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Abstract The primary objective of this paper is to investigate the geometric properties of
lightlike hypersurfaces (E, h̄) within the framework of the Sasaki-like statistical space form
(Ē(c)), where c represents the constant curvature of the ambient space. Lightlike hypersur-
faces, which are hypersurfaces with degenerate metrics, play a significant role in the study of
Lorentzian and semi-Riemannian geometry, and their behavior within statistical manifolds is a
subject of particular interest.

To this end, we derive and analyze the Gauss and Codazzi equations for lightlike hyper-
surfaces (E, h̄) in the context of the Sasaki-like statistical manifold (Ē, h). These classical
differential geometric formulae allow us to explore the intrinsic and extrinsic geometry of the
hypersurfaces and provide insights into the curvature relations between the hypersurface and
the ambient manifold. Furthermore, we demonstrate that it is not possible to construct a light-
like hypersurface of (Ē(c)) that admits both a parallel screen distribution and a parallel second
fundamental form. This result imposes a strong geometric constraint on the existence of such hy-
persurfaces, implying that certain desirable geometric structures cannot be realized under these
conditions. Finally, we prove that the existence of a lightlike hypersurface in (Ē(c)) is only
possible when the curvature c takes the specific values c = 1 or c = 5. For any other values of c,
lightlike hypersurfaces cannot exist, thereby establishing a critical link between the curvature of
the ambient statistical space form and the geometric properties of lightlike hypersurfaces.

1 Introduction

In differential geometry, the theory of lightlike hypersurfaces in pseudo-Riemannian manifolds is
a highly significant and intriguing area of research. This field has garnered considerable attention
due to the unique and challenging nature of lightlike submanifolds compared to other types of
submanifolds such as timelike, spacelike, and degenerate submanifolds. The classification of
these submanifolds depends on the structure of the induced metric on the tangent space (TP Ē)
of the ambient manifold.

In the case of lightlike hypersurfaces, the induced metric is degenerate, which makes their
study substantially different from and more complex than the non-degenerate theory of semi-
Riemannian manifolds. A crucial distinction between lightlike hypersurfaces and non-degenerate
hypersurfaces is that, for lightlike hypersurfaces, the normal vector bundle and the tangent vector
bundle have a non-trivial intersection. Moreover, in the case of a degenerate metric on a hyper-
surface, the tangent bundle contains the normal vector bundle, adding to the complexity of the
geometry.

The theory of lightlike submanifolds has been extensively studied in the context of mathe-
matical physics and general relativity, particularly due to its applications in the study of event
horizons of black holes, such as the Kruskal and Kerr black holes. The concept of degenerate,
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particularly lightlike-geometry, in semi-Riemannian manifolds was introduced by Duggal and
Bejancu in 1966 [9], where they presented an extrinsic approach to differential geometry. This
breakthrough sparked widespread interest among researchers in exploring the lightlike geometry
of semi-Riemannian manifolds.

Over time, several authors have contributed to the study of lightlike hypersurfaces in pseudo-
Riemannian manifolds. For further reading, refer to [4], [18], and [11], among other references.
Notably, N. Aktan [2] investigated the lightlike hypersurfaces of indefinite Sasakian space forms
and indefinite Kenmotsu space forms [1], proving the non-existence of lightlike hypersurfaces in
these specific manifolds.

On the other hand, the geometry of statistical manifolds lies at the intersection of several areas
of research, including Information Geometry (IG), Affine Differential Geometry, and Hessian
Geometry. This interdisciplinary nature of statistical manifold theory has opened new avenues
for research, blending concepts from differential geometry with those from information theory
and statistics. Deeper under-standings and geometrical approaches to families of statistical mod-
els are provided by IG and is related to study the statistical approach in this field differential
geometry.

Information geometry (IG), found large number of applications in finance, chemistry, physics
and biology. The main aim of IG is to use different types of geometrical tools, to acquire in-
formation from different types of statistical models. Event Horizon Telescope (EHT), in April
(2019) by taking use of deep learning algorithms, released the shadow of black hole and is the
direct resulting evidence of existence of theory of general relativity and black holes.

