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Abstract The current study investigates Rayleigh wave propagation in micropolar thermoe-
lastic materials under the influence of memory-dependent heat transfer and impedance bound-
ary conditions. Rayleigh waves, also known as ground roll, are very useful for diagnosing and
detecting surface defects in materials, and micropolar thermoelastic materials are used in the
development of smart materials and sensors. The frequency equation of Rayleigh waves is ob-
tained analytically, and numerical computation has been used to analyze the impact of various
parameters. Some particular cases are mentioned to authenticate the results. The effects of key
factors like the time delay parameter, various kernels, and the impedance parameter on the wave
speed have been shown graphically. The velocity of Rayleigh waves in micropolar thermoelastic
material is notably impacted by the impedance parameter and memory-dependent heat transfer.

1 Introduction

Fractional order derivatives have recently been used in a number of studies to understand the
behavior and modeling of complex systems. Fractional order derivatives are especially helpful
in understanding the memory and hereditary properties of a system. Based on fractional deriva-
tives, Wang and Li [1] proposed a novel concept of derivative termed as memory-dependent
(MD) derivative, expressed in integral form as

Dχ(f(t)) =
1
χ

∫ t

t−χ

G(t− s)f ′(s)ds. (1.1)

Where G(t− s) represents a kernel function and χ is the delay time. The kernel function can be
conceptualized as the intensity of influence from past events on the current state. As available in
literature, the constant, linear, and quadratic forms of the kernel are taken as 1, [1− (t− s)/χ]1,
and [1−(t−s)/χ]2, respectively, which are useful to study the impact of the previous state on the
current state of the function. These functions should also satisfy the inequality 0 ≤ G(t− s) ≤ 1
for s ∈ [t−χ, t], and in the limiting case when χ→ 0 andG(t−s) = 1 in equation (1.1), the MD
derivative approaches the common derivative of the function. This type of derivative has recently
been applied in a number of fields such as materials science, control theory, solid mechanics,
and signal processing, where systems with complex dynamics may be better modeled using MD
derivatives rather than traditional derivatives. Recently, there are a number of research articles
[2, 3] and [7] utilize MD derivatives to address the problem of generalized thermoelasticity. The
studies [4]−[6] investigate wave propagation and damping by applying MD derivatives. Mon-
dal et al. [8] applied MD derivatives to study thermoelastic interaction in a thermoelastic rod.
Sarkar and Mondal [9, 10] solved a two-temperature problem using memory-dependent deriva-
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tives. Mondal and Othman [11] examined the effects of MD derivatives in piezo-thermoelastic
materials under three theories. Purkait et al. [13] studied an elasto-thermodiffusive problem
under the effects of memory-dependent heat transfer. The research articles [12], [14]−[16] can
be referred to for applications of MD derivatives in magneto-thermoelastic problems. .

Rayleigh waves represent a category of surface waves that propagate in close proximity to
the surface of solid materials, and these waves have many applications in seismology, non-
destructive testing techniques, and structural health monitoring. Rayleigh waves were first math-
ematically predicted by Lord Rayleigh [17]. Many researchers have explored the propagation of
these surface waves in micropolar thermoelastic solids. Micropolar thermoelastic materials are
a class of materials that exhibit both thermal and mechanical responses while also incorporating
microstructural effects. Eringen [18] proposed a mathematical formulation to study the defor-
mation in these types of materials, known as micropolar thermoelasticity theory. This theory has
garnered significant interest recently as it provides insights into the deformation characteristics
of solids that cannot be accurately modeled using conventional approaches. There are number of
investigations which studies wave propagation in micropolar materials such as, Rao and Reddy
[19] discussed the propagation of Rayleigh-type waves in a micropolar cylindrical system, pro-
viding insights into the wave characteristics in such a material. Kumar and Singh [20] explored
the behavior of wave propagation in a micropolar generalized thermoelastic body, incorporat-
ing the effects of stretch in the material system. The articles [21, 22] investigated Rayleigh wave
propagation in a micropolar elastic materials highlighting the unique aspects of wave prop-
agation in such materials. The papers [23]−[25] explored the micropolar characteristics of
materials under heating effects.

