γx)) , (2.5)

ϕ2(x) =
−4γc exp(γx)
1 + exp(2γx)

. (2.6)

The exact solution is provided, and the boundary conditions are derived from it:

u(x, t) = 4 tan−1 (exp (γ (x− ct))) (2.7)

Here, γ is a parameter that depends on the speed of the solitary wave, given by:

γ =
1√

1 − c2
(2.8)

The computations are performed with parameters c = 0.5, k = 0.01, and N = 501 node
points. The results indicate that the proposed method is both accurate and comparable to those
previously reported in the literature for ϵ = 0.01.

Error values are listed in Table 2, where they are benchmarked against the findings from
study [38] to confirm the method’s validity. Figure 2 provides a visual comparison of the exact
and numerical solutions over time, highlighting the close match between them.

Table 2. Comparison of error values in the solution for Example 2.
0.25 0.50 0.75 1.0 2.0 5.0 10.0 15.0 20.0

Present Results
L2 1.1209 × 10−7 3.5654 × 10−7 5.6832 × 10−7 7.0289 × 10−7 9.9756 × 10−7 1.6328 × 10−6 3.2190 × 10−6 5.2748 × 10−6 7.8827 × 10−6

L∞ 1.2617 × 10−7 3.9927 × 10−7 6.3866 × 10−7 8.2197 × 10−7 1.1835 × 10−6 1.4574 × 10−6 2.7674 × 10−6 4.2855 × 10−6 6.1400 × 10−6

RMS 1.7688 × 10−8 5.6261 × 10−8 8.9680 × 10−8 1.1092 × 10−7 1.5741 × 10−7 2.5765 × 10−7 5.0795 × 10−7 8.3235 × 10−7 1.2439 × 10−6

Shiralizadeh et al. [38]
L2 2.4100 × 10−4 3.4300 × 10−4 4.1281 × 10−4 4.6189 × 10−4 5.1809 × 10−4 4.3038 × 10−4 5.1966 × 10−4 6.5199 × 10−4 8.4070 × 10−4

L∞ 1.1894 × 10−4 1.2227 × 10−4 1.2225 × 10−4 1.2046 × 10−4 1.1437 × 10−4 1.3423 × 10−4 1.7801 × 10−4 2.3543 × 10−4 3.1339 × 10−4

RMS 1.0778 × 10−5 1.5339 × 10−5 1.8461 × 10−5 2.0657 × 10−5 2.3170 × 10−5 1.9247 × 10−5 2.3240 × 10−5 2.9158 × 10−5 3.7579 × 10−5

Example 3

Consider the SG equation (1) within the domain x ∈ [−10, 10] with parameters α = 0, β = 1,
and η(x) = −1, and the following initial conditions:
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Figure 2. Graphical representation of Example 2 at time intervals t=1, 5, 10, 15, and 20.

ϕ1(x) = 0, (2.9)

ϕ2(x) = 4 sech(x). (2.10)

The exact solution is provided, and the boundary conditions are derived from it:

u(x, t) = 4 tan−1 (sech(x)t) (2.11)

The computations are performed with parameters k = 0.01 and N = 401 node points. The
results indicate that the proposed approach is both accurate and comparable to those previously
reported in the literature for ϵ = 1.

Error values are listed in Table 3, where they are benchmarked against the findings from
study [38] to confirm the method’s validity. Table 4 shows the rate of convergence (ROC) of
the proposed method is calculated using the L∞ error norm for different time levels. Figure
3 provides a visual comparison of the exact and numerical solution over time, highlighting the
close match between them.

Table 3. Comparison of error values in the solution for Example 3.
0.25 0.50 0.75 1.0 2.0 5.0 10.0 15.0 20.0

Present Results
L2 1.9450 × 10−6 2.5475 × 10−6 2.9748 × 10−6 3.2777 × 10−6 3.6014 × 10−6 2.9577 × 10−6 4.0544 × 10−6 7.0675 × 10−6 1.1713 × 10−5

L∞ 3.6320 × 10−6 3.6320 × 10−6 3.6320 × 10−6 3.6320 × 10−6 3.6320 × 10−6 3.6320 × 10−6 3.6320 × 10−6 3.6320 × 10−6 5.6180 × 10−6

RMS 4.3383 × 10−7 5.6822 × 10−7 6.6354 × 10−7 7.3108 × 10−7 8.0328 × 10−7 6.5971 × 10−7 9.0432 × 10−7 1.5764 × 10−6 2.6126 × 10−6

Shiralizadeh et al. [38]
L2 1.4400 × 10−4 2.4339 × 10−4 3.0422 × 10−4 3.5484 × 10−4 6.7163 × 10−4 3.0000 × 10−3 1.2600 × 10−2 2.8900 × 10−2 5.1700 × 10−2

L∞ 3.0169 × 10−5 4.6806 × 10−5 5.1706 × 10−5 5.2994 × 10−5 7.8976 × 10−5 3.2159 × 10−4 1.4000 × 10−3 3.2000 × 10−3 5.8000 × 10−3

RMS 7.1908 × 10−6 1.2154 × 10−5 1.5192 × 10−5 1.7720 × 10−5 3.3540 × 10−5 1.4923 × 10−4 6.2974 × 10−4 1.4000 × 10−3 2.6000 × 10−3

Table 4. The ROC of numerical method with Example 3.
t = 1 t = 2 t = 5

N L∞ ROC L∞ ROC L∞ ROC
25 1.65 × 10−2 — 1.85 × 10−2 — 1.66 × 10−2 —
50 3.32 × 10−4 5.638675 6.27 × 10−4 4.883128 4.27 × 10−4 5.283404
100 2.53 × 10−5 3.716241 4.15 × 10−5 3.916740 2.96 × 10−5 3.852788
200 3.63 × 10−6 2.797904 3.63 × 10−6 3.514449 3.63 × 10−6 3.024371

Figure 3. Graphical representation of Example 3 at time intervals t=1, 5, 10, 15, and 20.
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3 Conclusion

Ensuring accurate voltage measurements is crucial for various applications like managing power
grids, telecommunications, and medical devices. Josephson junctions provide highly precise
voltage standards, ensuring reliability in measurements across different fields. Beyond this,
Josephson junctions have broad applications in quantum computing, sensing, and digital elec-
tronics. Ongoing research is exploring new ways to maximize their unique properties. Solitons,
significant in studying Josephson junctions, hold promise for future electronic advancements.
The SG equation, widely applicable in physics and mathematics, remains an active area of re-
search. In this study, we employed the DQM to numerically solve the nonlinear SG equation.
We specifically utilized the exponential cubic B-spline basis function to compute the weighting
coefficients in this approach. The accuracy and proficiency of the exponential cubic B-spline
differential quadrature method have been verified using various error norms. This validation
indicates that the numerical solutions obtained using this method closely align with the exact
solutions, surpassing the accuracy of previously published numerical methods. These positive
outcomes suggest the potential applicability of the technique to similar nonlinear partial dif-
ferential equations, showcasing its adaptability in addressing complex problems. This research
contributes to advancing our understanding of solitons in Josephson junctions and provides a
robust numerical approach for studying nonlinear equations in various scientific fields.
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