Amari in (1985), introduced the concept of statistical manifolds [3] and proved that in terms
of geometrical properties of Riemannian manifolds, there exists statistical relationship between
families of probability densities. This study shows intrinsic properties of Riemannian manifolds.
In (1989), Vos [27] gave the notation and introduced the concept of statistical submanifolds in
differential geometry. Oguzhan Bahadir and Mukut Mani Tripathi [6] conducted a significant
study on the lightlike hypersurfaces of statistical manifolds, where they demonstrated that the
tangent bundle S(TE) possesses a canonical statistical structure. Their work revealed that a
lightlike hypersurface of a statistical manifold does not inherit the statistical properties with
respect to the induced connections, thereby presenting a notable divergence from the typical
behavior of non-lightlike hypersurfaces in such settings.

Later, Oguzhan Bahadir [5] expanded on this research by exploring lightlike hypersurfaces
in indefinite Sasakian statistical manifolds. He established certain relationships between the
induced geometrical objects and dual connections on a lightlike hypersurface within an indefinite
Sasakian manifold, offering new insights into the interaction between the statistical structure and
the geometry of such hypersurfaces.

Vandana Rani and Jasleen Kaur [23] introduced the study of lightlike hypersurfaces in in-
definite Kähler statistical manifolds, contributing to the growing body of work on the geometry
of statistical manifolds. In a subsequent paper [24], the same authors focused on the light-
like geometry of indefinite Kähler statistical manifolds and analyzed the characteristics of these
hypersurfaces in terms of their Cauchy-Riemannian structure. This work provided a deeper un-
derstanding of how the Cauchy-Riemann lightlike submanifold influences the overall geometry
of the manifold.

The study of lightlike hypersurfaces, also referred to as lightlike hypersurfaces, is particu-
larly challenging due to the degenerate nature of the induced metric. In pseudo-Riemannian
manifolds, these hypersurfaces are a special class of submanifolds where the normal and tangent
spaces intersect in a non-trivial way. The interplay between the ambient pseudo-Riemannian
geometry and the induced geometry on the hypersurface introduces a number of complexities
that distinguish this theory from the study of non-degenerate hypersurfaces.

A more detailed and thorough discussion of the fundamental ideas and techniques employed
in this section can be found in the works of [11, 10, 25, 6, 27, 3, 20, 21, 26, 16, 19]. These ref-
erences provide comprehensive insights into both the intrinsic and extrinsic geometry of Sasaki-
like statistical manifolds and lightlike hypersurfaces, covering key results and methods that are
essential for the understanding of this subject.
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1.1 Sasaki-like Statistical Manifolds

Let (Ē, h) be the pseudo-Riemannian manifold, B0 and B1 be affine but torsion-free connections
with torsion tensors TB0

and TB1
respectively. The pair (B0, h) ((B0, h)) is said to be the

statistical structure on a smooth manifold [27] if it satisfies following conditions

(Bo
Gh)(H, I)− (Bo

Hh)(G, I) = h(TB0
(G,H), I) (1.1)

TB0
= 0 (1.2)

∀G,H, I ∈ Γ(TĒ). Then the manifold (Ē, h) endowed with statistical structure (B0, h), (re-
spectively ((B0, h))) is supposedly a statistical manifold [27] if it satisfies

Ih(G,H) = h(B0
IG,H) + h(G,B1

IH) (1.3)

∀G,H, I ∈ Γ(TĒ). In statistical manifolds we have [27]
1. The connections B0 and B1 are known to be as dual/ conjugate connections.
2. If structure (B0,h) is statistical , so is (B1,h) on Ē.
3. For conjugate or dual connections B0 and B1, we have

B0∗ =
1
2
(B0 +B1) (1.4)

where B0∗ denotes Levi-Civita connections on the Riemannian manifold (Ē, h).
4. U0 and K1 are curvature tensor fields of conjugate connections B0 and B1 respectively, satisfy
the following condition [27]

h(K1(G,H)I,O) = −h(I, U0(G,H)O) (1.5)

Let (Ē) and (E) are (2n + 1) and n− dimensional Riemannian manifold and hypersurface
respectively, then the Gauss formula [27] are as

B0
GH = BGH + τ(G,H) (1.6)

B1
GH = B∗

GH + τ∗(G,H). (1.7)