In most of the Rayleigh wave problems, the boundary conditions are assumed to be traction-
free surfaces where stresses diminish on the surface. There are few studies that used impedance
boundary (IB) conditions that are prescribed on the boundary. The areas of acoustics, elec-
tromagnetism, and seismology all heavily rely on these kinds of boundary conditions. When
Rayleigh waves propagate in a medium under IB conditions, the behavior of the waves can be
significantly affected. Tiersten [26] used impedance type conditions to study the problem of a
thin layer deposited on an elastic substrate. Malischewsky [27] modified “Tiersten’s conditions”
and expressed them in stress and displacement components to derive the frequency equation of
Rayleigh waves. Godoy et al. [28] demonstrated that surface waves exist in an elastic half-space
and derived the secular equation with IB conditions. There are some studies such [29]−[32]
which employed IB conditions to explore the Rayleigh waves in different types of materials. Re-
cently, the papers [33, 34] investigated Rayleigh waves under impedance boundary conditions
under non-local theory of elasticity.

In the current study, using memory-dependent heat transfer and IB conditions, Rayleigh
waves are analyzed in a micropolar thermoelastic half-space. An analytical method is employed
to derive the frequency equation of Rayleigh waves. Numerical computations have been carried
out by taking a particular material, and results are presented graphically. Analysis reveals that
both the delay time and kernel play crucial roles in determining the Rayleigh wave speed.

2 Governing Equations

The basic governing equations of motion of particles in an isotropic and homogeneous microp-
olar thermoelastic solid are given as [18]

σij = λµr,rδij + µ(ui,j + uj,i) +K(uj,i − ϵijrϕr)− νTδij , (2.1)

mij = αϕr,rδij + βϕi,j + γϕj,i, (2.2)

(µ+K)∇2u+ (λ+ µ)∇(∇ · u) +K∇× ϕ− ν∇T = ρ
∂2u

∂t2
, (2.3)

(α+ β + γ)∇(∇ · ϕ)− γ∇× (∇× ϕ) +K∇× u− 2Kϕ = ρj
∂2ϕ

∂t2
. (2.4)

A new heat conduction equation carrying the memory effects with time delay parameter χ is
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given as [?]

K∗∇2T =

(
ρC∗ ∂

∂t
T + νT0

∂

∂t
∇ · u

)
+
τ0

χ

[∫ t

t−χ

G(t− s)

(
ρC∗ ∂

2T

∂s2 + νT0
∂∇ · u
∂s2

)
ds

]
.

(2.5)
The meaning of symbols used in the above equations has been given in Table 1.

Symbol Meaning
σij Stress tensor
mij Couple stress tensor
δij Kronecker delta
u Displacement vector
ρ Density
j Microinertia
ϕ Microrotation vector
λ, µ Lame’s constants

α, β, γ,K Micropolar constants
αt Thermal expansion coefficient
T0, T Reference temperature of body, temperature change
τ0 Thermal relaxation time

ν = (3λ+ 2µ+K)αt Coupling constant

Table 1. Meanings of symbols used in governing equations.

To determine the general results representing all kernels, the function G(t− s) is considered
as:

G(t− s) = 1 − 2g
χ
(t− s) +

h2

χ2 (t− s)2

G(t− s) =


G1 = 1 g = 0, h = 0
G2 = 1 − (t−s)

χ g = 0, h = 1
2

G3 =
(

1 − (t−s)
χ

)2
g = 1, h = 1

3 Problem Formulation and Solution

Our analysis focuses on a micropolar thermoelastic half space that is both homogeneous and
isotropic in its undeformed state, at an initial constant temperature of T0. The origin is situated
at the surface of the plane, with the y-axis oriented towards the interior of the half-space. In
order to ensure that particles vibrating along a line parallel to the z-axis are equally displaced,
we assume that the wave propagates along the x-axis. As a result, all field values will not depend
on the z-coordinate. For a two-dimensional problem, we consider

u = (u, v, 0) and ϕ = (0, 0, ϕ). (3.1)

From equations (2.3), (2.4), and (3.1), we obtain:

(λ+ 2µ+K)
∂2u

∂x2 + (λ+ µ)
∂2v

∂x∂y
+ (µ+K)

∂2u

∂y2 +K
∂ϕ

∂y
− ν

∂T

∂x
= ρ

∂2u

∂t2
, (3.2)

(λ+ 2µ+K)
∂2v

∂y2 + (λ+ µ)
∂2u

∂x∂y
+ (µ+K)

∂2v

∂x2 +K
∂ϕ

∂x
− ν

∂T

∂y
= ρ

∂2v

∂t2
, (3.3)

γ

(
∂2ϕ

∂x2 +
∂2ϕ

∂y2

)
+K

(
∂v

∂x
− ∂u

∂y

)
− 2Kϕ = ρj

∂2ϕ

∂t2
. (3.4)
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Using Helmholtz’s theorem, the displacement components u and v can be expressed as

u =
∂ϕ1

∂x
+
∂ψ1

∂y
, v =

∂ϕ1

∂y
− ∂ψ1

∂x
. (3.5)