Here“τ∗, τ represents bi-linear, symmetric and imbedding curvature tensors of submanifold
(E, h̄) in manifold (Ē, h). The corresponding Gauss equations, in relation to connections B0

and B1 respectively are [27]

h(U0(G,H)I,O) =h(R(G,H)I,O) + h(τ(G, I), τ 1(H,O))−

h(τ 1(G,O), τ(H, I))
(1.8)

and

h(K1(G,H)I,O) =h(R(G,H)I,O) + h(τ∗(G, I), τ(H,O))−
h(τ(G,O), τ∗(H, I))

(1.9)

On an odd-dimensional manifold (Ē, h), let us represent (1, 1)-tensor field as ϕ, ξ as the associ-
ated vector field and η as a 1-form, fulfilling the following properties

η(ξ) = 1

ϕ2G = −G+ η(G)ξ

for any G ∈ Γ(TĒ) and η(G) = h(G, ξ).
An odd-dimensional manifold (Ē, h) in contact geometry, is almost contact metric-like manifold
[25] if it has an almost contact metric structure (ϕ, ξ, h) on (Ē, h), that satisfy

h(ϕG,H) + h(G,ϕ∗H) = 0 (1.10)
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for any G,H ∈ Γ(TĒ) and ϕ∗ is also (1, 1)-type tensor field.
An odd dimensional almost contact metric like manifold (Ē, h) satisfying, [25] the following
conditions is known to be as the Sasaki-like statistical manifold (Ē, B0, h, ϕ, ξ).

B0
Gξ = −ϕG

(B0
Gϕ)H = h(G,H)ξ − η(H)G, (1.11)

where G,H ∈ Γ(TĒ). The sectional curvature σ, in any space is the ϕ− sectional curvature.
where σ denotes sectional curvature of a ϕ−section Let (Ē, B0, h, ϕ, ξ) have constant ϕ - sec-
tional curvature c, then by virtue of [25], R̄0 and (R̄1) of (Ē, h) is given by see[25]

U0(G,H)I =
c+ 3

4
[h(H, I)G− h(G, I)H]

+
c− 1

4
[h(ϕH, I)ϕG− h(ϕG, I)ϕH

− h(ϕG,H)ϕI + h(G,ϕH)ϕI − h(H, ξ)h(I, ξ)G

+ h(G, ξ)h(I, ξ)H + h(H, ξ)h(I,G)ξ − h(G, ξ)h(H, I)ξ]

(1.12)

where G,H, I ∈ TĒ. By interchanging ϕ for ϕ∗ in the above equation we can obtain curvature
tensor K1 as given by

K1(G,H)I =
c+ 3

4
[h(H, I)G− h(G, I)H]

+
c− 1

4
[h(ϕ∗H, I)ϕ∗G− h(ϕ∗G, I)ϕ∗H

− h(ϕ∗G,H)ϕ∗I + h(G,ϕ∗H)ϕ∗I − h(H, ξ)h(I, ξ)G

+ h(G, ξ)h(I, ξ)H + h(H, ξ)h(I,G)ξ − h(G, ξ)h(H, I)ξ]”.

2 Light-like Hypersurfaces

Let (Ē, h) be an (n + 2)-dimensional pseudo-Riemannian differentiable manifold, where the
index of h is q ≥ 1. Let (E, h̄) be a hypersurface of (Ē, h), with the induced metric h = h̄|E .
If the induced metric h̄ on (E, h̄) is degenerate, the hypersurface (E, h̄) is known as a lightlike
hypersurface (see also [9, 11, 10, 8]). On such hypersurfaces, there exists a lightlike, non-zero
vector field ξ ̸= 0 such that

h̄(ξ,G) = 0, (2.1)

for all G ∈ Γ(TĒ). In the context of the degenerate geometry of manifolds, the radical space
(or null space) of the tangent space TGE, denoted RadTGE, is defined as follows for every
G ∈ (E, h̄) [9]:

RadTGE = {ξ ∈ RadTGE : hG(ξ,G) = 0, G ∈ Γ(TĒ)}. (2.2)

The nullity degree of the induced metric h̄ is defined as the dimension of RadTGE, and for
lightlike hypersurfaces, this nullity degree is 1. The radical distribution RadTE is spanned by
the null vector field, while the screen bundle S(TE) is the complementary vector bundle to
RadTE in TE.

It“is important to note that S(TE) is non-degenerate, and its orthogonal complement, S(TE)⊥,
is a complementary vector bundle of rank 2, known as the screen transversal bundle. Since the
radical distribution RadTE is a null bundle, there exists a local section M of S(TE)⊥, such that

h(G,M) = h(M,M) = 0, h(N,M) = 1. (2.3)

The pair (N,M) forms a local frame field of the screen transversal bundle S(TE)⊥, with M be-
ing transversal to the degenerate hypersurface E. As a result, the tangent bundle of the manifold
decomposes as follows"

TĒ = TE ⊕ ltr(TE) = S(TE)⊕RadTE ⊕ ltr(TE), (2.4)
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where ⊕ denotes a direct sum, though this sum is not orthogonal ([9, 11]).
From equation (2.1), we have

B0
GH = BGH + h(G,H), (2.5)

B0
GM = −SMG+Bt

GM. (2.6)

where (3.3) and (3.3) are the Gauss and Weingartan formulae respectively. Substituting

P (G,H) = h(h(G,H), N), (2.7)

and
τ(G) = h(Bt

GM,N), (2.8)

we get the following forms of the equations:

B0
GH = BGH + P (G,H)M, (2.9)

B0
GM = −SMG+ τ(G)M, (2.10)

for any G,H ∈ Γ(TE), where M ∈ Γ(ltr(TE)), −SMG,BGH ∈ Γ(TE), and h(G,H), Bt
GM ∈

Γ(ltr(TE)). Here, SM and P represent the shape operator and second fundamental form, re-
spectively, and B and Bt are linear connections on the lightlike hypersurface E and ltr(TE),
respectively [9].

From equation (2.6), B can be interpreted as an induced connection on the lightlike hyper-
surface E, such that

(BGh)(H, I) = P (G,H)η(I) + P (G, I)η(H), (2.11)

for all G,H, I ∈ Γ(TE). Therefore, B is a non-metric connection induced on the smooth man-
ifold E. Considering the projection P 0, the local Gauss and Weingarten formulas are given
by:

∇GP
0H = ∇0

P 0H + C(G,P 0H)ξ, (2.12)

BGξ = −S0
τG+ τ(G)ξ, (2.13)

where ∇GP
0H and S0

τG ∈ S(TE). Here, S0, C, and ∇0 represent the local shape operator,
second fundamental form, and induced connection on the screen bundle S(TE), respectively.

The shape operators P and C on the degenerate hypersurface are related as follows:

h̄(SMG,P 0H) = C(G,P 0H), h̄(SMG,M) = 0, (2.14)

h̄(S0
ξG,P 0H) = P (G,P 0H), h̄(S0

ξG, ξ) = 0, (2.15)

for all G,H ∈ Γ(TE). Iet U0 and K1 be the curvature tensors for the connections B0 and B1,
respectively. We then have the following relations (see [9]):

U0(G,H)I = R(G,H)I + Sh(G,I)H − Sh(H,I)G

+ (BGh)(H, I)− (BHh)(G, I),
(2.16)

and

K1(G,H)I = R(G,H)I + Sh(G,I)H − Sh(H,I)G

+ (BGh)(H, I)− (BHh)(G, I),

where B0 and B1 are linear connections on U0 and K1, respectively.
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3 Geometric Properties of Null Hypersurfaces in Sasaki-like Statistical
Manifolds

Let (E, h̄, B, B∗) be lightlike-hypersurface of Sasaki-like statistical space form Ē(c). If N ∈
Rad(TE) i,e. radical bundle, then h(ϕN,N) = 0. Hence we have the following equation

h(ϕM,N) = −h(M,ϕN) = 0,

h(ϕM,M) = 0,

(ϕM,ϕN) = 1

(3.1)

P , the second fundamental form is self reliant on screen distribution, so we have

P (., N) = 0 (3.2)

On screen bundle S(TE) of degenerate hypersurface E, suppose P 0 be the projection and con-
sider Y = ϕM ∈ ϕ(ltr(TE)), as degenerate vector field, then for any G ∈ Γ(TE) can be
represented as

G = SG+QG, Qx = Y u(G)

ϕG = ϕ(SG) + ϕY u(G)

put ϕ∗G = ϕ(SG) in the previous equation, we obtain

ϕG = ϕ∗G−Mu(G) (3.3)

where ϕ and ϕ∗ are (1 − 1)− tensor fields on Sasaki-like statistical manifold Ē and lightlike
hypersurface E respectively. Now again applying ϕ, we get

ϕ2G = ϕϕ∗G− u(G)ϕM

ϕ2G = −G+ η(G)ξ − u(G)Y.