Where ϕ1 and ψ1 are potential functions.
Substituting equation (3.5) into equations (2.5) and (3.2)-(3.4), we obtain:

(λ+ 2µ+K)∇2ϕ1 − νT = ρ
∂2ϕ1

∂t2
, (3.6)

(µ+K)∇2ψ1 +Kϕ = ρ
∂2ψ1

∂t2
, (3.7)

γ∇2ϕ− 2Kϕ−K∇2ψ1 = ρj
∂2ϕ

∂t2
. (3.8)

Considering the surface wave solution for the equations (3.6)-(3.9) as

{ϕ1, ψ1, T, ϕ} = {ϕ̄1(y), ψ̄1(y), T̄ (y), ϕ̄(y)}eik(x−ct), (3.10)

where c denotes the phase velocity and k represents the wave number. It is assumed that c is
complex with Re(c) > 0.

Using equation (3.10) in (3.6)-(3.9), we get:[
d4

dy4 − Pq
d2

dy2 +Qq

] (
ϕ̄1(y), T̄ (y)

)
= 0, (3.11)

[
d4

dy4 − P
d2

dy2 +Q

] (
ψ̄1(y), ϕ̄(y)

)
= 0. (3.12)

where,

Pq = k2 − (1 +A2)

A1

(
ikc

τ∗

)
ηq + k2

(
1 − c2

c2
1

)
,

Qq = k2
(
k2 −

Aq
3

A1

)(
1 − c2

c2
1

)
− A2

A1

(
ik3c

τ∗

)
ηq, q = 1, 2, 3, 4

P = k2 − ω2ρj

γ
+

2K
γ

− K2

γ
(µ+K) + k2

(
1 − c2

c2
2

)
,

Q = k2
[(
k2 − ω2ρj

γ
+

2K
γ

)(
1 − c2

c2
2

)
− K2

γ
(µ+K)

]
,

c2
1 =

λ+ 2µ+K

ρ
, c2

2 =
µ+K

ρ
, τ∗ = τ0 +

i

ω
,

A1 =
K∗

ρC∗τ∗
, A2 =

ν2T0

ρ2c2
1C

∗ .

ηq =


η1 = 1 + τ0

χ

(
1 − eikcχ

)
, for G1

η3 = 1 + τ0
χ + τ0

χ2(ikc)

(
1 − eikcχ

)
, for G2

η4 = 1 + τ0
χ + 2τ0

χ2(ikc)
− 2τ0(1−eikcχ)

χ3(k2c2)
, for G3.

Using the conditions ϕ̄1(y), ψ̄1(y), T̄ (y), ϕ̄(y) → 0 as y → ∞, the general solution of equa-
tions (3.11) and (3.12) can be expressed as

ϕ1 =
(
R1e

−b1y +R2e
−b2y

)
eik(x−ct), (3.13)

T =
(
r1R1e

−b1y + r2R2e
−b2y

)
eik(x−ct), (3.14)

ψ1 =
(
R3e

−b3y +R4e
−b4y

)
eik(x−ct), (3.15)

ϕ =
(
r3R3e

−b3y + r4R4e
−b4y

)
eik(x−ct). (3.16)
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Where b1, b2 and b3, b4 are the roots of equations (3.11) and (3.12), respectively, and satisfy
the following conditions:

b2
1 + b2

2 = Pq, b2
1b

2
2 = Qq, (3.17a)

b2
3 + b2

4 = P, b2
3b

2
4 = Q. (3.17b)

The coefficients r1, r2, r3, and r4 are given by:

r1 =
k2

ν

[
(λ+ 2µ+K)

(
b2

1
k2 − 1

)
+ ρc2

]
, (3.18a)

r2 =
k2

ν

[
(λ+ 2µ+K)

(
b2

2
k2 − 1

)
+ ρc2

]
, (3.18b)

r3 =
k2(µ+K)

K

[
1 − c2

c2
2
−
b2

3
k2

]
, (3.18c)

r4 =
k2(µ+K)

K

[
1 − c2

c2
2
−
b2

4
k2

]
. (3.18d)

Here, R1, R2, R3, and R4 are arbitrary constants.

4 Derivation of Secular Equations

The boundary conditions at the surface y = 0 in terms of impedance parameters Zi (i = 1, 2, 3)
are taken as [26]:

σ21 + ωZ1u = 0,

σ22 + ωZ2ν = 0,

m23 + ωZ3ϕ = 0,

∂T

∂y
+ hT = 0. (4.1)

The parameters Zi are real-valued with dimensions of stress/length, and ω represents the
circular frequency. In thermal conditions, h → 0 corresponds to an insulated surface, and
h→ ∞ represents an isothermal surface.