Let S represent the projection morphism of the tangent bundle TE onto the distribution G, and
let Q represent the projection morphism of the tangent bundle TE onto the distribution G∗.
Suppose u and v are differential 1-forms locally defined on the lightlike hypersurface (E, h̄) as
follows:

v(G) = h(G,V ) (3.4)

u(G) = h(G,M) (3.5)

we note that
u(Y ) = −1

u(H) = 0, ∀H ∈ Γ(G)

ϕ2M = ϕY = −M ϕ2N = ϕV = −N

The Gauss and Weingarten formulas of (E, h̄) are given by

B0
GH = BGH + P (G,H).M (3.6)

B0
GM = −SMG+ τ(G)M (3.7)

B1
GH = B∗

GH + P ∗(G,H)M (3.8)

B1
GM = −S∗

MG+ τ∗(G)M (3.9)

∀ M ∈ Γltr(TE), G, H ∈ Γ(TE), where BGH, B∗
GH, SMG and S∗

NG ∈ Γ(TE) and

P (G,H) = h(B0
GH, τ), τ(G) = h(BGM, τ))

P ∗(G,H) = h(B1
GH, τ), τ∗(G) = h(B1

GM, τ))

Where SM and S∗
M denote the Weingarten mappings, P and P ∗ correspond to the second fun-

damental forms, and B and B∗ represent the induced connections associated with the conjugate
connections B0 and B1, respectively. By using equation (1.1) and the Gauss formula, we get [6]

Gh̄(H, I) = h̄(B0
GH, I) + h̄(H,B1

GI)

= h̄(BGH, I) + h̄(H,B∗
GI) + P (G,H)η(I) + P ∗(G, I)η(H)

(3.10)

where η is differential 1−form defined on lightlike hypersurface E for any G, H, I ∈ Γ(TE).
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4 Main Results

Lemma 4.1. Let (E, h̄, B,B∗) represent a lightlike hypersurface of Ē(c), then the Gauss and
Codazzi formulae are given by“

R(G,H)I =
c+ 3

4
[h(H, I)G− h(G, I)H] +

c− 1
4

[h(ϕH, I)ϕ∗G− h(ϕG, I)ϕ∗H

−h(ϕG,H)ϕ∗I + h(G,ϕH)ϕ∗I − η(H)η(I)G+ η(G)η(I)H

+η(H)h(I,G)ξ − η(G)h(I,H)ξ]− P (G, I)SMH + P (H, I)SMG,

(4.1)

and the Codazzi equation as:

(BGh)(H, I)− (BHh)(G, I) = −c− 1
4

[h(ϕH, I)u(G)− h(ϕG, I)u(H)

+h(ϕG,H)u(I)− h(G,ϕH)u(I)]M.

(4.2)

Proof. Consider (E, h̄) as a lightlike hypersurface of (Ē, h), where the ϕ-sectional curvature is
constant, denoted as c. From (1.10) and (2.14), we have:

R(G,H)I =
c+ 3

4
[h(H, I)G− h(G, I)H]

+
c− 1

4
[h(ϕH, I)ϕG− h(ϕG, I)ϕH − h(ϕG,H)ϕI + h(G,ϕH)ϕI

−h(H, ξ)h(I, ξ)G+ h(G, ξ)h(I, ξ)H + h(H, ξ)h(I,G)ξ − h(G, ξ)h(H, I)ξ]

− Sh(G,I)H + Sh(H,I)G− (BGh)(H, I) + (BHh)(G, I).

(4.3)

Substituting equation (3.3) into equation (4.2) yields:

R(G,H)I =
c+ 3

4
[h(H, I)G− h(G, I)H]

+
c− 1

4
[h(ϕH, I)ϕ∗G− h(ϕG, I)ϕ∗H − h(ϕG,H)ϕ∗I

+h(G,ϕH)ϕ∗I − h(ϕH, I)u(G)M − h(ϕG, I)u(H)M

−h(ϕG,H)u(I)M + h(G,ϕH)u(I)M − η(H)η(I)G+ η(G)η(I)H

+η(H)h(I,G)ξ − η(G)h(H, I)ξ]− P (G, I)SMH + P (H, I)SMG”.

(4.4)

By comparing the tangential and transversal components of (4.3), we derive the final Gauss and
Codazzi equations.

Lemma 4.2. Let (E, h̄) be a lightlike hypersurface of Ē(c), then the following relation holds:

h(R(G,N)I,M) = −c+ 3
4

h(G, I)− c− 1
4

[v(I)u(ϕG)− 2v(G)u(ϕI)− η(I)η(G)] .

(4.5)

Proof. The result follows directly from (4.1) by substituting N for H and taking the inner prod-
uct with M . Thus, we have:

R(G,N)I =
c+ 3

4
[h(N, I)G− h(G, I)N ]

+
c− 1

4
[h(ϕN, I)ϕ∗G− h(ϕG, I)ϕ∗N − 2h(ϕG,N)ϕ∗I

−η(N)η(I)G+ η(G)η(I)N + η(N)h(I,G)ξ − η(G)h(N, I)ξ]

− P (G, I)SMN + P (N, I)SMG.

(4.6)
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Taking the inner product of (4.6) with M gives:

h(R(G,N)I,M) =
c+ 3

4
[h(N, I)h(G,M)− h(G, I)h(N,M)]

+
c− 1

4
[h(ϕN, I)h(ϕ∗G,M)− h(ϕG, I)h(ϕ∗N,M)

−2h(ϕG,N)h(ϕ∗I,M)− η(N)η(I)h(G,M)

+η(G)η(I)h(N,M) + η(N)h(I,G)h(ξ,M)− η(G)h(N, I)h(ξ,M)]

− P (G, I)h(SMN,M) + P (N, I)h(SMG,M),

(4.7)

which simplifies to:

h(R(G,N)I,M) = −c+ 3
4

h(G, I)− c− 1
4

[v(I)u(ϕG)− 2v(G)u(ϕI)− η(G)η(I)] .

(4.8)

Lemma 4.3. For a lightlike hypersurface (E, h̄) in the Sasaki-like statistical manifold (Ē, h)
with constant ϕ-sectional curvature c, the second fundamental form satisfies:

P (H,Y ) = C(H,V ), (4.9)

for any H ∈ Γ(TE).

Proof. Using the properties of the second fundamental form P , we derive:

P (H,ϕM) = h(h(H,ϕM), N)

= h(B0
HϕM,N)

= −h(B0
HM,ϕN) + h((B0

Hϕ)M,N).

From the relations (1.9) and (2.12), we find:

P (H,ϕM) = −h(B0
HM,ϕN),

which further simplifies to:
P (H,ϕM) = −h(SMH,ϕN),

and consequently:
P (H,ϕM) = C(H,ϕN),

where U = ϕM . This concludes the proof.

Theorem 4.4. Let (E, h̄) be a lightlike hypersurface of (Ē, h) with constant ϕ-sectional curva-
ture c. If the second fundamental form P is parallel on (E, h̄), then we can not obtain a lightlike
hypersurface for c ̸= 1.

Proof. Assume that a lightlike hypersurface exists in the Sasaki-like statistical manifold with
c ̸= 1. Substituting H = N and I = ϕM into equation (4.2), we obtain:

(BGh)(N,ϕM)− (BNh)(G,ϕM) = −c− 1
4

[h(ϕN, ϕM)u(G)− h(ϕG, ϕM)u(N)

−h(ϕG,N)u(ϕM) + h(G,ϕN)u(ϕM)]M.

(4.10)

Since the second fundamental form is parallel, we conclude that c = 1. This contradicts our
assumption, so there cannot exist a lightlike hypersurface for c ̸= 1 in the Sasaki-like statistical
manifold.