Using equations (2.1), (2.2), (3.5), (3.13)–(3.16), and boundary conditions (4.1), we obtain
a system of four homogeneous equations in the unknowns R1, R2, R3, and R4. For a non-trivial
solution, the following frequency equation of Rayleigh waves is derived:

m3 [T1(l2n4 − n2l4)− T2(l1n4 − n1l4)] = m4 [T1(l2n3 − n2l3)− T2(l1n3 − n1l3)] . (4.2)

The parameters are defined as follows:

li = k

[
kV1Z

∗
1 − bi

(
2 +

K

µ

)]
, (i = 1, 2),

lj = kV1Z
∗
1 − k2 −

(
1 +

K

µ

)(
2b2

j − k2
(

1 − c2

c2
2

))
, (j = 3, 4),

nj = k

[(
2 +

K

µ

)
bj − V1Z

∗
2

]
, (j = 3, 4),

ni = k2
(

2 +
K

µ
− V 2

1

)
− kbiV1Z

∗
2 , (i = 1, 2),

mi = (µkV1Z
∗
3 − γbi)

[
1 − c2

c2
2
− b2

i

k2

]
, (i = 3, 4),
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Ti = bi

[(
2 +

λ+K

µ

)(
b2
i

k2 − 1
)
+ V 2

1

]
, (i = 1, 2) (for insulated boundary),

Ti =

[(
2 +

λ+K

µ

)(
b2
i

k2 − 1
)
+ V 2

1

]
, (i = 1, 2) (for isothermal boundary).

Here,

V1 =

√
ρc2

µ
, Z∗

i =
Zi√
ρµ
, (i = 1, 2, 3).

5 Particular Cases and Validation of Results

Case (i)

In the particular case when the kernel G(t− s) = 1 and χ→ 0, the operator Dχ(f(t)) becomes
the ordinary derivative as follows:

Dχ(f(t)) =
1
χ

∫ t

t−χ

f ′(s) ds =
f(t)− f(t− χ)

χ
→ f ′(t) as χ→ 0.

In this case, Pq and Qq are modified as:

Pq = k2
[

2 − c2

A1

(
1 +A2 +

A1

c2
1

)]
,

Qq =
k4

A1

[
c4

c2
1
+A1 − c2

(
1 +A2 +

A1

c2
1

)]
.

The equation (4.2) with these modified values of Pq and Qq becomes the dispersive rela-
tion governing Rayleigh waves in micropolar thermoelastic material, excluding MD derivatives.
These equations are in agreement with the solution derived by Kumar et al. [32].

Case (ii)

In the case where micropolar effects vanish (K = j = 0), we get:

c2
1 =

λ+ 2µ
ρ

, c2
2 =

µ

ρ
,

P = k2
(

1 − c2

c2
2

)
+ k2, Q = k4

(
1 − c2

c2
2

)
,

m3 = (µkV1Z
∗
3 − γb3)

[
1 − c2

c2
2
−
b2

3
k2

]
,

m4 = (µkV1Z
∗
3 − γb4)

[
1 − c2

c2
2
−
b2

4
k2

]
.

Using equations (3.17), in this particular case, we have:

b2
3 = k2

(
1 − c2

c2
2

)
, b2

4 = k2,

which implies that m3 = 0 and m4 will be non-zero. Substituting m3 = 0 and m4 into equation
(4.2), we obtain:

l3 (n1T2 − n2T1)− n3 (T2l1 − T1l2) = 0. (5.1)
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The above equation is the same dispersion relation for Rayleigh waves derived by Singh [31]
for thermoelastic materials. The parameters are defined as:

n1 = k2(2 − V 2
1 )− kb1V1Z

∗
2 , n2 = k2(2 − V 2

1 )− kb2V1Z
∗
2 ,

n3 = k(2b3 − V1Z
∗
2 ),

l1 = k (kV1Z
∗
1 − 2b1) , l2 = k (kV1Z

∗
1 − 2b2) ,

l3 = kV1Z
∗
1 − ω2

c2
2
.

For an insulated boundary:

T1 = b1

[(
2 +

λ

µ

)(
b2

1
k2 − 1

)
+ V 2

1

]
,

T2 = b2

[(
2 +

λ

µ

)(
b2

2
k2 − 1

)
+ V 2

1

]
.