Theorem 4.5. There is no lightlike hypersurface (E, h̄) with parallel screen distribution in the
Sasaki-like statistical manifold (Ē(c)) for c ̸= 5.
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Proof. Let us assume that E is a lightlike hypersurface in (Ē(c)) with parallel screen distribu-
tion. Substituting G = N , H = ϕM , and I = ϕN in the curvature relation, we derive the
following:

U0(N,ϕM)ϕN =
c+ 3

4
[h(ϕM,ϕN)N − h(N,ϕN)ϕM ]

+
c− 1

4
[
h(ϕ2M,ϕN)ϕN − h(ϕN, ϕN)ϕ2O

−h(ϕN, ϕM)ϕ2N + h(N,ϕ2O)ϕ2E
]

+
c− 5

4
h(N, ξ)h(ϕN, ξ)ϕM.

(4.11)

Contracting equation (4.11) with M gives:

h(U0(N,ϕM)ϕN,M) =
c− 5

4
. (4.12)

From a previous result [10], we have:

h(U0(G,H)P 0I,M) = 0. (4.13)

Using (4.13), it follows that h(U0(N,ϕM)ϕN,M) = 0. Hence, we must have c = 5, which
contradicts our assumption, proving the result.

Lemma 4.6. Let (E, h̄) be a lightlike hypersurface of a Sasaki-like statistical manifold and V is
the principal vector field, then the following relation holds:

P (V, Y ) = 0, C(V, V ) = 0, (4.14)

Proof. Using equations (1.11) and (2.9), we get:

B0
GY = B0

GϕM,

and
BGY + P (G, Y )M = ϕB0

GM + (B0
Gϕ)M.

Substituting equation (3.3), we derive:

BGY + P (G, Y )M = −ϕ∗SMG+ u(SMG)M + τ(G)ϕM + h(G,M)ξ.

Comparing tangential and transversal components, we get (4.14):

BGY = τ(G)ϕM + h(G,M)ξ − ϕ∗SMG,

and
P (G,U) = u(SMG) + h(SMG,ϕN) = C(G,V ).

Lemma 4.7. Let (E, h̄) be a lightlike hypersurface of a Sasaki-like statistical manifold, then the
Codazzi equation is:

(BGSM )H − (BHSM )G =
c+ 3

4
[u(H)G− u(G)H]

+
c− 1

4
[h(G, Y )ϕH − h(H,Y )ϕG

+h(ϕG,H)Y − h(G,ϕH)Y + η(G)u(G)ξ]

+ τ(G)SMH − τ(H)SMG.

(4.15)

Proof. Substituting I = M in Lemma 1 and performing straightforward calculations, we obtain
the desired result.
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Now, let {a1, . . . , an−2, . . . , a2n−4, ξ,N, ϕM, ϕN} be an orthonormal basis of the tangent
bundle Γ(TE) such that:

ϕai = an−2+i, ϕan−2+i = −ai,

and
ϕξ = 0

for each i = 1, 2, . . . ,m− 2.

Lemma 4.8. Let (E, h̄) be a lightlike hypersurface of a Sasaki-like statistical manifold (Ē, h).
Then we have:

SMY =
2n−4∑
i=1

C(Y, ai)

ei
ai + C(Y, ξ)ξ + C(Y, Y )V + C(Y, V )Y, (4.16)

and

SMN =
2n−4∑
i=1

C(N, ai)

ei
ai + C(N, ξ)ξ + C(N,Y )V, (4.17)

where (ei) represents the signature of the basis (ai).

Proof. From the definitions and properties of lightlike hypersurfaces in Sasaki-like statistical
manifolds, we can write:

SMY =
2n−4∑
i=1

γiai + λξ + β1N + βϕN + β3ϕM.

Using equation (2.14), we get γi = C(N,ai)
ei

, λ = C(Y, ξ), β1 = 0, β2 = C(Y, Y ), and β3 =

−C(Y, V ). Thus, equation (4.16) follows, and a similar process gives equation (4.17).

Theorem 4.9. There does not exist a lightlike hypersurface (E, h̄) of a Sasaki-like statistical
manifold (Ē, h) with c ̸= 5 such that:

P (Y, Y ) = 0

and
h̄((BNSM )Y, V ) = h̄((BY SM )N,V ).