For an isothermal surface:

T1 =

[(
2 +

λ

µ

)(
b2

1
k2 − 1

)
+ V 2

1

]
,

T2 =

[(
2 +

λ

µ

)(
b2

2
k2 − 1

)
+ V 2

1

]
.

Case (iii)

On taking Z∗
1 = Z∗

2 = Z∗
3 = 0 in equation (5.1), we derive the dispersion relation of Rayleigh

waves with ordinary stress-free boundary conditions.

Case (iv)

Further, by removing the thermal effects in equation (5.1), we obtain:(
2 − c2

c2
2

)2

= 4

√
1 − c2

c2
1

√
1 − c2

c2
2
. (5.2)

Equation (5.2) is the well-established secular equation of Rayleigh waves in the elastic half-
space.

6 Numerical Analysis and Discussions

Numerical calculations are performed to calculate the non-dimensional Rayleigh wave speed
in a micropolar thermoelastic material to demonstrate the theoretical findings. The pertinent
parameters of the aluminum epoxy material for numerical computation are outlined in Table 2
[35].

Considering c as a complex value with ℜ(c) = V ≥ 0 and V1 =
√

ρV 2

µ , the non-dimensional
Rayleigh wave speed V1 has been calculated. The impact of impedance parameters Z∗

1 , Z
∗
2 , Z

∗
3 ,

time delay χ, and kernels G1, G2, G3 on V1 with respect to non-dimensional wave number has
been scrutinized and presented graphically in Figures 1-3.

It has been observed that as the delay time increases, the wave speed decreases. Figures 2
and 3 show the effects of kernels G2 and G3. The decreasing effect of the memory-dependent
parameter is clearly visible in all cases.

Figures 4-6 describe the changes in Rayleigh wave speed with respect to impedance param-
eters Z∗

1 , Z
∗
2 , Z

∗
3 under thermally insulated and isothermal heat transfer conditions for kernel
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Table 2. Aluminum epoxy material parameters for numerical computation
Parameter Value

ρ 2.19 × 103 kg/m3

j 0.196 × 104 m2

λ 7.59 × 1010 N/m2

K∗ 0.492 × 102 W/m
µ 1.89 × 1010 N/m2

C∗ 1.89 × 1010 J/kg
α 0.01 × 106 N
τ0 0.5 × 10−10 s
β 0.015 × 106 N
T0 298 K
γ 0.268 × 106 N
αt 2.36 × 10−6 K−1

K 0.0149 × 1010 N/m2

Figure 1. Variation of V1 with wave number and time delay parameter for kernel G1.

Figure 2. Effect of kernel G2 on Rayleigh wave speed.
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Figure 3. Effect of kernel G3 on Rayleigh wave speed.

G3 (at a constant time delay parameter χ = 0.05 s). The variations in Rayleigh wave speed are
similar for thermally insulated and isothermal surfaces for impedance parameters Z∗

1 and Z∗
2 . It

is noticed that the wave speed decreases gradually. However, for impedance parameter Z∗
3 , the

Rayleigh wave speed remains constant as Z∗
3 increases. The wave speed is higher in the case of

isothermal conditions compared to insulated conditions, as shown in Figures 4-6.

Figure 4. Effect of Z∗
1 on Rayleigh wave speed for kernel G3.

Figure 7 illustrates the variation in Rayleigh wave speed with different wave numbers, de-
pending on impedance parameters Z∗

1 , Z
∗
2 , Z

∗
3 . The kernel used to generate the graph is G(t −

s) =
[
1 − t−s

χ

]2
, with the time delay parameter χ kept constant at 0.05 s.

7 Conclusion remarks

This study obtained the secular equation within the framework of memory-dependent heat trans-
fer for the propagation of Rayleigh waves in micropolar thermoelastic material under impedance
boundary (IB) conditions. The following conclusions can be drawn from this study:

• The wave speed is significantly influenced by different kernels.

• The time delay parameter has a decreasing effect on the wave speed.
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Figure 5. Effect of Z∗
2 on Rayleigh wave speed for kernel G3.

Figure 6. Effect of Z∗
3 on Rayleigh wave speed for kernel G3.

Figure 7. Variation of wave speed with different wave numbers and impedance parameters.

• The phase velocity is dispersive in nature, and its velocity decreases with an increase in
wave number.
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• The Rayleigh wave speed depends on the frequency and other parameters of the micropolar
thermoelastic material.

The study concludes that understanding Rayleigh waves in micropolar thermoelastic material
with time-delay memory-dependent derivatives can provide valuable insights for researchers
working on sensors, structural health monitoring, and seismology, particularly for experimental
verification.
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