Proof. Substituting H = U and G = N into equation (4.15), we have:

(BNSN )Y − (BY SN )N =
c− 5

4
Y + τ(Y )SMN − τ(N)SMY.

Using equations (4.16) and (4.17), we get:

(BNSM )Y − (BY SN )N =
c− 5

4
Y + τ(Y )

[
C(N, ai)

ei
ai + C(N, ξ)ξ + C(N,Y )V

]
− τ(N)

[
C(Y, ai)

ei
ai + C(Y, ξ)ξ + C(Y, Y )V + C(Y, V )Y

]
.

(4.18)
Taking the inner product of equation (4.18) with V and using Lemma (3.4), we conclude:

h̄((BNSM )Y − (BY SM )N,V ) =
c− 5

4
− τ(N)P (Y, Y ).

This completes the proof.
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5 Novelty of Lightlike Hypersurfaces of Sasaki-like Statistical Spaces

The concept of lightlike hypersurfaces in a statistical space form is an interesting and relatively
novel area of research that combines aspects of differential geometry, relativity, and information
geometry. Here’s a brief look at the novelty of this field:

(i) Intersection of Differential Geometry and Statistics: Statistical space forms are spaces
endowed with both a Riemannian metric and a dual connection, typically arising in the
study of information geometry (which involves statistical manifolds like Fisher informa-
tion metrics). Investigating lightlike hypersurfaces (also known as null hypersurfaces in
relativity theory) within these forms bridges two distinct fields: differential geometry and
information geometry/statistical manifolds.

(ii) Extension of Classical Lightlike Geometry: In classical geometry, lightlike hypersur-
faces arise naturally in general relativity as the surfaces where the induced metric becomes
degenerate. Extending this concept to statistical manifolds opens up new avenues for un-
derstanding the geometric structure of statistical models. The novelty here is studying the
behavior of such hypersurfaces in a statistical context, where connections and metrics are
influenced by probabilistic interpretations.

(iii) Application in Generalized Relativity or Information Theory: Lightlike hypersurfaces
in a statistical space form could provide new insights into generalized theories of gravity or
even in quantum information theory. For example, statistical manifolds often describe fam-
ilies of probability distributions, and understanding lightlike geometry within such contexts
may yield new tools for studying entropic properties or information propagation.

(iv) Geometrical Properties and Curvatures: The study of the curvature and geometric prop-
erties of lightlike hypersurfaces in statistical space forms presents a new challenge. The
interaction between the induced degenerate metric and the statistical structure (such as the
Fisher metric and its dual connections) may lead to new invariants, types of curvature, and
interesting classifications of these hypersurfaces.

(v) Potential Applications in Machine Learning: Statistical manifolds are often used in ma-
chine learning, especially in the study of information-theoretic measures. Investigating
lightlike hypersurfaces could provide novel insights into optimization techniques, such as
gradient flow on statistical manifolds, or new ways of understanding data manifolds where
certain degeneracies (lightlike directions) emerge naturally.

In summary, the study of lightlike hypersurfaces in statistical space forms is a novel en-
deavor because it fuses geometric concepts from relativity (null hypersurfaces) with statis-
tical structures. This could lead to new mathematical tools and theories in both information
geometry and theoretical physics.

6 Conclusion

In this paper, we have explored the geometric properties of lightlike hypersurfaces (E, h̄) within
the Sasaki-like statistical space form (Ē(c)), focusing on the curvature-driven behavior of these
hypersurfaces. By deriving and analyzing the Gauss and Codazzi equations, we have gained
valuable insights into the intrinsic and extrinsic geometry of these hypersurfaces and their rela-
tionship with the ambient manifold.

A key result of our investigation is the geometric constraint on the existence of lightlike
hypersurfaces in (Ē(c)) that simultaneously admit both a parallel screen distribution and a par-
allel second fundamental form. We demonstrated that such hypersurfaces cannot exist, revealing
significant restrictions on the types of geometric structures possible in this context.

Furthermore, our analysis has shown that lightlike hypersurfaces in (Ē(c)) can only exist
when the curvature of the ambient space form takes the specific values c = 1 or c = 5. This
establishes a critical link between the ambient curvature and the geometric properties of lightlike
hypersurfaces, contributing to the broader theory of hypersurfaces in statistical manifolds.

Overall, the results presented in this work deepen our understanding of the interplay be-
tween curvature and hypersurface geometry in Sasaki-like statistical manifolds, offering new
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avenues for future research in differential geometry and its applications to Lorentzian and semi-
Riemannian structures.
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